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Abstract

The recent availability of large data sets covering single transactions on �nancial

markets has created a new branch of econometrics which has opened up a new door of

looking at the microstructure of �nancial markets and its dynamics. The speci�c nature

of transaction data such as the randomness of arrival times of trades, the discreteness

of price jumps and signi�cant intraday seasonalities, call for speci�c econometric tools

combining both time series techniques as well as microeconomtric techniques arising

from discrete choice analysis.

This paper serves as an introduction to the econometrics of transaction data. We

survey the state of the art and discuss its pitfalls and opportunities. Special emphasis

is given to the analysis of the properties of data from various assets and trading mech-

anisms. We show that some characteristics of the transaction price process such as the

dynamics of intertrade durations are quite similar across various assets with di�erent

liquidity and regardless whether an asset is traded electronically or on the oor. How-

ever, the analysis of other characteristics of transaction prices process such as volatility

requires a careful choice of the appropriate econometric tool. Empirical evidence is pre-

sented using examples from stocks traded electronically and on the oor at the German

Stock exchange and from BUND future trading at the LIFFE and the EUREX.
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1 Introduction

The recent availability of low-cost �nancial transaction databases has created a new ex-

citing �eld in econometrics and empirical �nance which is able to look at old puzzles in

�nance from a new perspective and to address a variety of new issues. Transaction data

- sometimes refereed to as ultra high frequency data - can be seen as the informational

limiting case where all transactions are recorded. Since these data contain valuable

information on the time between individual transactions (intertrade durations) as well

as conditioning information on the type of trades, the issues that can be tackled are

manifold. In particular econometric studies based on transaction data can contribute

to the empirical assessment of di�erent market designs and institutional settings like

the market form (dealership market vs. auction market), the auction mechanism or

the trading rules.

Since the seminal work of Engle and Russell (1998) much research e�ort has been

devoted to the econometric analysis of intertrade durations. The time between transac-

tions is an indicator for the speed of the market. Being the reciprocal of the transaction

rate, time between trades can serve as a crude measure for volume. In fact, in order

driven markets large volumes are split and traded at di�erent prices. If no detailed

information on the order book is available, this measure is an attractive alternative

to observed volumes that are often split by the matching procedure. One key success

factor of an eÆcient exchange is the provision of liquidity at competitive trading costs.

Volume durations, the time it takes to transact a given volume, is an indicator for the

time costs of liquidity. On the other hand, price durations, the time it takes to observe

a cumulative price change of a given size, can serve as a volatility measure.

Intertrade durations also play a key role in the theoretical understanding of the

market microstructure. The informational content of intertrade durations is an issue

in the contributions of Diamond and Verrecchia (1987), Admati and Peiderer (1988),

Foster and Viswanathan (1993), and Easley, Kiefer, and O'Hara (1997) among many

others. In Easley and O'Hara (1992) the market maker is a Bayesian learner who

infers from intertrade duration whether informed traders are in the market or not.

Shorter intertrade durations indicate the market maker that nonidenti�able informed

traders are active. Furthermore, from the comparison of cumulated buy and sell orders

he may learn the sign of this information. Another important �eld of investigation

relates to the question of how markets perform under stress. In general asset prices

adjust to the news events within a short period of time. Since transaction data are

time stamped, news events can exactly be assigned to the price process. Therefore

they are particularly suited to analyze how �nancial markets adjust under stress.

1



Obviously, for a better understanding of the �ne structure of the trading process

many questions are directly related to the behaviour of transaction prices. For exam-

ple, in their chapter on market microstructure Campbell, Lo, and MacKinlay (1997)

mention the determinants of the bid-ask spread, the relevance of inventory costs rela-

tive to adverse selection motive, the price impact of volume and the trader's preferences

for round numbers as some of the issues that can be investigated on the basis of trans-

action data.

The speci�c stochastic nature of �nancial transaction data makes the development

of appropriate econometric methods an extremely challenging task. The randomness

of arrival times of trades as well as the discreteness of price changes and signi�cant

intraday seasonalities call for speci�c econometric methods, combining both time se-

ries techniques as well as microeconometric tools. The �eld of applications of these

new econometric tools is, however, much broader. Similar stochastic properties can

be found for scanner data from grocery stores and for data from credit rating agencies

(e.g. Dunn and Bradstreet, Kreditreform) where information on the �rms in the �les

is updated with every information request of a customer. Being at the outset, much

of the current empirical work is mainly of explorative nature. At this stage, the focus

of econometric research is on model development and evaluation, i.e. on the search

for appropriate econometric models and estimators for speci�c �nancial markets and

topics of interest.

