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DETERMINISTIC AND PROBABILISTIC THEORIZING IN STRUCTURAL
LEARNING

REINHARD HILKE, WILHELM F. KEMPF &JOSEPH M. SCANDURA

1. Introduction

In the previous chapters a variety of formal models of the

teaching-learning process have been presented. With one major

exception, however, all of the models have a largely stochastic

foundation. The structural learning theory (SCANDURA, 1973a,

forthcoming, also this volume) is based (partly) on the assump­

tion that deterministic theorizing about teaching and learning

might actually provide a more useful first step. Moreover, it

was suggested that there are close relationships between deter­

ministic and probabilistic theories which might increase both

the generality and the usefulness of both types of theory.

The present contribution is designed to put these insights and

conjectures regarding deterministic and probabilistic theories

on a firmer theoretical base. In particular, the goal is to i­

dentify and illustrate conditions that allow for probabilistic

extensions of the deterministic theory of structural learning.

'Ihe preparation of this report was supported by IPN arrl, in part, by
N.I.H. Grant HO 09185-<J1.
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2. Criteria for Probabilistic Theories

We begin with the general assumption that ~ formalization of

a teaching and learning theory should:

1) make the theoretical concepts and assumptions (of the un­

derlying theory) precise and

2) establish unambiguous relationships between the theory

and methods of testing it.

In order to accomplish the above, each concept and assumption

of the formalized theory should have a psychological equivalent.

Otherwise, it would be impossible to determine whether a refu­

tation of the theory is a refutation of arbitrary or of psycho­

logical content.

In particular for probabilistic theories it must be possible to

a) test the structure of the theory,

b) estimate the parameters, and

c) make comparisons among parameters (if relevant) in a meth-

odologically satisfactory manner (KEMPF, 1976).

This requirement holds irrespective of whether the parameters

of the models (theories) are probabilities, as in models involv­

ing binomial distributions or in the probabilistic automaton

model by SUPPES & MORNINGSTAR (1972), or whether the probabili­

ties are reflected indirectly in terms of parameters, as in mod­

els involving the poisson distribution or in the linear logis­

tic test model (LLTM) (COX, 1968; FISCHER, 1973, 1976, also

this volume).

To perform tests of structure in stochastic theories, and es­

pecially to make comparisons among parameters, it is essential

that the theory satisfy the condition of specific objectivity

(RASCH, 1961): If a probabilistic theory is postulated for a

given population of events (contacts of persons on items under

specified testing conditions), it is postulated to hold for

each event from this population. Correspondingly, statistics to

be used in testing the theory must similarly be independent of

sampling. Sampling otherwise introduces interfering conditions
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(KEMPF, 1974, 1977) which make it possible to maintain any theo­

ry irrespective of empirical findings (cf. HOLZKAMP, 1968). For

instance, consider a simple stochastic model which assumes that

all subjects learn with the~ probability. Although this as­

sumption can be shown to be inconsistent with data in most ex­

periments (cf. SCANDURA, 1971), it is possible to show this only

insofar as such a model (cf. BOWER, 1961) satisfies specific

objectivity. On the other hand, if a theory assumes that there

are individual differences and there is no way to separate them

out (e.g., to estimate learning parameters independently of in­

dividual differences parameters), then contradictory results

can always be attributed to sampling. One can include general

learning effects only if one can separate out the effects of in­

dividual differences (FISCHER, 1971; SCHEIBLECHNER, 1972).1)

The above example makes clear one important limitation of clas­

sical approaches to the study of learning, namely that they ne­

glect individual differences. Similarly, classical approaches

to testing ignore structural relationships among test items. As

noted by SCANDURA & DURNIN (1971) this leads to statements such

as "on the average, he should get eight out of ten items cor­

rect." It is essential, we think, for any viable theory to take

both individual differences and structural relationships into

account. Only in this way will it be possible to say anything

about individual behavior in specific situations.

Notice, however, that the restrictions imposed by the above

conditions (esp. specific objectivity) place strict limits on

(stochastic) model construction (cf. RASCH, 1965; FISCHER,

1974) •

Another limitation of current formalized learning theories is

It is inp:lrtant to qualify the aI:xM!. IIdependence of sanpl:in;J is neces­
sarily relative, for deteIIninistic as IlEll as stochastic theories. If a
theory is postulated to be valid for a pq:ulation of events am there is
a Sl.Ibpop1lation of events for which the theory does not hold (while it
holds for the rest of the events), the precision of tests of the theory
will depend on the percentage of events f= this subpop..1lation includerl
in the sample.
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that they often deal with a narrow range of phenomena (e.g.,

learning of nonsense syllables). Moreover, there is often

little relationship among such "miniature theories." The lack

of such apparent relationship could make the task of inte­

grating phenomena practically insurmountable.

