Ersch.in: Journalof WebEngineering, 4 (2005),1.- S.57-78

INTERPLAY OF CONTENT AND CONTEXT

RUDI BELOTTI, CORSIN DECURTINS, MICHAEL GROSSNIKLAUS
MOIRA C. NORRIE, ALEXIOS PALINGINIS
Institute for Information Systems, ETH Zurich
8092 Zurich, Switzerland
{belotti,decurtins, grossniklaus,norrie,palinginis} Qinf. ethz.ch

We examine the relationship between context engines and content management systems,
showing by means of an example application how these should mutually interact with
each other to ensure the timely delivery of relevant information. We show how a content
management system can use context information to enrich its functionality and also how
a general and abstract approach to content management can support context awareness.
Information models of the general context engine and content management system that
we have developed are presented, along with a description of how a symbiotic relationship
of content and context can be achieved through the integration of these models.

Keywords: Context, Content Management, Information Modelling, Metadata

1 Introduction

Web technologies are no longer solely concerned with providing access to information and
applications via desktop browsers. Nowadays, they are also widely adopted as the basis
for a universal platform for mobile and ubiquitous information systems. Access via mobile
devices requires a high-level of adaptation to cater for the varying, and often restrictive,
characteristics of these devices as well as the situation and task at hand. Information must
be carefully selected, filtered and transformed to meet the needs of a user in a constantly
changing environment.

The notions of context and context-aware applications have become prevalent in the re-
search community as a means of adapting information delivery to match the situation of the
user. While a number of application-specific solutions and context-frameworks exist, there
is still no agreement on a universal model of context and it is doubtful as to whether one
can ever be reached that will satisfy all application developers. Instead, we believe that it is
important to provide general context engines that can be coupled with existing applications
to augment them with an application-specific notion of context.

At the same time, the globalisation of information access through web browsers and the
proliferation of information services has led to increased demands for personalisation and
customisation. Users want to be able access information of particular interest to them in
the language of their choice. History may play an important role in determining both user
preferences and also the context of access.

57

Konstanze©Online-Publikations-Syste(KOPS)
URL: http://nbn-resolving.de/urn:nbn:de:bsz:352-250457

http://nbn-resolving.de/urn:nbn:de:bsz:352-250457

58

Emerging from classical information systems, content management systems have been
developed to attain the goal of adequate information delivery. These systems extend the
traditional functionalities of organising and accessing data with means to publish, present
and deliver content. Originally developed for the administration of large websites, content
management systems have evolved into general web publishing platforms responsible not only
for content management but also its delivery to a range of devices and users.

Within our research group, we have developed both a general context engine and a content
management system based on well-defined metamodels. In this paper, we describe how we
have integrated these to produce a general context-aware content management system and
discuss the interplay between content and context in such a system. The resulting system
provides a general platform for the rapid development of context-aware information systems
based on an application-specific model of context. As we will see, the interplay between
content and context is not a client-server relationship, but rather a symbiosis where both
counterparts profit from each other. To illustrate this, we use the example of a mobile tourist
information system that we developed for visitors to the Edinburgh Festivals to explain the
concepts behind the system and what is involved in developing an application.

In Sect. 2, we first present a brief overview of related work that has been done in the
field of context-aware computing in general and then go on to specifically consider the area
of content management systems. We then introduce the Edinburgh Festival demonstrator
application in Sect. 3 in order that we can use it as an example to explain the concepts
introduced in the paper. The general context engine at the core of our approach is described
in Sect. 4. Our content management system is then described in Sect. 5 along with a discussion
of how context influences the content management system. The opposite direction—how the
content management system influences the context engine—is presented in Sect. 6. Concluding
remarks and a discussion of future work are given in Sect. 7.

2 Context and Context-Aware Computing

The influence of user behaviour and, in general, the situation of the environment where an
interaction is taking place has been identified as context and studied by different research
communities including philosophy, linguistics and social sciences. For example, in everyday
speech, we use context to determine the meaning of spoken phrases. How we interpret and
respond to what someone is saying may be dependent on, not only linguistic context, but
also other factors such as who is doing the speaking, where they are standing and what body
gestures they are using.

In a similar way, how a system interprets and responds to a user request may be made
to depend on, not only the explicit content of the request and application state, but also
contextual information about the user and their environment. This has led to a new category
of computer applications which are context-aware [1, 2, 3] and use implicit parameters that
represent information about the state of the user and their environment, along with explicit
request parameters and the current application state, to determine the response to a request.
Thus, a context-aware application system may adapt to or learn from context [4].

Context-aware computing has received a lot of attention in the fields of ubiquitous and
mobile computing where context is strongly associated with information extracted from the
physical environment through sensor data. Spatial information such as location, orienta-

59

tion and speed or environmental information such as temperature, light and noise level are
commonly sensed context properties for applications in these domains.

A variety of context-aware applications have been designed and implemented including
office and meeting tools [5], tourist guides [6, 7] and a system to support archaeological field-
work [8]. All those examples propose context models specifically tailored to the application
domain in question and directly implemented in the application logic. Although each applica-
tion has its own context model, they have many concepts and components in common. Some
researchers therefore sought to provide a common infrastructure that would support reusabi-
lity and rapid development. For example, the Context Toolkit developed at Georgia Institute
of Technology [9] and the Context File System of the Gaia project at the University of Il-
linois at Urbana-Champaign [10, 11] are both efforts to provide general context frameworks
appropriate for ubiquitous computing.

Based on such a framework, a context-engine can be created to acquire, manage and offer
context-relevant information. Applications can then use the engine to gather context infor-
mation which enriches their behaviour. Furthermore, the proposals offer an infrastructural
solution to the architecture, based on either a transparent host/port distributed communica-
tion [9] or CORBA [10, 11]. Additionally, [9] separates the actual sensor from the abstract
context which allows the decoupling of the context acquisition and the application using the
context.

Although the functionality and infrastructure offered by such context frameworks simpli-
fies the implementation of context-aware applications, they still lack a clear information and
conceptual model that describes the context engine. Such a metamodel can be used as a
reference model for context-engines, increasing the understanding of different approaches and
enabling a comparison based on the concepts introduced in the metamodel. Context informa-
tion exchange is also facilitated by using appropriate mappings to transform context-engine
specific data to the metamodel. In [12], we present a general information model for context
and, in the next section, we describe a context engine based on that model.

A general purpose context-engine can be used by any type of application. We mentioned
above applications from the domains of ubiquitous and mobile computing where context is
often used to model properties of the physical environment based on sensor data. But system
responses could be made to depend on a whole host of factors about the user and their
situation. For example, it might depend on the user’s profile and preferences in terms of
language capabilities, interests and level of experience. It might also depend on the device
that they are using and the time of day. It might depend on the task at hand: For example, if
the user is seeking information about train times, the appropriate response might depend on
whether they are planning a trip or just want to check when they should meet friends at the
station. History may also play an important role in helping to determine both the state and
the desires of a user. For example, the history of access in a web browser determines what
information has already been delivered and can also help identify the interests of a user and
the task at hand.