The goal of this paper is to serve as an introduction to the econometrics of trans-

action data. We survey the state of the art and discuss the pitfalls and opportunities

that are involved with work based on �nancial transaction data. Thus far, much

of the empirical work is based on the NYSE's Trades and Quotes (TAQ) database,

which includes all transactions on the NSE, AMEX, NASDAQ and the US regional

exchanges. Due to the speci�c trading mechanism and the comparatively high liquid-

ity of the stocks in the TAQ database, the insights which can be drawn from these

studies are only of limited merit for researchers interested in the analysis of European

Exchanges. Therefore, special emphasis is given to the analysis of the properties of

data from various assets and trading mechanisms. We show that some characteristics

of the transaction price process such as the dynamics of intertrade durations are quite

similar across various assets with di�erent liquidity and regardless whether an asset is

traded electronically or on the oor. However, the analysis of other characteristics of

transaction prices process such as volatility requires a careful choice of the appropriate

econometric tool.

The structure of the paper is as follows. In Section 2 we discuss the properties of

transaction data. Based on data for the highly liquid BUND future and various less
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liquid German stocks which are traded on the oor and electronically, we work out the

di�erences that have to be taken into account in the empirical work. Section 3 surveys

econometric approaches for the analysis of transaction prices and intertrade durations

de�ned on the calendar time scale. Estimation results are presented in Section 4.

Section 5 concludes and gives an outlook on future research.

2 Properties of Transaction Data

2.1 Discreteness of Price Changes

The most prominent feature of transaction data is the discreteness of prices. Since

the institutional settings of the great majority of exchanges allow prices to be only

multiples of a smallest divisor, called a 'tick', prices and transaction returns take on

discrete values. Although not being necessary from a theoretical or practical point of

view the basic idea of �xing a minimum price change is to obtain a reasonable trade-

o� between the provision of an eÆcient grid for price formation and the possibility to

realize price levels that are close to the traders' valuation. The economic aspects of

the choice of the tick size has been discussed by Harris (1994).

The minimum tick size varies from asset to asset and also across exchanges. E.g. for

the NYSE the minimum tick size is $ 0.125 for equities, $ 0.0625 for equity options and

$ 0.05 for futures contracts on the Standard and Poor's 500 index. For equities traded

at the Frankfurt stock exchange the minimum tick size varies. As representative ex-

amples for transaction data we choose in this paper Allianz and Henkel, which di�er

substantially in liquidity. Both equities are traded at the German Stock Exchange,

Frankfurt, on the oor and by a computer trading system. For the computer based

XETRA trading (sample period July 1st to Dec. 30th; 1999) the tick size is 0.01 Euro,

while the tick size for the two shares di�ers on the oor trading. During the sample

period Jan. 4th to Dec. 30th; 1999 it is 0.05 Euro for Allianz and 0.01 Euro for the

Henkel shares. The third asset we are looking at in this study is the highly liquid

BUND future. In our sample period (Nov. 1stto Dec. 5th; 1996) before the denomina-

tion in Euro the minimum tick size at the LIFFE and the EUREX (formerly DTB)

was 0.01% (one basis point) which corresponds to a face value of DEM 25 (currently

it amounts to 10 Euro).

For assets with high transaction rates the discreteness of prices becomes a funda-

mental feature calling for the application of econometric techniques such as quantal

response models or count data models. For instance, the NYSE Fact Book: 1994 Data

reports that 97.4% of all transactions on the NYSE occurred with either no change

or a one-tick change (see Campbell, Lo, and MacKinlay (1997), chapter 4, for more
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details on the distribution of transaction prices from the TAQ database). If the trans-

action rate is low, i.e. only a few transaction are observed within a given time intervall,

discreteness of transaction prices is less severe. Figures 1 and 2 depict the distribution

of absolute price changes for the three assets under investigation distinguished by the

type of trading (computer vs. oor trading). Obviously the number of discrete price

categories for the less liquid Henkel shares is smaller than for the Allianz share. Com-

paring the XETRA system with the oor trading system we observe a higher number of

relatively large price changes as well as a higher number of zero price changes. E.g. for

the XETRA trading of the Allianz stock 27.71% (0.32%) of all observations are zero

price changes (1 Euro price changes) while for the oor trading the corresponding

numbers are 56.59% and 4.79%. XETRA trading is much more voluminous for these

two shares. A similar but more extreme picture arises for the highly liquid BUND

future. Here, more than 64 % of all transaction returns at the EUREX are zero. For

the oor traded BUND future at the LIFFE the transaction price changes of zero can

be found for 46 % of all transactions. For both exchanges price jumps of more than

�2 ticks are negligible and amount to less than 2 percent of all transaction returns.

Comparing the number of observed price categories for the two stocks and the BUND

future, we have to conclude that the adoption of a quantal response model would be

more appropriate for the latter while the application of a count data approach seems

to be a more suitable research strategy for the former.