3. Arguments in Favour of Deterministic Theorizing

Although knowledge is necessarily partial, this is not the only

approach to understanding complex human behavior. £CANDURA, for

example, has had promising success with determinstic partial

theories which allow for systematic enrichment. In constructing

such partial theories, it is essential that one keep in mind

the requirements of a broader reality. Thus, for example, a par­

tial theory of phenomenon A will be extendable to a partial

theory of phenomenon B just to the extent that the partial theo­

ry of A is compatible with the requirements for an adequate

theory of B. In effect, while the limits of such enrichment can­

not be predetermined the success achieved to date suggests that

it may be easier to construct comprehensive theories of teach­

ing and learning on a deterministic basis than on a probabi­

listic basis.

There is, however, an important argument against the use of de­

terministic theories in psychology. It is commonly felt that

they impose too strict restrictions on data (e.g., LORD & NO­

VICK, 1968) and, hence, are "unrealistic." (According to FI­

SCHER (1968, p. 73) a model is unrealistic if it can be refuted

by almost any data.)

Nonetheless, one cannot reject deterministic theorizing a prio­

ri because of the empirical assumption that the data available

to psychologists are essentially random (i.e., subject to uni­

dentified and unidentifiable influences). To the extent that

psychologists act on this presuppostion, experience can never

be gained with deterministic theories and one is thus in
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danger of creating a circle (i.e., there is no way to reject

the above assumption that data are random, even if it is false).

Such a circle can be avoided only if data can be shown to be

independent of a priori theoretical commitment. Since this im­

plies the use of both probabilistic and deterministic approach­

es. deterministic theorizing can be rejected (if at all) only

on an a posteriori basis (cf. HILKE forthcoming).

Reviewing the psychological literature we find that implica­

tions of adopting a deterministic approach in constructing

theories and in their testing is rarely discussed. This sug­

gests that such experience has rarely been obtained.

Nonetheless, all deterministic theories have a major limitation

when it comes to empirical confirmation: deterministic predic­

tion and testing is possible only under idealized conditions

(SCANDURA, 1971, this volume).

In order to clarify what is implied by such a statement, it is

important to consider the nature of scientific laws.

Discussions in the philosophy of science typically, and inde­

pendently of the point of view, refer to the natural sciences

(i.e., physics), partly to demonstrate the diversity of other

disciplines and partly to demonstrate their essential communal­

ity. In particular, such communalities are often used to qual-

ify a discipline as an empirical one.

In attempting to demonstrate the empirical nature of a disci­

pline, the laws of physics are frequently interpreted in differ­

ent ways. In psychology, for example, universal statements of

the form (V x{Fx ~ Gx)} can and have been interpreted in two

different ways:

1) As assumptions about the relation between variables.

2) As rules which determine the relation between variables.

If the rule concerns the relation between observables

and theoretical entities it is called a rule of corres­

pondence (cf. HARNATT, 1975).

This distinction is useful, though philosophers themselves have

not yet even succeeded in making a sharp distinction between
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such fundamental notions as law-like statements and statements

of "accidental" universal cooccurence. The only criteria for

which there is general agreement are:

a) law-like statements are non-analytic, and

b) law-like statements are essentially universal

(KUTSCHERA, 1972, p. 329ff).

Such universal empirical statements cannot be verified; their

logical structure allows only for falsification. However, as­

sumptions can be regarded as more or less corroborated.

The most common type of interpretation in contemporary psycho­

logy, that a statement of the form (Fa~,Ga) is sufficient to

falsify the statement (Vx(Fx ~ Gx)), is due perhaps in part to

superficial and incomplete analogies to physics and specifical­

ly to the desire to have theories which can easily be falsified.

The all pervasive nature of stochastic theorizing in behavioral

science; the general lack of theories, which are both formal

and comprehensive; and the "naive" empiricism which character­

izes much of contemporary psychology, have also contributed in

this regard.

On the other hand, if statements are interpreted as rules, then

they can not be tested independently of the total theoretical

systems of which they are a part. (In psychology, of course,

many so-called "theories" consist simply of isolated rules ex­

pressing relationships between observables.) Indeed, rules of

correspondence lead to testable predictions only in combination

with other assumptions and rules and, therefore, they cannot be

falsified at all; one can only falsify the total system of

which they are a part.