The notion of context-awareness has therefore also appeared in other areas of computer
science where there was a desire to adapt user interaction and possibly behaviour according
to some model of context. In the field of web engineering, the first steps towards context-
awareness were made by introducing adaptation concepts directly into hypertext models [13,

60

14]. Such Adaptive Hypermedia Systems (AHS) are based on various user characteristics
presented in a user model. Most of the early examples focus on information collected from
the user’s click stream. In [15], user data, usage data and environment data are distinguished.
An extensive discussion on the field of AHS and related work can be found in [16].

We should mention here that some authors and systems handle general user preferences
such as colours, style and interests separately from context, considering them as part of a static
user profile rather then a dynamic characterisation of an interaction situation. Alternatively,
one can handle both in an integrated manner by considering a user profile as a static definition
of part of the context state that is loaded initially and may then be updated dynamically if
appropriate. What is important is to note that one cannot categorically state whether a
specific characteristic of a user or an environment is or is not part of the context definition.
Rather, the definition of context will always depend on the application and its specific context
model.

As stated above, AHS systems typically employ a user model to capture the adaptive-
relevant properties. After each interaction, the user model is updated and, based on adap-
tation rules, appropriate output is generated. Adaptation is applied to the basic concepts of
hypermedia models, namely, component and link. Rules are defined to control the composition
of components (fragments) or even alter link presentation. Approaches that use rule-based
adaptation of hypertext are AHAM [17], a reference model for adaptive hypermedia and
AHA! [18], an architecture for adaptive hypermedia that is based on AHAM.

Due to the fact that components encapsulate both notions of content and presentation in
an indistinguishable manner, it is not possible to adapt only one of them in isolation. This
is unfortunate if one considers that a major adaptation requirement of web applications is
context-dependent presentations. When evaluating AHS, we are confronted with the situation
found in other application-specific approaches. The user model is inspired and specified with
the browser /server environment in mind. Thus, no general approach to context is taken with
important properties such as context history, sensor generality, quality etc.

To provide a better solution, model-based approaches to web site development have re-
cently been extended to support more general forms of adaptation [19] and context-aware-
ness [20, 21, 22]. Based on strong and abstract information models, these approaches have the
potential to exploit context-awareness in many dimensions, keeping the solutions as simple as
possible. In [19], delivery channel characteristics can be used to influence the hypertext and
navigation model of the original WebML model [23]. In this approach, no explicit context mo-
del is used. Instead, general data modelling techniques are made available to manage context
information. Although the presentation cannot be adapted explicitly, it can be influenced by
adapting similar content units bound to different presentation templates. A comprehensive
survey of context and context-dependent customisation can be found in [24].

Our approach is based on extending the functionality of a database management system
specifically to support web publishing. This involves managing not only application data,
but also web document structures and presentations within the database. Web document
structures are recursively defined in terms of web components which define containers for
static and/or dynamic content, possibly generated from application data. Web components
are associated with one or more template objects which define the presentation of content.

In earlier work, we developed the web publishing platform OMSwe [20] as an extension

61

of the object-oriented database management system OMS Pro [25]. In addition to the basic
content and presentation management facilities outlined above, OMS Pro was extended with
a special versioning mechanism to support context-awareness. The context model of an app-
lication defines a set of characteristics and the context state at any time is a corresponding
set of characteristic/value pairs. Different versions of an object can exist corresponding to
different characteristic values. For example, if language is one of the context characteristics
of an application, then different language versions of an object can exist, each labelled with a
specific value for the language characteristic. One or more characteristic/value pairs may be
associated with an object version.

Context information is provided in the form of characteristic/value pairs from a context
gateway component. This information builds the request state, based on which, the database
will retrieve the most appropriate versions of the objects involved in the response. Since
all information—application data, web components and presentation templates—are all re-
presented as objects in the system, all may be context-dependent. Thus, through a single
mechanism, OMSwe is able to make content, structure and presentation context-aware. These
essentially correspond to the content, hypertext and presentation levels that are defined in [26]
and used in [24] to classify the scope of the adaption to context.

In a later project, the eXtensible Content Management (XCM) system [27] took the ap-
proach one step further and defined a full-strength content management system with well
defined general information concepts. Also, based on our experiences with OMSwe and as
mentioned above, we developed a more general context metamodel and engine suited not only
to general web publishing, but also for applications in the ubiquitous and mobile domains [12].

In the following sections, we present the main features of the context engine and XCM
and then go on to discuss in detail the interplay between them. However, before doing so,
we provide an overview of the demonstrator application used in all examples to explain the
model and operation of the resulting integrated system.

3 Edinburgh Festival Example

Tourism is a domain with considerable potential for the use of mobile technologies and context-
awareness. Typically, the information that a tourist wants is related to various contextual
factors such as location and time of day as well as preferences and places already visited. A
number of projects have therefore developed context-aware digital tourist guides, including
Cyberguide [6] and GUIDE [28].

To test the appropriateness of our system as a general platform for mobile information
systems, we also chose to look at tourism as an application domain. However, in contrast
to other projects, we wanted to investigate the use of technologies for digitally augmented
paper [29] in conjunction with voice input/output as the basis for interaction rather than
PDAs. In addition, we wanted to provide access to the information services via desktop
browsers. The sheer variety of interaction modes, together with the severe limitations of
effective bandwidth in dialogue-based interaction, presented serious challenges in terms of the
flexibility and generality of the underlying content management system. In addition, instead
of opting to implement a general city guide, we developed a demonstrator system for visitors to
the Edinburgh Festivals which is much more dynamic in terms of data and context-dependent
requirements. In the remainder of this section, we present an overview of the functionality

62

and architecture of the festival system.

Every year in August, the city of Edinburgh in Scotland is host to the Edinburgh Festivals,
a federation of individual festivals including the International Arts Festival, the International
Book Festival, the International Jazz and Blues Festival, the International Film Festival, the
Fringe Festival and the famous Military Tattoo. The various festivals cover a broad variety
of cultural interests such as theatre, art, music, dance, cinematography, literature and much
more. Performances take place in various locations ranging from large theatres to pub scenes
and open-air stages in the streets of the city centre. Every year, the festivals attract thousands
of visitors from around the world as well as local residents. In 2002, close to half-a-million
tourists have been estimated to have visited the festivals.

In a situation where a large number of events take place in a decentralised manner throug-
hout the city over a short period of time, effective information delivery to the visitors is crucial
to their satisfaction and the overall organisational success of the festival. A major problem for
tourists is how to select events to attend and put these together as part of an overall schedule.