Figure 1: Distribution of absolute price changes. XETRA trading, 07/99-

12/99, oor trading, Frankfurt, 01/99-12/99, BUND future trading, EUREX,

Frankfurt, and LIFFE, London, 11/96-12/96. Left: Allianz, XETRA trading,

middle: Henkel, XETRA trading, right: Allianz, oor trading.
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Figure 2: Distribution of absolute price changes. XETRA trading, 07/99-

12/99, oor trading, Frankfurt, 01/99-12/99, BUND future trading, EUREX,

Frankfurt, and LIFFE, London, 11/96-12/96. Left: Henkel, oor trading,

middle: BUND future trading, EUREX, right: BUND future trading, LIFFE.

Several authors (e.g. Harris (1990), Dravid (1991), Hasbrouck (1996) and Manrique

and Shephard (1998)) have stressed that round numbers for transacted prices system-

atically occur more often. The multimodal distributions depicted in the �gures above

are clearly consistent with the hypothesis of preferences for round numbers. In fact,

such preferences for round numbers seem to be more pronounced for oor traded assets.

Much attention has also been paid to the implications of the bid-ask bounce of

transaction price movements. The bounce e�ect refers to the phenomenon that trans-

action returns do not satisfy the weak white noise hypothesis. The negative �rst order

autocorrelations of the transaction price changes reported in Table 3 are quite typi-

cal for transaction data. This empirical �nding is consistent with the simple model

proposed by Roll (1984) who shows that price changes exhibit volatility and nega-

tive autocorrelations under randomly trades initiated buy and sell orders even if the

fundamental value of the asset is constant. See also Glosten (1987) who derives the

impact of adverse selection on the statistical properties of transaction data in a more

elaborate theoretical framework. The impact of buyer and seller initiated trades on

the dynamics of the transaction price process can easily be detected if autocorrelations

from signed trades are computed. If information on the bid-ask quotes is available, the

problem of negative �rst order serial correlation can be resolved by using midquotes.1

It is needless to stress that the bid-ask bounce should be more severe for low-priced

stocks traded a exchanges with comparatively high minimum tick sizes.

1In the absence of quotes, Ederington and Lee (1995) use 'pseudo-equilibrium prices' by averaging

the last two transaction prices.
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Table 1: Autocorrelations of price changes. XETRA trading,

07/99-12/99, oor trading, Frankfurt, 01/99-12/99, BUND future

trading, EUREX, Frankfurt, and LIFFE, London, 11/96-12/96.

A, X H, X A, F H, F BF, E BF, L

lag1 -0.259 -0.220 0.005 -0.015 -0.266 -0.326

lag2 -0.020 -0.039 0.006 -0.017 -0.002 0.027

lag3 0.001 -0.014 0.005 -0.011 0.011 0.003

lag4 0.003 -0.006 -0.004 0.002 0.003 0.017

X: XETRA, F: Frankfurt, E: EUREX, L: LIFFE

A: Allianz, H: Henkel, BF: BUND future

Long-term dependence in volatility is a well documented feature of �nancial data.

This pattern, however, cannot always be found at high frequencies. Andersen and

Bollerslev (1997) show that while persistence is evident in S&P returns at all frequen-

cies, it cannot be found for the $-DEM exchange rate at high frequencies.

Looking at simple autocorrelations of absolute price changes in Figure 3 reveals

that persistence in volatility is also an issue at the transaction level. The empirical

autocorrelations for the three assets are found to be quite small but they are dying

out slowly. However, the discreteness of transaction prices might generate these long-

run dependence since discrete price jumps may mimic jump e�ects that are falsely

perceived as volatility persistence in models for fractionally integrated time series. In-

terestingly, the autocorrelations for the oor traded stocks are clearly larger than the

ones for the computer traded counterparts. Franke and Hess (2000) argue that traders

can learn more about the other traders' strategies, and thus can reduce asymmetric

information, when trading on the oor than on anonymous electronic trading systems.

This might have an impact on the serial dependence of the time between trades, trans-

action volumes, and trade-to-trade price changes.
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Figure 3: Autocorrelogram of absolute price changes. XETRA trading,

07/99-12/99, oor trading, Frankfurt, 01/99-12/99, BUND future trading,

EUREX, Frankfurt, and LIFFE, London, 11/96-12/96. Left: Allianz, middle:

Henkel, right: BUND future. Solid line: Electronic trading (XETRA or

EUREX, respectively), broken line: oor trading (Frankfurt or LIFFE,

respectively).

2.2 Intertrade durations

The analysis of intertrade durations is an ongoing topic in the empirical analysis of

market microstructure. Intertrade durations measure the speed of the market, and

thus, are indicators for the trading activity. Several contributions to the literature of

market microstructure, like Easley and O'Hara (1992), Diamond and Verrecchia (1987)

or Admati and Peiderer (1988) emphasize the importance of intertrade durations for

a better understanding of the information processing in �nancial markets. Within

these studies, the timing of trades plays an important role in the learning mecha-

nisms of traders drawing inferences from past market activities. In many theoretical

studies, intertrade durations are regarded as means to aggregate information on price

signals available to individual traders in an asymmetric information environment (see

e.g. Easley and O'Hara (1992)).