In physics, for example, rules of correspondence in combina­

tion with other rules and assumptions provide a basis for de­

riving statements about observables. Such derived statements,

however, are only logical consequents. The empirical content of

a theory derives from the assumption that the assumed entities,

contained in those theoretical assumptions and rules from which

the statement is derived, are the only ones necessary to ex-
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plain the observed phenomena. Therefore, if a derived state­

ment is not supported empirically, the system can be maintained

by assuming that not all relevant entities are included. In

this case, the theorist is obligated to enrich the theory by

adding new assumptions and/or rules which make it possible to

account for the deviations. This is in fact what physicists

had to do with respect to the force laws in arriving at the

principle of linear superposition. "Dieses Prinzip ist - wie

die protophysikalischen Prinzipien - kein Me8ergebnis der Phy­

sik, es ist auch keine Hypothese wie die Kraftgesetze, es er­

offnet vielmehr erst die Moglichkeit, weitere Kraftgesetze hy­

pothetisch aufzustellen, wenn die bisherigen die Beobachtungen

nicht erklaren" (LORENZEN & SCHWEMMER, 1973, p. 172). As DUHEM

has argued for the force laws in 1906, only total systems can

be compared with empirical findings.

In view of the above, one might think that interpreting univer­

sal empirical statements as assumptions would have the basic

advantage of allowing for unambiguous falsification. Unfortu­

nately, however, even this is not true. One can never be sure,

whether a discrepancy between prediction and observation is due

to inadequacies in the theory or in the theory on which obser­

vation is based. Moreover, statements about observables cannot

either be verified or falsified irrefutably on the basis of a

finite set of observations (cf. KUTSCHERA, 1972, p. 501).

In effect, a theory and its corresponding observation theory

must necessarily be viewed as a total system, and hence it is

not possible to falsify part of it only. In physics this ob­

jection is practically irrelevant because physics allows rela­

tively precise measurement, although even here there is still

room for rational doubt. In psychology, particularly in those

areas which deal with complex human behavior, observations are

much less precise. This relative lack of precision leaves cor­

respondingly greater room for rational doubt, and hence a

strict application of the principle of falsification to univer­

sal empirical statements obviously cannot be allowed.
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As a consequence of this argumentation it follows that one has

not only to specify the domain to which a theory applies, but

also to specify the conditions under which it can be tested em­

pirically (i.e., the conditions under which the assumed enti­

ties contained in those theoretical assumptions and rules, from

which the statements about the observed phenomena are derived,

are the only ones necessary to explain the data). These condi­

tions are what we refer to as "idealized conditions" (SCANDURA,

1971, p. 26). Although the real world of observation (e.g.,

the classroom) is not "idealized," idealized conditions can be

approximated in varying degrees in laboratory situations. One

should note, however, that this implies accepting certain

statements about observables as true.

Once having accepted that the empirical test of a deterministic

partial theory can be performed in the laboratory only, it is

obvious that such a test does not require the use of anystatis­

tical methods. If a scientist fails to establish idealized

conditions in the laboratory, no statements about whether or

not the theory holds are possible. In particular, it is impos­

sible to "prove" a deterministic theory by rejecting the null

hypothesis that the data are purely random. Similarly, one can­

not "prove" that the linear logistic test model (LLTM) (FISCHER,

1973, this volume) holds, for example, by a statistically sig­

nificant multiple correlation between the item- and basic-para­

meters.

4. The Weakened Form of the Structural Learning Theory

In view of the above restrictions on the applicability of any

deterministic theory, even laboratory support is not sufficient.

To have didactic relevance, for example, a deterministic theory

of learning must be shown to be applicable in the everyday

world of the classroom. Since pedagogic reality rarely satis­

fies idealized conditions, deterministic theories of teaching
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and learning accordingly must be weakened in order to apply.

Specifically, it would be desirable to have some explicit way

to account for the effects of deviations from idealized condi­

tions while, at the same time, retaining as much of thetheoret­

ical and empirical content as possible. Trivially, in weaken­

ing the theory of structural learning it is necessary to re­

tain the essentials like, for example, the possibility of as­

sessing behavior.

Before deciding how to weaken the structural learning theory

it is necessary to first ask what one would like to accomplish.

In view of the nature of the theory, any reasonable weakening

should still provide: information about which rules are not

known by a subject and for which there exists a substantial

probability of failure, corresponding information about needed

instruction, and specific information about deviations from the

ideal.