Printed information about the events comes in various forms, including festival program-
mes, reviews and daily event programmes published by newspapers and flyers. This informa-
tion would easily fill hundreds of pages on its own while offering only limited search facilities.
Due to its generic nature, it also does not offer any form of personalisation and hence does not
fit the needs of individual tourists. In addition, each festival offers a web site with information
about venues, events and on-line ticket ordering. In the case of the Fringe Festival, visitors
can also enter their reviews on events. Although these sites do not currently offer personali-
sation and customisation, this is something that would be useful and could be incorporated
into future versions.

Major sources of information such as the various festival brochures and web sites are best
suited to pre-visit access where users can take the time to carefully study the programmes,
plan their visit and order tickets. However, especially in the case of the Fringe Festival where
hundreds of events are on offer each day, tourists often decide on events during the actual
visit. In this case, selections are often based on locality, time of performance and reviews
which are copied and pasted on noticeboards outside venues.

Apart from selecting events and planning which shows to visit, navigation and orientation
present serious challenges, especially for foreigners, as there are hundreds of events each day
and many of the festivals take place at multiple venues spread across the city.

The aim of the Edinburgh Festival project (EdFest) was to develop a prototype application
based on technologies for ubiquitous and mobile information environments to support visitors
of the Edinburgh Festivals. While the main focus of the initial phase of this project was the
context-aware delivery of information and services through various channels, we also wanted
to support collaboration among tourists through the entry and sharing of personal reviews
during visits.

Generally, the tourist experience can be divided into three stages: pre-visit, visit and
post-visit, and we wanted to support all three stages based on a single system. Starting with
the pre-visit phase, tourists should be able to access information about festivals, select events
and book tickets through their normal desktop web browser. Later, during their visit, tourists
should in addition be able to access up-to-date or last-minute event information. They also
need to be assisted in finding their way around the city and to have easy access to information

63

about venues and events near to their current location. They may also want to enter reviews
shortly after visiting an event and share these with other tourists. Finally, after the visit,
tourists may want to generate a personal diary of their visit as well as entering reviews or
discussing their experiences with other people.

With the EdFest project, we advocate that all information should be managed by a single
web information system that can be accessed through various channels corresponding to the
different needs of the user. The web sites of the individual festivals, the mobile clients that
users take with them on their visit, as well as the discussion boards they use to share their
experiences, are built using one context-aware content management system.

Nokia SU-1B
(Prototype) Headset GPS (NMEA)
A
/
/ ()
-l % %
4 9 PAY WLAN ()
EdFest Mobile Client iServer Content Management Server

Fig. 1. Architecture of the EdFest Prototype

Figure 1 displays an overview of the architecture of the EdFest prototype application that
was developed during a first project phase and tested in Edinburgh during August 2004.
During this phase, we decided to investigate alternatives to PDAs and visual displays in a
mobile information environment and developed mobile clients based around an interactive
paper map and programme, using a system for digitally augmented paper based on Anoto
technologies and a specially modified Nokia digital pen. This was coupled with the use of
speech dialogue for both input and the delivery of information.

It is beyond the scope of this paper to describe these client technologies in detail and
also the cross-media link server (iServer) that we have developed for linking paper and digi-
tal media. The interested reader can find further information in [29, 30]. In the context of
this paper, what is important is the fact that we had to support a large variety of channels
and modes of interaction, including conventional desktop browsers, speech dialogue and also
completely new forms of interactive paper. Further, since these are the subject of experi-
mentation in mobile environments, it is important that we can easily adapt interfaces and
introduce alternative channels.

The EdFest Mobile Client shown on the left-hand side of the figure consists of a wearable
computer, a headset, a GPS receiver and digital pen. As all user interaction with this client
is purely based on the digital pen and paper together with audio, the client’s principal task
is to detect which regions of the printed festival programme and map the visitor is pointing
at with the digital pen. From this position data, the cross-media link server (iServer) is able
to determine what information has been linked to the respective region on the paper. iServer
then constructs a request that is sent to the content management server shown on the right-
hand side of the figure. The content management server runs a combination of our Context
Engine and the eXtensible Content Management System (XCM).

In the remaining sections, we will focus on the content management server and show how
its two components can be combined together to deliver context-dependent information to
users. While this approach is not limited to the EdFest project nor in any way was developed

64

solely for it, we will use this example throughout the following sections to illustrate the
interplay of content and context and indicate what is involved in using the system to develop
a context-aware application.

4 Context Engine

In this section, we introduce the general context engine that we have developed, using examp-
les based on the EdFest application to show how application-specific models can be specified
and explain the operation of the context engine.

The context engine is based on a basic and abstract concept of context that was influenced
by the application and framework requirements, as well as the discussion of context presented
by Dourish in [31]. While the underlying metamodel is described in full in [12], here we
concentrate on explaining how an application-specific context model is described in terms of
the metamodel and the associated language.

Every entity of an application can potentially have one or more context elements associated
with it. Then we say that the application entity is the subject of the associated context
elements. For instance, the EdFest application schema defines the concept of a user, as is
typical of many context-aware mobile information systems. The context of a user could be
described by physical properties such as the user’s position. Then a context element position
would record the history of user positions through the automatic creation and storage of
multiple associated context instances, each of which would hold a particular position value,
e.g. 4722.882N,832.7608E,571, 3.

For the above example of a position value, we could define a context element with the raw,
unstructured position information as delivered by a GPS receiver. There are standardised
formats for GPS data, such as for example the NMEA format. For the example, we use a
simplified version of this format for better readability. It consists of latitude, longitude, height
and the number of satellites that were used to determine the position.

If the values stored within context instances do not provide any information about the scale
and format used, this could cause problems in ensuring that these values are handled correctly
and errors detected. Moreover, since the context engine may supply context information to
many different applications, it is vital that some form of description is available to ensure that
data is processed correctly and possibly transformed into the formats required by a particular
application. We therefore introduced a type system for defining concepts within the context
engine.

The system distinguishes four kind of types as shown in Fig. 2. The notation used is that of
the Object Model (OM) [32], a model that integrates object-oriented and entity-relationship
concepts. Base types define common values such as string, integer, boolean etc. The
model allows base type restrictions as used in XML Schema. Hence, we can create base type
restrictions with new names that represent values with specific semantics. In the example
below, we define a base type gps_coordinate as a restriction of string. Restrictions of a
type are expressed through a constraint that checks the validity of the values acceptable for
the defined type.

btype gps_coordinate is string {
constr: ’self(S), check_gps_format(S)’;
s

65

type attrdef !