In general, researchers analyzing the time between trades are interested in three

major aspects. First, analyzing the impact of market microstructure variables, like

bid-ask spreads, price changes, transaction volumes, as well as intraday seasonalities

allow to check the empirical evidence of market microstructure hypotheses. In partic-

ular, such investigations provide deeper insights into traders' learning and the impact

of past and current market activities on traders' preferences for immediacy. Secondly,

modelling the hazard rate of intertrade durations enables one to analyze the informa-

tional content of intertrade waiting times. For instance, Gerhard and Hautsch (2000)

characterize the economic implications of di�erent shapes of the hazard function and

derive a simple relationship between the information process and the resulting trading
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process. Third, models of intertrade durations serve as ingredients for multivariate

models of the trading process (see e.g. Russell and Engle (1998), Grammig and Well-

ner (1999), Ghysels and Jasiak (1997) or Gerhard and Pohlmeier (2000)) or as basic

models for volatility and liquidity estimation.

Especially in electronic trading systems the accuracy of the recorded trade arrival

times is hundredths of seconds. Particular attention should be paid to the treat-

ment of extremely small intertrade durations.2 Often such observations correspond

to 'split-transactions'. Such observations arise when the volume of one order exceeds

the capacities of the �rst queue of the other side of the limit order book. In this

case the order is automatically matched against several opposite order book entries.

Typically, the recorded time between the 'sub-transactions' is extremely small and

the corresponding transaction prices are equal or show an increasing (or decreasing,

respectively) sequence.3 In some studies the particular sub-transactions are treated

separately by �xing the corresponding inter-trade durations synthetically on one sec-

ond. In this paper we consolidate 'split-transactions' by applying an algorithm pro-

posed by Grammig and Wellner (1999). According to this rule a trade is identi�ed as

a split-transaction when the durations between the sub-transactions are smaller than

one second and the sequence of the prices are either non-increasing (non-decreasing)

implying a split transaction on the bid (ask) side of the order book. For simplicity the

time stamp and corresponding price of the split-transaction is determined by the last

sub-transaction. An alternative and slightly more precise method would be to treat

the corresponding inter-trade duration as left-censored and to compute the price as

the (volume weighted) average of the prices of the sub-transactions. Note that such a

proceeding would lead to a disappearance of the discreteness of the price process.

2In electronic trading systems, even zero intertrade durations are recorded.
3Another way to dealing with extremely small intertrade durations is proposed by Veredas,

Rodriguez-Poo, and Espasa (2001). They argue that the occurrence of such observations is due

to the fact that the limit orders of many traders are set for being executed at round prices and, thus

trades executed in the same second do not belong to the same trader.
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Table 2: Descriptive statistics of intertrade durations. XETRA

trading, 07/99-12/99, oor trading, Frankfurt, 01/99-12/99,

BUND future trading, EUREX, Frankfurt, and LIFFE, London,

11/96-12/96. Durations are measured in seconds.

A, X H, X A, F H, F BF, E BF, L

obs 89346 28161 43131 12936 64682 53720

Mean 44.543 141.078 168.226 557.466 13.409 14.233

Std.dev. 66.739 207.700 199.271 620.961 24.638 18.501

Min 1 1 1 1 1 1

Max 1075 4219 408 4308 588 887

X: XETRA, F: Frankfurt, E: EUREX, L: LIFFE

A: Allianz, H: Henkel, BF: BUND future

The strong relation to market liquidity is an important feature of intertrade durations.

Table 2 shows descriptive statistics of the intertrade durations of the assets analyzed

in this study. The results illustrate that the liquidity of the particular assets and the

particular markets is quite di�erent. The signi�cantly shortest intertrade durations

occur for the two BUND future markets where we observe on average 4 trades per

minute. On the XETRA market a relatively liquid stock, like the DAX stock Allianz,

is traded on average every 45 seconds while a comparatively inliquid asset like Henkel

provides intertrade durations of about 140 seconds on average. In contrast to the

XETRA trading, considerably longer intertrade durations can be observed for the

Frankfurt oor trading which is nevertheless the most liquid oor trading exchange in

Germany.

Another prevalent feature of transaction data is a stochastic clustering of the

transaction arrival indicated by a strong serial dependency in the intertrade dura-

tion process. The market microstructure theory provides several explanations for this

phenomenon. One string of the literature focuses on the existence of two di�erent

types of traders: informed traders who trade after price signals which are not publicly

available and non-informed traders (liquidity or noise traders) who trade because of

exogenous reasons. A common assumption is the existence of an uninformed specialist

who updates the quote setting in response to the order ow. If informed traders seek

to take advantage of their information, one should observe a clustering of transactions

following an information event because of an increased number of informed traders.