Internal detail aSide, the following rule of correspondence be­

tween theoretical and observable statements is essential in the

SCANDURA theory (e.g., 1973a, Chapter 9):

(1) )~a knows and has I
I rule available \

.... jS uses the rule successfully I
!when needed to solve problems\

In any probabilistic extension of the theory, this relation

must be weakened. One possibility would be to drop the dichot­
omy "know"/"not know" and to introduce a quantitative dimension

"a rule is known more or less":

(2)
l~ , "knows" as r

2
ule I ....

) better than \ I
~ ,has a higher prObabilitYI'
of using a rule successful­

ly when needed than ~ 2

Notice that this rule is between theoretical entities ally (i.e.,
"krlJIW5" an:1 "prOOability"). Hence, rules of correspc:nience are neecled to
connect prctlabilities and observables. Such ccxmectioos are provided by
stochastic measurement models.
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It is this possibility, for example, which provides the basis

for most applications of the linear logistic test model (LLTM)

to the analysis of thinking and learning (SCHEIBLECHNER, 1972,

FISCHER, 1973; SPADA, 1976).

A second possibility is to weaken the rule of correspondence

(1) so that the arrow points in one direction only:

1) Let knowing a rule imply successful use of the rule or

2) let successful use of a rule imply knowledge of a rule.

In the former case the assumption of knowing a rule is falsi­

fied if the subject fails to use the rule successfully on any

one problem. Conversely the ~ would be assumed to know a rule

only where he succeeds on all items. These requirements may be

reasonable in the case of simple tasks, where the probability

of guessing correctly is high. However, they seem unrealisti­

cally stringent when the probability of guessing is low, as in

most school learning tasks, and where the possibility of "care­

less errors" is considerable.

For our purposes, the second weakening seems more reasonable.

Specifically:

(3) ls knows and has I ~

a rule availablel

~S uses the rule successfully I
~when needed to solve problems!

(4 ) l
It is not the case I \It is not the case that S I
that ~ knows and has - uses the rule successfuI~y
a rule available when needed to solve problems

Hence, the probability of success is 0 when S does not know or

does not have available a rule. Nothing is implied if S does

know a rule. In this case we assume only that ~ has a positive

probability of success 0 < p ~ 1, with the equality p = 1

holding under idealized conditions.

Assumptions (3) and (4) differ from assumption (2) in that the

former build on assumption (1) (i.e., that the Scandura theory

holds in the laboratory under "idealized conditions") whereas

assumption (2) does not. As a consequence, assumptions (3) and
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(4) allow for deterministic analysis and, in this regard, are

consistent with the structural learning theory. In particular,

the deterministic theory is a special case.

Adopting the generalization based on assumptions (3) and (4)

makes it possible to take two aspects of individual differences

into account:

1) That part of the data which is consistent with the

stronger assumption (1) of the determinstic theory can be

used to specify which rules are and are not known by par­

ticular ~s in the sample - namely, those ~s who either

succeed or fail uniformly on all of the problems asso­

ciated with given rules.

2) The remainder of the data can be used to evaluateindivid-

ual differences with respect to other combinations of

rules and Ss. These individual differences will reflect

individual deviations from idealized conditions rather

than just "latent abilities" in the traditional sense.

Similarly, the data can be used to provide information concern­

ing the difficulties of individual rules, and to make overall

judgments about the degree of deviation of the data from the

ideal.

Such information can be used in a variety of ways:

1) It can be used to make specific decisions about instruc­

tion needed (e.g., about which subjects need which in­

formation) •

2) It can be used to identify possible overall weaknesses in

instruction (e.g., about which rules require more explic­

it instruction).

3) It can be used to decide whether deviations from the

ideal are due: to incompleteness of the theory, to improp­

er implementation of technologies based on the theory or

to miscellaneous factors pertaining to implementation (i.

e., professional "know-how" - cf. SCANDURA, 1973b, p. 9).

The diagram in Figure 1 summarizes the flow of information

that is envisioned here among the teacher, the curriculum con-
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structor and the theorist/experimenter. For more detail see

HILKE, forthcoming).

TEACHER

7 Teacher's unit plan.

a Actual instruction and testing.'

9 Has criterion been achieved?

10 Individualized instruction.

11 Are there overall inadequacies in teaching?

12 Do data deviate substantially from ideal?

CURRICULUM CONSTRUCTOR

5 Curriculum and test construction.

6 Overall plan for implementation and implementation.

13 Has the technology/theory been properly applied in

curriculum construction?