/—\ (1.1) (1.1 /—\ ©) . ©) /—\
bulkMemberType Types AttrDefinitions ofSemCategory
0.
;) o
% composedOf
) ©9 unit

partition

bulk type SemanticCategory

BulkTypes ContextTypes
1)

05
context

[btype [type] A
- 0,%)
01 contextOfType 09 Context
ApplTypes characterises L
0
e - o) 0%
subBTypeOf)

)

subATypeOf)

dictionary|

F \ 0 (1,1) 7~ \
entityOfAType ApplEntities hasContextProperty

Fig. 2. Context Type Model

The context engine is implemented in Prolog and the Context Definition Language (CDL)
used here has been developed to define concepts and their types for an application-specific
context model. Operational components of CDL are defined in Prolog. For the above example,
the constraint is a predicate that evaluates to true if the given value is legal. To check if
a value is appropriate as a gps_coordinate, the value is first retrieved using the predicate
self/1 and then checked to be in the correct format using the check_gps_format/1 predicate.

In addition to the base types, the context model uses references to application-specific
types to define and control application entities. Apart from a unique reference of the pattern
applicationID:typelD, the context engine does not deal with any aspects of these application
types. This allows the context engine to use application objects as context elements without
actually having to know about the semantics of these objects. An object of type edfest:user,
for example, might have a context element currentLocation, which is of type edfest:venue.

The third class of types are the bulk types which designate lists of values of a given member
type. Bulk types come in four different flavours set, sequence, ranking and bag, depending on
the bulk semantics. A set contains no duplicates and is unordered. A bag is also unordered,
but elements may have multiple occurrences. A ranking is ordered and elements may occur
only once. A sequence is as well ordered and elements may have multiple occurrences. In
the EdFest project, we use the languages that a user understands as one context element for
providing content to the user. This information is retrieved from the user profile. As most
users understand multiple languages, we use a bulk type rather than a base type for this
context element.

btype language is string {
constr: ’self(S), check iso_language(S)’;
b

bulkType languagelList is ranking of language;

66

The bulk type languageList is actually a ranking, i.e. the list is ordered but does not
contain duplicates, allowing a user’s order of language preference to be modelled. In the
case of EdFest, if a content object is available in multiple languages, the content management
system goes through the languageList context element of the user and selects the version that
corresponds to the first language in the list supported by the content object. If the content
is not available in the preferred language of the user, the system can therefore provide an
alternative version that is also useful to the user. If no matches are provided, then it provides
it in the default language, which in this case is English. More details of this mechanism are
given in Sect. 5.

Finally, the model supports context types which define the composition of the context
over a set of attributes of a given type. In the following example, we define a context type
ctx_position with one attribute coordinate of type gps_coordinate.

contextType ctx_gps_position characterises edfest:user {
coordinate: gps_coordinate;

Optionally, the context type designates the type of entity to which it can be bound. In the
above example, the defined context poses the constraint to characterise application entities
of the type user defined in application edfest. Application types can be defined in an is-a
hierarchy, designating a compatibility among them (not shown in this example).

Note that although values of the context type ctx_gps_position have a well-defined se-
mantics, applications which want to use them still have to parse the coordinate string in order
to get the specific parts of the value. A more structured representation of GPS coordinates
could be implemented, based on btypes gps_longitude, gps_latitude and float for the
height above ground. The two representations can coexist and each application can choose
the context element that best matches its requirements.

contextType ctx_position characterises edfest:user {
longitude: gps_longitude;
latitude: gps_latitude;
height: float;

+s

After declaring the types, an application can instantiate context elements and bind them
to some specific application entity. In the following example, we create the position context
for the entity edfest:fred, which is an instance of edfest:user.

context c_fred position: ctx_position describes edfest:fred

Context elements are either queried directly from client applications or received through
an event notification mechanism. Such clients play the role of consumer with respect to the
context engine. On the other hand, a sensor abstraction exists that encapsulates the context
acquisition mechanism. Sensors are well defined components that are initialised with some
parameters and bound to context elements. Sensors could either be hardware or software in
nature. A hardware sensor could be a GPS device and a software sensor could, for example,

67

be a program that extracts the current application status with respect to an interaction.

To allow reusability and separation of concerns, we introduced the concept of a sensor
driver. It holds the acquisition logic of the sensor. Multiple sensors can be instantiated based
on a single sensor driver. The next example defines a GPS sensor that is connected to the
serial port of a computer and provides the user’s position context information based on the
ctx_position context type.

sensorDriver gpsSensor(serial_port: integer): ctx_position;

Then the following statement initialises the actual GPS based on the given sensor driver,
providing context information to the c_fred_position context.

sensor s_gpsFred: gpsSensor(l) provides c_fred_position;

Moreover, if you need to change the current source of a certain context element, you can
do so simply by changing the sensor providing the context information without the need
to redefine anything else. The following code demonstrates how you can simply change the
definition of the source of position context information for fred.

sensor s_positionl: newPositionSensor(l) provides c_fred position;

In addition to the sensor driver definition, an implementation is necessary. For our proto-
type of the context engine, it is coded in SICStus Prolog [33] and bindings to Java are used
in cases where the actual sensor offers a Java API. In the EdFest project, we have integrated
the context engine with various physical and software sensors. For example, we use GPS
receivers to acquire context information about the user’s positions in the city and software
sensors to get context information from various components of the EdFest application. This
will be discussed in more detail in Sect. 6. In the next section, we first want to look at
how applications, in particular a content management system, can use context information
provided by the context engine.

5 From Context to Content

To demonstrate the interworking of the previously described context engine with an appli-
cation system, we show in this section how it can be integrated with a content management
system. Further, we outline how information flows from the context engine to the content
management system and vice versa. As a content management system, we have chosen our
own eXtensible Content Management (XCM) [27, 21]. Like the previously described con-
text engine, the current version of XCM is also defined using the Object Model (OM). It is
implemented in Java using OMS Java [34], an object-oriented database management system
based on the OM model. The original version of XCM supported only a rather simple imple-
mentation for context and has now been extended to work together with our context engine
described in the previous section.

XCM has been designed as a platform that provides support to applications requiring
features typical of content management such as user management, workflows, personalisation,
multi-channel delivery and multi-variant objects. At the heart of the system stands the

68

separation of content, structure, view and layout. The concept of content allows data to
be accumulated into content objects and stores metadata about this content. As it is often
required that the same content object may be delivered in different variations, the system
supports what we call “multi-variant objects”. For example, an event description may have
multiple variants that correspond to the different languages in which it is available.