Another explanation is provided by Admati and Peiderer (1988). They partition liq-

uidity traders in 'discretionary' traders who have some choice over the timing of trades

and 'nondiscretionary' traders whose trading time is randomly chosen. It is shown that

'discretionary' liquidity trading and thus informed trading is typically concentrated.
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However, relatively little is known about the impact of market settings on the du-

ration dynamics. Figure 4 shows the duration correlograms of the particular assets

used in this study. The pictures depict higher autocorrelations for intertrade dura-

tions of oor trading systems. Hence, the anonymity of traders in electronic trading

systems seems to weaken the strength of dynamics in the trading intensity. As in the

case of the autocorrelations for absolute price changes long-term persistence is also

an issue in the analysis of intertrade durations. Jasiak (1999) argues that the slowly

decaying shape of the autocorrelation function might be associated with a fractionally

integrated duration process. For this reason she introduces a fractionally integrated

ACD model for the analysis of intertrade durations.

Figure 4: Correlogram of intertrade durations. XETRA trading, 07/99-

12/99, oor trading, Frankfurt, 01/99-12/99, BUND future trading, EUREX,

Frankfurt, and LIFFE, London, 11/96-12/96. Left: Allianz, middle: Henkel,

right: BUND future. Solid line: Electronic trading (XETRA or EUREX,

respectively), broken line: oor trading (Frankfurt or LIFFE, respectively).

Figure 5 shows the distributions of intertrade durations based on the electronic

trading systems and on the oor trading systems. While the density function of du-

rations based on order book trading systems monotonically declines, we observe a

slightly hump-shaped pattern for the duration density based on the oor trading. The

little hump is a known feature and a typical phenomenon for oor trading transactions.

This property is often associated with a certain reaction time caused by the manual

registration of the transaction process on the oor.
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Figure 5: Kernel density plots of intertrade durations (Epanechnikov kernel).

XETRA trading, 07/99-12/99, oor trading, Frankfurt, 01/99-12/99, BUND

future trading, EUREX, Frankfurt, and LIFFE, London, 11/96-12/96. Left:

Allianz, right: BUND future. Solid line: Electronic trading (XETRA or

EUREX, respectively), broken line: oor trading (Frankfurt or LIFFE,

respectively).

2.3 Price and volume durations

While intertrade durations play an important role in market microstructure issues,

the aggregation of durations is a valuable means to analyze intraday market activities

on a aggregated level. The most common types of aggregated durations are price and

volume durations. Price durations are generated by thinning the marked point process

with respect to a predetermined minimum price change. Therefore, price durations

are de�ned as the time until a predetermined cumulative price change is realized.

As illustrated by Engle and Russell (1998), Gerhard and Hautsch (1999) and Giot

(2000b) price durations are strongly related to the intraday volatility process. Since

they use an aggregation scheme which is based on the price process such models are a

valuable alternative for standard GARCH procedures. These relationships are briey

illustrated as follows. Let �i the (calendar) time of transaction i, then the volatility

per time at �i is de�ned as

�
2(�i) = E

"
1

�

�
p(�i)� p(�i ��)

p(�i)

�2
#
; (2.1)

where p(�i) denotes the price at �i and � corresponds to a certain time interval.

Standard GARCH-type procedures are based on equidistant and thus aggregated ob-

servations. Therefore, the use of GARCH models implies to �x the time interval �,

e.g. on intervals of 1 minute, 5 minutes or 30 minutes, hence p(�i � �) corresponds

to the price level � minutes before the current trade i. Such a procedure raises the

question of an optimal aggregation level. Andersen and Bollerslev (1998) illustrate

that the choice of an appropriate aggregation scheme is very crucial for these models
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and has consequences for the resulting volatility estimates.

A straightforward alternative procedure implies not to �x the time interval � but

the price change c � p(�i) � p(�i � �), e.g. on 5 ticks. Then � is the time until

a cumulative price change of 5 ticks is realized and, thus � is a random variable.

The economic motivation behind this approach is to assume a decision maker who

associates a certain cumulative price change with a certain risk. By predetermining

the size of the price change c he accounts for a predetermined risk and thus gives the

tuning parameter for volatility estimation. While eq. (2.1) gives a volatility per time

which is constant within the corresponding price duration, Engle and Russell (1998)

derive the instantaneous volatility per second as

�
2(�i) = lim

�!0
E

"
1

�

�
p(�i)� p(�i ��)

p(�i)

�2
#
=

�
c

p(�i)

�2

�(�i � �i�1); (2.2)

where �i�1 denotes the (calendar) time of the most recent trade and �(t) denotes the

hazard rate associated with the corresponding price duration at ti = �i � �i�1.

Table 3: Descriptive statistics of price and volume durations,

Allianz, XETRA trading, 07/99-12/99.