14 Revise curriculum.

16 Improve overall plan for implementation

(including relevant educational research) and implement.

THEORIST/EXPERIMENTER

1 ••• Development of a subject matter specific structural

learning theory by applying a partial structural learn­

ing theory to some specific subject matter.

2 Is test of the theory in the laboratory successful?

3 Enrichment of refutation and development of a new

theory.

4 •.. Can needs of schools be met by applying theory and

can adequate resources be obtained for same?

15 ••• Is theory supported by further tests in laboratory?

Figure
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In order to avoid inconsistencies in this flow of information

and in the decisions based on it, it is essential that the

teacher, the curriculum constructor, and the theorist work

closely together and have a common methodological base. Thereby,

the teacher plays a central role. Information provided by the

weakened form of the deterministic theory is sufficient for the

teacher. Thus, for example, the teacher can identify which stu­

dents need what information, and thereby meet the needs of in­

dividual students by counting the frequencies bvoj of success

of individual students (v) on items associated with particular

rules (j). Similarly, information (not necessarily just simple

counting) about overall performance on rules which have been

taught, provides a basis for improving the teacher's overall

lesson plan. On the other hand, in order to gain information

concerning the strongest form of the deterministic theory, the

theorist must obtain data under idealized conditions. Effec­

tively, the curriculum constructor must make use of both kinds

of information (i.e., information pertaining to both the weak­

ened and the strong theory), and specifically the relations

between them provided by the above probability statements.

5. Probabilistic Models

In order to accomplish this, there is a need for probabilistic

measurement models which are both consistent with the weakened

form of the structural learning theory, applicable in realistic

educational settings, and compatible with the type of scores on

which the teacher may base his decisions on the classroom.

One class of stochastic measurement models follows directly by

generalization of a theorem by RASCH (1965) from the type of

data just mentioned. The models in this class are defined by

the following item characteristic. 1

To the knON'ledge of the authors this class of roodels has so far been
mentioned only in unpublishErl papers by Kanpf and by Sta:jelrnann. FUrther
statistical details of 0e rood~ls have been ~rked ou~ by KEMPF (1976).
'lhe results will be pubhshed In~ (forthcx:ITlJ.n;l).
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where

10

1 if person v solves problem i

if not

if rule j is necessary for the solution of

f ij problem i

o if not

~vj person v's "ability" with respect to rule j

0ij the difficulty of rule j in problem i.

(Letting the difficulty a .. of rule j depend on
1.)

problem i allows for adding more internal

structure to rule j in accordance with the

structural learning theory, cf. SCANDURA 1973a,

Chapters 7 and 9. Moreover, allowing more than

one rule j to enter into the solution of a given

problem corresponds roughly to allowing rules to

operate on other rules in the solution of prob­

lems (same reference), though the correspondence

is not exact.)

The model in Eq. 5 is a direct generalization of the Rasch mod­

el . Specifically, it is a generalization which takes into ac­

count individual abilities with respect to specific rules and

where item difficulties are represented in terms of difficulties

of specific rules.

The generalized model has the same desirable characteristics as

the Rasch model. In particular, there exist minimally sufficient

statistics for the parameters, which can be used as a basis for

specifically objective comparisons. Thus, if we assume stochas­

tic independence of items and individuals, the likelihood of
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the data matrix ((a
vi

)) (v = 1,2, ..• : i '" 1,2, ••. ) becomes

n n exp { a
vi I: fij(~vj - Gij) }

(6) {((a .))I((f .. ))} v i j
P Vl. l.J n n ( 1 + exp {I: f .. (~vj - G

ij
)}

v i j l.J

exp {I: I: b
voj ~vj - I: I: boij Gij }

v j i j

n n ( 1 + exp {I: f .. (~vj - Gij) })
v i j l.J

where b
voj • I: a .f .. and boij I: avifijo

i Vl. l.J v

Since p {((avi )) ((fij ))} is the same for all matrices with the

same two marginal matrices ((b .)) and ((b .. )), the joint
vOJ Ol.J

distribution of the marginal matrices is

p {((a i))I((f .. ))}
v l.J

(7) p {( (b .) ) , ( (b .) )} = [( (b
voj

)']
vOJ oiJ

((b
oij

) )

where the coefficient on the right denotes the number of pos­

sible data matrices compatible with the marginalso Summing (7)

over all ((b* .)) compatible with ((b .. )) we obtain the like-
vOJ Ol.J

lihood function

(8)