Multi-variant objects can comprise much more than the simple dimension of language.
Other dimensions are often required, such as the target group of users or whether it is free
or premium content for which users have to pay. Our system does not predefine the possible
dimensions, but rather provides support to handle any annotation of content variants that
makes sense in a given application domain. To achieve this, the concept of a content object
is separated from its actual representation while still allowing for strict typing. In Fig. 3, a
metamodel is displayed that shows how XCM represents multi-variant objects. Again, the
notation and semantics are those of the OM model.

object] variant
. 1.7 . (1% .
Objects hasVariant Variants
a1
(17 0%)
hasType variantType describedBy
(1) (1)
type characteristic|
(1.7 -
Types Characteristics

Fig. 3. Metamodel for XCM Multi-Variant Objects

At the top of the figure, the separation of the concept of an object and its actual content
is clearly visible in the form of Objects linked to a non-empty set of Variants by means of
the association hasVariant. Each variant of a multi-variant content object can be described
by Characteristics that are linked to the variant over the association describedBy. A
characteristic is simply represented as a (name, value) tuple. For example, to annotate a
variant for English, one would simply associate it with the tuple (language .name, english).
This mechanism is actually very similar to the one of OMSwe described earlier in Sect. 2. As
we will see later, characteristics play an important role in context-aware content management
applications.

XCM also manages metadata about the types of content objects and their variants. Thus,
in the metamodel, objects as well as variants are associated with Types using the hasType
and variantType associations, respectively. This information can then be used by the system
to determine whether the type of a variant matches the type of the corresponding object.
As the cardinality constraints indicate, an object can have more than one type to support
polymorphism and multiple instantiation.

XCM uses the concept of structure to build content hierarchies from multi-variant content
objects. In a content management system, structures are required to build complex objects

69

such as pages, collection of pages or “folders”. Our system uses the very simple component-
container approach to build these structures. As a container can hold a number of components
and other containers as well, arbitrary tree-based structures can be represented. Structure
objects, i.e. containers, form the inner nodes of the tree, whereas the actual content is located
in the leaves. Separating the structure from the content makes possible different access
patterns to the same content.

Personalisation in XCM is achieved through the concept of a view. A view decides which
aspects of a multi-variant content object are presented to the user. Further, it can aggregate
other information to the object based on the schema of the content, thereby augmenting it.
Hence, our view concept is not unlike that found in relational database systems. Managing
different views for different users or situations effectively provides support for personalisation
and custom content delivery.

Finally, the concept of layout encapsulates the graphical representation of the content.
The layout is applied to container and content objects by means of templates that match the
type of the target object. As for all four basic concepts of our system, layout objects can have
multiple variants for different requirements. For example, a template to render an event from
one of the Edinburgh Festivals can have one variant to produce HTML and another variant
to produce VoiceXML for rendering by a text-to-speech engine such as the IBM VoiceServer
SDK that we have used in the EdFest project. Hence, layout objects are required to support
multiple presentation channels.

Based on this overview of the basic elements of XCM, we now go on to describe the
integration of the context engine into the system. As mentioned before, our context model
allows application entities to be linked to context elements within the context engine. In the
example of the content management application, it is intuitive to link the application concept
of Sessions to various context elements such as the user’s identity and language, the version
of the browser and other information about the current situation of the user. As sessions are
already used in content management systems to store values essential to the current user, it
is only natural to use this concept and augment it with context information.

session
(Characteristics Sessions

dependsOn)

— e —
“\ ©)
'
partition '

b
P CE R S
[xcmelement| [xcmelement| [xcmelement [xcmelement| \/hasCOntextPrope rty, >\
~ P
Contents Structures Views Layouts B 1T -

Fig. 4. Conceptual Model for the Context Binding

Figure 4 shows the model of the binding between XCM and the context engine. The
parts that physically belong to the context model of our context component are represented
with dashed lines. The four basic concepts have been unified with a common super concept

70

XCMElements which depends on the values of a given session. The separation between an
object and its variants has been collapsed into a box with multiple shades to indicate that
these objects can have multiple variants. From the model, it is apparent that, not only
content, but also structure, view and layout can have multiple variants and thus adapt to
context. Again, each variant can be described with characteristics as shown on the left-hand
side of the figure.

This conceptual link between context elements and the application concept of a session is
materialised using the context type definition given in the example below. The displayed CDL
code first creates a base type for physical internet addresses by means of a restriction on the
type string. Then a context type is created to represent the browser that is used in a given
context. The actual binding is defined by the third declaration. It defines a type ctx_session
which is linked to the concept xcm:session within XCM. It comprises four attributes that
represent the context information available from the sensors. The attribute user provides the
identity of the user of the current session, lang their language and browser the name and
version of the browser used. Finally, the attribute host gives information about the physical
address from which the content management system is accessed.

btype ip is string {
constr: ’self(S), split(s,".",L),
\+ (member(X,L), \+ conv_integer(X,.))’;
}s
contextType browser {
name: string;
version: string;
s
contextType ctx_session characterises xcm:session {
user: Xcm:user;
lang: language;
browser: browser;
host: 1ip;

+s

It is also possible to create context types that are built from existing context types. The
following code illustrates how we can define a ctx_user_session type that characterises
application objects of type edfest:user and includes the context information about the
aforementioned session context ctx_session and the user’s current position ctx_position
that was defined in Sect. 4.

contextType ctx_user_session characterises edfest:user {
position: ctx_position;
session: ctx_session;

s

Having explained how the context engine is bound to the content management application,
we now go on to discuss how such a system reacts to the information supplied by the context

71

component. In XCM, context information is used to select the appropriate variant of an
object, i.e. the context information is compared to the characteristics of each variant of such
an object and the version that matches best is selected automatically. In practice, this can
prove to be quite difficult, as the characteristics available to the system need not fully match
the incoming context information. It is often the case that the context information comes
at a higher level of detail than the metadata stored in the content management system. Of
course, the opposite case that the metadata is more precise is also possible. In these cases
of “under-” and “over-specified” context information, the matching process uses heuristics to
select from the set of possible variants or to select a default variant if no match is found at
all. A similar matching process together with heuristics is used in [20, 35].

For the mapping of context information to characteristics to work, the names of the (name,
value) tuples have to match. This means that some sort of convention, taxonomy or ontology
has to be used that assures a uniform naming scheme. As the definition of such conventions is
clearly beyond the scope of this work, we adopt the simple approach of what we call “property
paths”. A property path locates a value inside a context element and can be derived from its
context type definition, e.g. the value of the browser version in the current session would be
identified by the path ctx_session.browser.version.

Further complexity arises from the fact that XCM supports not only simple values for
characteristics, but also sets and ranges. This is used to specify, for instance, a set of
matching browser versions with the characteristic (ctx_session.browser.version, [5.0,
5.5, 6.0, 6.1]) or a time period given as an interval when a variant of an object is valid
with (valid, [1/1/2004..31/1/2004]1). XCM also provides the notion of mandatory and
“show-stopper” characteristics. In contrast to unconstrained characteristics, these categories
of properties are not freely matched to the context information, but instead are treated spe-
cially. A mandatory characteristic takes precedence over all other non-mandatory values,
whereas a “show-stopper” property would not allow a certain variant to be selected if the
context value does not match that of the characteristic.