�p = 0:5 �p = 1:0 �v = 10; 000 �v = 20; 000

obs 10777 3063 5407 2824

Mean 367.68 1305.05 732.874 1403.139

Std.dev. 576.56 1859.04 591.166 1026.526

Min 1 1 1 3

Max 11369 17346 4599 7210

Descriptive statistics of price durations based on di�erent price changes for the Al-

lianz stock (XETRA trading) are given in Table 3. For the extreme case (c=1.0 Euro)

we observe, on average, 25 trades per day. If investors predetermine the Value-at-Risk

(VaR) associated with a given large (negative) price movement the expected time until

the occurrence of such a price change can be interpreted as a risk measure.4

4For more details concerning the use of high-frequency data for Value-at-Risk estimation see e.g.

Giot (2000a).
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A di�erent way of aggregating durations arises from the use of volume durations.

Volume durations are de�ned as the time until a certain aggregated volume is traded

on the market. Gourieroux, Jasiak, and LeFol (1999) illustrate that volume durations

provide reasonable liquidity measures. Taking the usual de�nition of liquidity, an asset

is considered as liquid if it can be traded quickly, in large quantities and with little

impact on the price. This implies that liquidity is associated with three dimensions

of the transaction process. Since the measurement of the price impact is quite diÆ-

cult and requires detailed order book information, volume durations account for the

time and volume dimension and may serve as building blocks for reasonable liquidity

measures based on transaction data.

Consider e.g. an investor who wants to trade a large volume as quick as possible.

In a dealership market he has the possibility to trade with the market maker and

hence executes his transaction immediately. The investor has to bear liquidity costs

which arise through the di�erence between the market price and the ask or bid quote,

respectively. This price increment above (below) the market price can be interpreted

as the price (liquidity costs) for immediacy of a transaction. If the investor wants to

avoid these liquidity costs he has to distribute the volume over time, i.e. he has to wait

until movements on the demand or supply side of the market allow to trade with lower

transaction costs. For electronic trading systems liquidity is characterized in a similar

fashion. Here, the absorptive capacities of the order queues in the limit order book

determine the liquidity. Thus, the larger the volume an investor wants to trade, the

higher the probability that it exceeds the capacity of the �rst queue of the limit order

book leading to a price impact and, thus costs for immediacy. Therefore, liquidity

is also strongly related to the depth of the market. These costs can be reduced by

splitting the order and trading lower volumes. Hence, the waiting time necessary to

execute an order of a given size admits a reasonable interpretation as the (time) costs

of liquidity.

Descriptive statistics of particular volume durations based on volume aggregates of

10; 000 and 20; 000 shares are given in Table 3. Note that the average volume per trade

for the Allianz stock is about 680 shares. Thus a liquidity measure based on 10; 000

shares corresponds to relatively short term measure while volume durations based on

20; 000 shares capture quite long market phases of, on average, about 20 minutes.
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Figure 6: Aggregated durations of Allianz, XETRA trading, 07/99-12/99.

Left: Kernel density plots of price durations. Solid line: 0.50 EURO price

changes, bars: 1.00 EURO price changes. Middle: Kernel density plots of

volume durations. Solid line: 10,000 shares, bars: 20,000 shares. Right:

Correlogram of aggregated durations: Solid line: Intertrade durations, bars:

1.00 DEM price durations, dots: 20,000 shares volume durations.

Figure 6 presents the correlograms of price and volume durations based on di�erent

aggregation levels as well as the corresponding kernel density plots. While the distri-

bution of price durations is relatively similar to the distribution of intertrade durations

the density function of volume durations is quite di�erent. Comparing price and vol-

ume durations three main di�erences can be summarized: First, while the distribution

of price durations is relatively similar to the distribution of intertrade durations, the

density function of volume durations is hump-shaped. Secondly, while price durations

as well as inter-trade durations reveal overdispersion, volume durations show a strong

underdispersion. Both aspects have important consequences for the choice of distri-

butional assumptions when the density function has to be modelled. Thirdly, volume

durations show a signi�cantly higher autocorrelation at the �rst lags while the long-

term persistence seems to be lower.

2.4 Intraday Seasonality

Financial markets exhibit a strong seasonality within a trading day. Figure 7 shows

typical intradaily seasonal patterns for intertrade durations based on spline regres-

sions5. There is little trading around noon leading to longer intertrade durations.

This 'lunch time'- e�ect appears to be more pronounced for the oor trading. There

is also evidence that oor trading starts o� somewhat more relaxed. Attention should

be paid to the occurrence of intraday auctions which typically take place around noon

(13.00) and at the end of a trading day.

5We use cubic splines based on knots of 1 hour.
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Figure 7: Intraday seasonality of intertrade durations. Estimation based on

cubic splines (1 hour knots). XETRA trading, 07/99-12/99, oor trading,

Frankfurt, 01/99-12/99, BUND future trading, EUREX, Frankfurt, and

LIFFE, London, 11/96-12/96. Left: Allianz, XETRA trading, middle:

Allianz, oor trading, right: BUND future trading, LIFFE.