[

( (b;oj) )]

p {( (b .. ))} '" ""
Ol.J L..J

((b* .)) ((boij ))
vOJ

exp {I: I: b* . ~ . - I: I: bOiJ.GiJ'}
v j vOJ VJ i j

~ ~ (1 + exp {~ fij(~vj - Gij )}

Now, by dividing (6) by (8) we obtain the conditional likeli­

hood of the data matrix, given the marginal matrix ((b .. ))
Ol.J
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(1)

(9) p {(avi))I«fij)),((bOij))} =
exp {r r b . ~ .}

A symmetrical argument yields the conditional likelihood

(10) p {( (a
vi

)) I «f
ij

)), (b
voj

))}

exp {- r r b ., 0i'}
i . Ol.J J

~
(bvoj ))

exp {- r r b*.. °iJ' }
i j Ol.J

«b~ij)) «b~ij))

Finally, we may divide (6) by (7) and obtain the conditional

likelihood of the data matrix, given both marginal matrices

p {( (a .)) I ( (f .. )) , ( (b .) ) , ((b .. ))} = _---"1__
Vl. l.J vOJ Ol.J [( (b .) J

vOJ

(b
oij

) )

On the basis of (10) we may estimate the rule-difficulty para­

meters independently of the individual parameters which have

been replaced by something observable, namely by the statistics

b .• Furthermore, (9) can be used to compare the individual
vOJ

parameters independently of the rule-difficulty parameters

which are replaced by the frequencies b ..• Finally, (11) al­
Ol.J

lows for checks of the model which are independent of all of

the parameters.

For the practical use of the model (5) however, there is one

major limitation: the general, and abstract formulation of rule

difficulties relative to items 0 .. does not allow for a direct
l.J

estimation of the rule-difficulty parameters, but only for the

estimation of item difficulties 0iO ~ f ij 0ij. If difficulty
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parameters pertaining to component rules are to be estimated,

additional restrictions must be imposed on the model.

For example, if we assume that the difficulty of a given rule

is the same on all problems (oij = 00j for all i=1,2, ••• ), then

the ° . parameters play the role of parametrization constants
OJ

only. With the definition ~;j = ~vj - aoj we may replace the

expression (~ . - a .. ) in (5) by ~ •. , and hence cannot speak
vJ ~J vJ

any longer about overall difficulties of the rules. Since rule

difficulty is thereby confounded with individual ability, all

statistical variation of the data is explainable solely in

terms of individual differences with respect to the various

rules.

Another situation arises, if we take into account the internal

structure of the rules corresponding to the 0ij in accordance

with the structural learning theory. Specifically, provision

may be made for different paths through an algorithm or rule

and for different computations associated with particular

paths (SCANDURA, 1973a, Chapter 9). In this case the rule dif­

ficulty parameters 0ij may be expressed in terms of difficul­

ties of component (atomic) rules. Thus, specific difficulty

parameters nh are introduced pertaining to the component (atom­

ic) rules (h) and weights q. 'h are introduced describing how
~J

many times the component rules (h) are needed in application

to rule j in solving problem i. We then may replace the aij

parameters by E q"h nh •
h ~J

An interesting special case arises, if we consider a domain of

problems which are all associated with the same rules so that

f ij = f oj ' for all i=1,2, ••• ,. The model then reduces to the

linear logistic test model

exp{avi(~v - E dihn h )}
h(12 )

with definitions ~v C E f oj ~vj and dih = E fojqijh. The ·cog-
j j
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nitive operations" in the study by SPADA, FISCHER & HEYNER
(1974) can be understood as such component rules with a domain

of problems, the solutinn algorithm of which consists of just

one rule.

By way of conclusion, we make explicit the relation between

this model and the weakened deterministic structural learning

theory. In general, given data of the type indicated above,

some will be compatible with the weakened theory and some will

not be. In particular, the behavior of those subjects who fail

uniformly on all items, associated with a rule or path, will

be consistent with the weakened theory.

The above stochastic theory fills the gap by dealing with the

remainder of the data (i.e., where subjects succeed on some

(or all) items associated with a rule or path). This "imper­

fect" data is used to determine parameter values.

Moreover, the overall proportion of the data which deviates

from deterministic predictions provides a useful measure of av­

erage deviation of the empirical situation from the ideal. As

indicated in SCANDURA (this volume), such information could be

used to compare alternative empirical situations (as to their

relationships to the ideal), and to extrapolate to new situa­

tions on the basis of the degree to which the new and old sit­

uations differ.
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