Having discussed the integration of the context component into our content management
system, we can finally give an architectural overview of the whole system. Figure 5 shows a
graphical representation of all components. At the bottom, we show the user who communi-
cates with the content management system through a browser requesting pages. In the case
of the EdFest system, this may be a usual desktop browser, a voice browser or an “interactive
paper browser” realised through a combination of paper augmented with the Anoto pattern,
a digital pen and the iServer.

The content management system then interworks with a private context component to
manage the context proprietary to the system. Further, the private context component is
connected to a shared context component that manages context for several applications and
provides a global notion of context. This shared context component is connected to the sensors
as shown at the top of the figure. The two context components and the content management
application are conceptually connected by the model that is common to all three of them.
As the figure also indicates, information can always flow in both directions. We discuss the
opposite flow of information in the next section.

72

Sensors

Shared Context Engine

CMS Context Engine

Uniform Context Model

Content Management System

User

Fig. 5. Overview of the Architecture

6 From Content to Context

In the previous section, we described how the content management system can use the context
engine to provide context-aware content for a user. In this section, we focus on the reverse
relationship. The content management system can also act as a provider of information
for the context engine. This context information can then be used either by the content
management system itself, or by other context-aware applications and components of the
information environment.

From the different types of context described in [36], the user context is of special import-
ance for information environments. The acquisition of context information from the external,
physical environment of the user is relatively simple to achieve. Sensors, mounted on the per-
son or embedded in the physical environment, can measure the relevant values of the user’s
environment. For example, an EdFest user carries a GPS receiver that is used to determine
their current position within the city.

Context information from the internal, mental state of the user on the other hand is
very difficult to acquire. The mental state includes things like the thoughts of the user,
mood, intentions and associations. It makes up a significant and important part of the user’s
context. However, it cannot be measured or sensed directly. The only way to acquire context
information about the inner state of the user is indirectly, through manifestations in the
physical and virtual realm. For example, the destination of a user who moves around a city
cannot be determined by a sensor directly. However, the user’s last positions, along with a
profile of the user’s destinations, the current weekday and time etc. might give information
about probable destinations [37]. Most of the information in this example is sensed from the
physical environment. Information from the virtual environment, for instance the applications
that a person uses, is also very valuable for the indirect derivation of context. In the previous
example, the fact that the user just looked up the location of a venue on a geographical

73

information system or has scheduled an appointment with a friend at a particular location
in five minutes, is a very useful piece of contextual information for determining or predicting
the next destination of the user.

The content management system is an important and central component of the application
and often also acts as gateway to other applications and services of the information environ-
ment. Therefore, it is highly relevant for the acquisition of context information. Services and
other applications can often define more detailed context information because of their more
restrictive functionality. However, the content management system can provide the necessary
semantics for the context information to actually be useful. It has additional metadata that
is used to turn information into content and can also use this metadata to provide or enrich
context information. Imagine, for example, a service that is able to look up the location of a
particular venue for the EdFest project. On its own, the information from a request to this
service cannot really be used as contextual information since we do not know for instance
which user requested the information. In this example, the content management system uses
its own context, i.e. which user triggered a request, to provide additional context information.
Another example would be the lookup of an event in the EdFest database. It makes a big
difference whether the user explicitly and consciously requested information about this event
or whether it was just displayed as a recommendation from the system. The EdFest database
cannot detect this difference as it only receives a request for an object. The information,
however, is available in the application metadata of the content management system. This
metadata describes how the response is composed, what parameters are determined by ex-
plicit input from the user and what parameters are constructed from context information or
other components.

Context information can be extracted from application data, content data, the local con-
text model of the content management system or the user sessions. For example, session
information can be used to provide contextual information about the level and type of ac-
tivity of a user such as whether the user is very busy with the system, just clicking around
or not using the system at all. An example of context from the local context model of the
content management system would be the current language. The user might have changed
this language explicitly in the process of an interaction. The kind of context information
mentioned in these two examples is quite simple and could also be provided by other com-
ponents. It becomes much more interesting, if we take the content metadata and application
data into account. With the content metadata, for example, the content management system
might be able to tell whether the user is currently browsing an overview page or drilling down
to a very deep level of detail. This could be estimated in a generic way by the number of
content objects that are used to compose a page. The fewer content objects used, the larger
the probability is that the page is a detail page. The advantage of using the content metadata
only is that it is independent of the actual application that is running on top of the content
management system. Software sensors can be provided that extract this context information
in a generic way. However, if we also take the application model into account, the context
information can be even more specific. For example, the category of the event that the user
is currently browsing can be used as context information in the EdFest system.

Note that, for most of the examples mentioned above, the actual data model of the app-
lication is very important. The fact that we have an expressive semantic data model in our

74

content management system greatly simplifies the task. Actually, the extraction of semantic
context information would be very difficult, if not impossible, without a proper application
model in the content management system. In some traditional content management systems
that do not support customised data models, the EdFest example with the categorised events
could be modelled with a page for each category containing a list of events in the form of
paragraphs, links etc. with a page for each event giving more details. In this setup, it is not
possible to extract the category in which the user is currently interested.

As described in Sect. 5, in our content management system, the application data is not
stored in the form of paragraphs, links and pages, but rather according to a semantic app-
lication model. A customised software sensor could thus easily retrieve the categories of the
events that the user is currently browsing and store corresponding entries in the context en-
gine. In contrast to other context frameworks such as [9], we are also able to use application
objects as context values through reference types as outlined in Sect. 4. This means that the
content management system can store the actual object that represents the category in the
context engine, rather than just the name of the category.

In the following example, we provide the definition of a context ctx_category that defines
the category browsed by a user of type edfest:user. This type actually belongs to the
application domain and is only referenced by the context engine.

contextType ctx_category characterises edfest:user {
category: edfest:category;
}s

We instantiate a new context c_fred_category of this type for the user fred. This entity
is also represented only by a reference to the application data.

context c_fred category: ctx_category describes edfest:fred;

We define a software sensor categorySensor, which is responsible for gathering the re-
levant category information from the content management system and associate it to the
current user. edfest:category is also a concept from the EdFest application model. Finally,
we instantiate the software sensor for the subject fred.

sensorDriver categorySensor(): ctx_category;
sensor s_category_fred: categorySensor() provides c_fred_category;

Note that the names of the types and variables in this example are for better readability
only. In the actual system, every concept is represented by an object rather than a name.
Other instances of the software sensor categorySensor can be used to provide context infor-
mation for other users of the application. But as the sensor works on the application data
model, it cannot be used for other applications of the content management system. On the
other hand, sensors that only work on the content metamodel of the content management
system can be reused for all of the applications that are based on the metamodel.

It is important not to confuse the extraction of context information with general data
mining, e.g. for user profiling. Similar technologies and algorithms can be used for both of

75

them, but whereas data mining focusses on general facts and information, for example about
users, context mining is only concerned with the current state of the user. This might include
historical information, but, usually, context information is of interest for a limited time only.

The extracted context information can be used for a variety of applications. Of special in-
terest to us are ubiquitous and mobile information environments and corresponding platforms
that integrate multiple context-aware applications for a physical location or virtual commu-
nity. The EdFest project is an example of such an context-aware information environment
and it integrates both a context engine and a content management system, as well as multiple
application components. The core application of the EdFest prototype focusses on informa-
tion browsing and presentation. It is based on the content management system and delivers
content in HTML, VoiceXML and PDF (for the paper interfaces). It makes use of context
information from the context engine, such as the location of the users. This information is
provided by GPS sensors that the users carry around and is abstracted through the context
engine. The content management system also uses the context engine for its own local context
information, such as the current language of the user or information about the client device
that is used to browse the system.

Another component of the application framework is the Friend-Nearby service. When two
registered friends using the EdFest prototype come close together within the city, the service
sends a notification to these users, informing them about each other. The component works
on information provided by the context engine. This includes the position of the users, as
well as a callback URL for notifications to the client devices. This URL is provided to the
context engine by the client devices and can be used for any component of the platform to
send events to the client devices. In the case of the Friend-Nearby component, the notification
event triggers a request from the client device to the content management system that finally
provides the event information to the user. The Friend-Nearby component uses the content
management system for publishing and pushing information to the user. The actual events
are only triggered based on context information from physical sensors and the client devices.

A similar notification service could also be implemented for friends who are interested
in the same events or when one person browses an event that a friend of theirs has already
seen. In contrast to the Friend-Nearby component, this service can only be provided based
on context information that is held by the content management system. It could provide
a current_events_of_interest context element, which is the list of events that the user
has recently shown interest in. This information can be determined based on the pages that
the user has recently requested. Another component could then trigger events based on this
context information, perhaps combined with application data such as what events a user has
visited. Actually, as the context engine already supports the notion of context events as
described in Sect. 4 or more detailed in [12], this could also be implemented in the context
engine itself without an additional component.

Another application for the use of context information provided by content management
systems are community awareness applications. These applications focus on visualising con-
textual information about users to increase the level of awareness between the users. This
information could include the presence and activities of a user, such as in the context-aware
instant messaging and chat application described in [38]. It visualises a list of users that are
present, along with their current state (present, busy, free-for-chat etc.). The current state

76

of the user is determined by context information. We plan to integrate a similar mechanism
into the EdFest project whereby the system visualises contextual information related to users.
This could include rather concrete things like the current location of a user or his activity
(walking, browsing information or attending an event), providing users with awareness of the
whereabouts of their friends and what they are currently doing. This is information which is
already available in the context engine of the current implementation of the EdFest system or
could be added quite easily by additional software sensors. Another more abstract and less
direct example would be the visualisation of the trails of users not only through the physical
space of the city as used in [39], but also the virtual world of the concepts of the information
space. However, one issue with such applications is clearly that of privacy invasion.

The possibilities for the use of context information, be it for visualisation to increase
awareness amongst a group of people or for providing context-aware information and services
in general, are endless. The context engine with its metamodel of context information is the
core component for providing these features. However, in the end, the quality of the context
information is the linchpin of context-awareness. Content management systems with rich
semantic constructs and well-defined context-aware publication processes are able to provide
high-quality context information in a generic way and ease the implementation of application-
specific software sensors for context acquisition.

7 Conclusions

We have discussed the interplay between context and content in terms of the relationship
between the basic concepts of context engines and content management systems, respectively.
We used the example of our own content management system to demonstrate how our generic
context engine enabled us to seamlessly adapt all dimensions of content delivery—content,
view, structure and presentation—through a process of matching context to multi-variant
objects for these dimensions.

Moreover, we have shown that a content management system can be, not only a client
to the context engine, but also a potential provider of context information. Our system
XCM exhibits two features that make it an ideal component for determining the computation
context: It consolidates well organised information from arbitrary sources and acts as a bridge
between the user and the organisation through multiple communication channels. We have
shown how this crucial and complete information provides context and how we use XCM as
a software sensor to the context engine.

Our experiences developing a mobile information system for visitors to the Edinburgh
Festivals have shown that the coupling of a general context engine and a content management
can yield a powerful system for the development of context-aware applications. In particular,
using database-driven approach leads to an ideal experimental platform for mobile and ubi-
quitous information systems in which all aspects of the systems can be updated dynamically.

Further demonstrator applications are under development, including one which deals with
promoting community awareness in both physical and virtual environments. In this case, the
context engine and content management system work together to control ambient informa-
tion in a research laboratory environment. As an example, a public news service integrates
both global and local news items and adapts according to the set of users present in the
environment.

"

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Peter J. Brown. The Stick-e Document: A Framework for Creating Context-aware Applications.
In Proc. EP’96, Palo Alto, January 1996.

Anind K. Dey, Daniel Salber, Gregory D. Abowd, and Masayasu Futakawa. The Conference
Assistant: Combining Context-Awareness with Wearable Computing. In ISWC, 1999.

Guanling Chen and David Kotz. A Survey of Context-Aware Mobile Computing Research. Tech-
nical Report TR2000-381, Dept. of Computer Science, Dartmouth College, November 2000.

. Henry Lieberman and Ted Selker. Out of Context: Computer Systems that Adapt to and Learn

from Context. IBM Systems Journal, 39(3), 2000.

Roy Want, Andy Hopper, Veronica Falco, and Jonathan Gibbons. The Active Badge location
system. ACM Transactions on Information Systems, 10(1), January 1992.

Gregory D. Abowd, Christopher G. Atkeson, Jason Hong, Sue Long, Rob Kooper, and Mike
Pinkerton. Cyberguide: A mobile context-aware tour guide, 1997.

Nigel Davies, Keith Mitchell, Keith Cheverst, and Gordon Blair. Developing a Context Sensitive
Tourist Guide, 1998.

Nick S. Ryan, Jason Pascoe, and David R. Morse. Enhanced Reality Fieldwork: the Context-
aware Archaeological Assistant. In V. Gaffney, M. van Leusen, and S. Exxon, editors, Computer
Applications in Archaeology 1997, British Archaeological Reports, Oxford, October 1998.

Daniel Salber, Anind K. Dey, and Gregory D. Abowd. The Context Toolkit: Aiding the Develop-
ment of Context-Enabled Applications. In Proceedings of the 1999 Conference on Human Factors
in Computing Systems (CHI ’99), Pittsburgh, PA, May 1999.

Christopher K. Hess, Francisco Ballesteros, Roy H. Campbell, and M. Dennis Mickunas. An
Adaptive Data Object Service Framework for Pervasive Computing Environments. In Proc. 6th
USENIX Conference on Object-Oriented Technologies and Systems, San Antonio, Texas, USA,
2001.

Christopher K. Hess and Roy H. Campbell. A Context-Aware Data Management System for Ubi-
quitous Computing Applications. In Proc. Intl. Conf. of Distributed Computing Systems (ICDCS
2003), Providence, Rhode Island, May 2003.

Rudi Belotti, Corsin Decurtins, Michael Grossniklaus, Moira C. Norrie, and Alexios Palinginis.
Modelling Context for Information Environments. In Ubiquitous Mobile Information and Colla-
boration Systems (UMICS), CAiSE Workshop Proceedings, June 2004.

Peter Brusilovsky. Methods and Techniques of Adaptive Hypermedia. User Modeling and User-
Adapted Interaction, 6(2-3), 1996.

Peter Brusilovsky. Adaptive Hypermedia. User Modeling and User-Adapted Interaction, 11(1-2),
2001.

Alfred Kobsa, Dietmar Miiller, and Andreas Nill. KN-AHS: An Adaptive Hypertext Client of the
User Modeling System BGP-MS. In Proc. of the Fourth Intl. Conf. on User Modeling, Hyannis,
MA, 1994.

Hongjing Wu. A Reference Architecture for Adaptive Hypermedia Systems. PhD thesis, Technical
University Eindhoven, 2002.

Paul De Bra, Geert-Jan Houben, and Hongjing Wu. AHAM: A Dexter-based Reference Mo-
del for Adaptive Hypermedia. In ACM Hypertext 99, 10th ACM Conference on Hypertext and
Hypermedia, pages 147-156, Darmstadt, Germany, February 1999.

Paul De Bra and Licia Calvi. AHA! An Open Adaptive Hypermedia Architecture. The New
Review of Hypermedia and Multimedia, 4:115-139, 1998.

Stefano Ceri, Florian Daniel, and Maristella Matera. Extending WebML for Modeling Multi-
Channel Context-Aware Web Applications. In Proc. MMIS’2003, Intl. Workshop on Multichannel
and Mobile Information Systems, WISE 2003, December 2003.

Moira C. Norrie and Alexios Palinginis. Empowering Databases for Context-Dependent Infor-
mation Delivery. In Ubiquitous Mobile Information and Collaboration Systems (UMICS 2003),
Klagenfurt/Velden, Austria, June 2003.

Michael Grossniklaus, Moira C. Norrie, and Patrick Biichler. Metatemplate Driven Multi-Channel

78

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

Presentation. In Proc. MMIS 2003, Intl. Workshop on Multi-Channel and Mobile Information
Systems, WISE 2003, Rome, Italy, December 2003.

Mike Perkowitz and Oren Etzioni. Towards Adaptive Web Sites: Conceptual Framework and Case
Study. Computer Networks, 31(11-16), 1999.

Stefano Ceri, Piero Fraternali, and Aldo Bongio. Web Modeling Language (WebML): A Modeling
Language For Designing Web Sites. Computer Networks, 2000.

Gerti Kappel, Werner Retschitzegger, and Wieland Schwinger. Modeling Customizable Web Ap-
plications - A Requirement’s Perspective. In Kyoto International Conference on Digital Libraries,
pages 168-179, Kyoto, Japan, November 2000.

Moira C. Norrie, Alain Wiirgler, Alexios Palinginis, Kaspar von Gunten, and Michael Grossniklaus.
OMS Pro 2.0 Introductory Tutorial. Institute for Information Systems, ETH Ziirich, March 2003.
Daniela Florescu, Alon Y. Levy, and Alberto O. Mendelzon. Database Techniques for the World-
Wide Web: A Survey. SIGMOD Record, 27(3):59-74, 1998.

Michael Grossniklaus and Moira C. Norrie. Information Concepts for Content Management. In
Proc. DASWIS 2002, Intl. Workshop on Data Semantics in Web Information Systems, WISE
2002, Singapore, Republic of Singapore, December 2002.

K. Cheverst, N. Davies, K. Mitchell, A. Friday, and C. Efstratiou. Developing a Context-Aware
Electronic Tourist Guide: Some Issues and Experiences. In Proc. CHI 2000, The Hague, September
2000.

Moira C. Norrie and Beat Signer. Switching over to Paper: A New Web Channel. In WISE 2003,
4th International Conference on Web Information Systems Engineering, Rome, Italy, December
2003.

Moira C. Norrie and Beat Signer. Information Server for Highly-Connected Cross-Media Publis-
hing. Information Systems Journal, Special Issue: The 15th International Conference on Advanced
Information Systems Engineering (CAiSE’08), 2005.

Paul Dourish. What We Talk About When We Talk About Context. Personal and Ubiquitous
Computing, 8(1), 2004.

Moira C. Norrie. An Extended Entity-Relationship Approach to Data Management in Object-
Oriented Systems. In Proc. ER’93, 12th Intl. Conf. on the Entity-Relationship Approach, December
1993.

Swedish Institute of Computer Science, S-164 28 Kista, Sweden. SICStus Prolog User’s Manual,
1995.

Adrian Kobler and Moira C. Norrie. OMS Java: A Persistent Object Management Framework.
L’Object, 6(3/2000), November 2000.

Moira C. Norrie and Alexios Palinginis. Versions for Context Dependent Information Services. In
Proc. COOPIS 2003, Conf. on Cooperative Information Systems, November 2003.

Bill N. Schilit. A System Architecture for Context-Aware Mobile Computing. PhD thesis, Columbia
University, 1995.

Donald J. Patterson, Lin Liao, Krzysztof Gajos, Michael Collier, Nik Livic, Katherine Olson,
Shiaokai Wang, Dieter Fox, and Henry Kautz. Opportunity Knocks: A System to Provide Co-
gnitive Assistance with Transportation Services. In Proceedings of UBICOMP 2004: The Sixth
International Conference on Ubiquitous Computing, Nottingham, UK, September 2004.

Anand Ranganathan, Roy H. Campbell, Arathi Ravi, and Anupama Mahajan. ConChat: A
Context-Aware Chat Program. Pervasive Computing, 1(3), July-September 2002.

Amsterdam Realtime Project. http://www.waag.org/realtime/.

	Introduction
	Context and Context-Aware Computing
	Edinburgh Festival Example
	Context Engine
	From Context to Content
	From Content to Context
	Conclusions

	Text1: Ersch. in: Journal of Web Engineering ; 4 (2005), 1. - S. 57-78
	Text2: Konstanzer Online-Publikations-System (KOPS)
URL: http://nbn-resolving.de/urn:nbn:de:bsz:352-250457