Figure 8 shows the typical pattern for the intraday seasonalities of absolute price

changes and volume. While there is hardly any seasonality of volatility within a trad-

ing day, the seasonality of the transaction volume cannot be ignored. The impact of

intraday auctions at noon and before the closure of the exchange on traded volumes

is nicely documented for the Allianz stocks below.

Figure 8: Left: Intraday seasonality of absolute price changes and transaction

volumes, Allianz, XETRA trading, 07/99-12/99. Left: Seasonality of absolute

price changes, right: seasonality of transaction volumes.

While the problem of accounting for seasonalities is well explored for the case of

equidistant observations, there is little experience with the modelling of seasonalities

in the context of transaction data. Engle and Russell (1998) remove intraday sea-

sonalities from the intertrade durations by applying a piecewise cubic spline. Due

to numerical problems that arise by estimating the parameters of an autoregressive

conditional duration model jointly with the seasonal e�ects it is common to apply a
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two-step estimation approach. In the �rst step the intertrade durations are seasonally

�ltered and in the second step the parameters are estimated on the basis of the desea-

sonalized dependent variable. Alternatively, kernel estimates (Gourieroux, Jasiak, and

LeFol (1999)) and Fourier series approximation (Gerhard and Hautsch (1999)) have

been used to remove intraday seasonalities in the �rst step of the estimation. Veredas,

Rodriguez-Poo, and Espasa (2001) point out that two-step procedures can lead to se-

rious misspeci�cations unless seasonal and non-seasonal components depend on some

deterministic time index and the non-seasonal components are linear in the parameters

to be estimated. They propose a semiparametric estimator where the seasonal compo-

nents are jointly estimated non-parametrically with the parameters of the ACD model.

Obviously for quantal response and count data models deseasonalization by a two-

step procedure is infeasible. In this case the joint estimation of seasonal and non-

seasonal components is inevitable. Pohlmeier and Gerhard (2001), for instance, use the

Fourier series approximation proposed by Andersen and Bollerslev (1998) based on the

work of Gallant (1981) in their ordered probit model with conditional heteroskedastic-

ity to account for seasonalities in the volatility of transaction price changes. Assuming

a polynomial of degree Q the nonstochastic seasonal trend term is of the form

s(Æ; t�
i
; Q) = Æ � t�

i
+

QX
q=1

(Æc;q cos(t
�

i
� 2�q) + Æs;q sin(t

�

i
� 2�q)) ; (2.3)

where Æ, Æc;q, and Æs;q are the seasonal coeÆcients to be estimated and t�
i
2 [0; 1] is a

normalized intradaily time trend de�ned as the number of seconds from opening of the

exchange until occurrence of transaction i divided by the length of the trading day.

3 Models of the Transaction Price Process

The treatment of non-equidistant time series data has generated to types of research

strategies which di�er in their use of the time scale. Calendar time � , e.g. measured in

seconds from the opening, takes on continuos nonnegative values while intrinsic time z

(sometimes also called deformed time, market time or business time) takes on discrete

nonnegative values. The directing process that maps calendar time to intrinsic time

is denoted by Z : � 2 R+ ! Z� 2 N . If (Y� ; � 2 R
+) is the variable of interest in

calendar time, then (Y �
z
; z 2 N ) would be the corresponding time transformed variable

in intrinsic time. Usually, time deformation models assume that the directing process

Z and the process in intrinsic time Y � are independent, see e.g. Stock (1988) and

Ghysels, Gourieroux, and Jasiak (1997). Even under this independence assumption

time deformation is by no means harmless since the stochastic properties of the two

variables in calendar time and intrinsic time may di�er. Gourieroux and Jasiak (2000)
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show that time deformation has serious implications for the market eÆciency hypoth-

esis. In particular, if it holds in the calendar time framework it may not necessarily

hold in the intrinsic time framework and vice versa.

In the following we restrict our attention to approaches de�ned in calender time.

Let a single trade i be characterized by a number of di�erent jointly occurring marks.

Well-known examples are transaction prices , quotes or midquotes that go along with

other covariates such as volume, absolute price changes and intertrade durations. Let

Yi be a m-dimensional vector of marks of a single trade i. This trade takes place at

real time �i. Thus the time between two consecutive trades, the intertrade duration is

given by Ti � �i��i�1. Let the transaction process be fully described by the sequence:

f(Yi; Ti)gi=1;:::;n: (3.1)

Following the framework outlined in Engle (2000) it is meaningful to start from de�ning

the joint density of marks and intertrade durations conditional on the past �ltration

Fi�1 as:

(Yi; Ti)jFi�1 � fY;T (yi; tij�yi�1; �ti�1; �); (3.2)

where � 2 Rk and �xi and �
ti, respectively, represents the values of the variable x and t,

respectively, up to the i�th transaction. Much of the current work on the econometric

modelling of the transaction process focuses on the analysis either of the components

of Yi or -like the vast majority of studies - on the transaction durations. The link

between these two approaches becomes obvious by decomposing the joint density as

the product of the conditional density of the marks given the intertrade durations and

the marginal density of the intertrade durations:

fY;T (yi; tij�yi�1; �ti�1; �) = fY jT (yij�yi�1; �ti; �1)fT (tij�yi�1; �ti�1; �2); (3.3)

where the parameters of the conditional and the marginal density are related to � by

a transformation g(�)0 � [�01; �
0
2]. Using this decomposition the log likelihood is given

by

L(�1; �2) =

nX
i=1

ln fY jT (yij�yi�1; �ti; �1) +

nX
i=1

ln fT (tij�yi�1; �ti�1; �2): (3.4)

There is no obvious reason to assume before hand that �1 and �2 are variation free

so that intertrade durations can be treated as being weakly exogenous and subsets of

� can be estimated by solely concentrating on the conditional density of the marks.

Although most of the econometric studies are based on decompositions such as (3.3),

there is no reason from an economic or statistical point of view to use a decomposition

in terms of the conditional duration model and a marginal density of the marks. In

order to reduce the complexity of the model, the conditioning set is often restricted
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to impose some type of non-causality. For instance, Darolles, Gourieroux, and LeFol

(1998) assume that only past prices contain relevant information for the joint process

of marks and intertrade durations such that a non-causality from intertrade durations

to prices is assumed: fY jT (yij�yi�1; �ti; �1) = fY jT (yij�yi�1; �1). Symmetrically, the liter-

ature on intertrade durations imposes an unidirectional non-causality from prices to

intertrade durations. In this case lagged durations are fully informative to predict

current durations fT (tij�yi�1; �ti�1; �2) = fT (tij�ti�1; �2). Obviously, both non-causality

assumptions can be made subject to speci�cation testing.

3.1 Transaction Price Models

Transaction price models in real time concentrate on the modelling of some type of

price variable conditional on the current intertrade duration and past �ltration. Haus-

man, Lo, and MacKinlay (1992) propose the ordered probit model with conditional

heteroskedasticity to model discrete price movements at the transaction level for stock

prices quoted at the NYSE. Bollerslev and Melvin (1994) apply the same approach

to the analysis of quotes on FX markets. The ordered probit is particularly suitable

for the case of (highly liquid) markets where transaction price changes take on only

a few distinct values. The inclusion of conditioning information is straightforward in

order to account for factors assumed to drive the price process. This is a substantial

advantage compared to the rounding models of Ball (1988), Cho and Frees (1988), or

Harris (1990). Like in any other threshold crossing ordered response model, the model

of interest is de�ned in terms of a continuous latent dependent variable y�
i
, e.g. the

price pressure, that is only observable through an ordered response variable yi, i.e. the

categorized price change variable:

y
�

i
=x0

i
� + �i (3.5)

with E [�ijxi] = 0;

�i � i.n.i.d.N(0; �2
i
);

�i = �0 exp(w
0

i
);

where the (K� 1) and (L� 1) vectors xi and wi contain the conditioning variables for

the mean and the variance function. Conditional on the set of explanatory variables,

we assume that the latent variable is mutually independent. Since no restrictions are

imposed on the stochastic process of xi and wi, the price process may well reveal un-

conditional serial dependence. Gerhard (2000) shows that the model can be extended

to include an ARMA-dynamics in terms of the latent dependent variable. Contrary

to the coeÆcients of dynamic generalized linear model the coeÆcients of the latent

ARMA-model are easily interpretable. Latent price pressure and observable discrete
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price change are related by the following observation rule:

yi =

8>>>>>>>>><
>>>>>>>>>:

�kl if y
�
i
2 (�1;�1)

...

�1 if y
�
i
2 (�l�1;�l]

0 if y
�
i
2 (�l;�l+1]

+1 if y
�
i
2 (�l+1;�l+2]

...

ku if y
�
i
2 (�l+ku;1);

(3.6)

where the �0
j
s are unknown threshold parameters that separate the state space of

y
�
i
. Ticks larger or equal to a given size ku are gathered in the uppermost category

of yi. Correspondingly, ticks smaller or equal to size �kl are captured in the cate-

gory yi = �kl. Assuming no intercept in the mean function and J + 1 categories the

model consists of J + K + L + 1 parameters. However, since the parameters of an

ordered response model are only identi�able up to a factor of proportionality, only the

parameter vector � =
�
�
0
=�0 �

0
=�0 

0
�
is identi�able without any additional restric-

tions. Besides the problem of shifting the focus of interest from the observable discrete

price change variable to the continuous latent counterpart which has no straightfor-

ward economic interpretation the identi�cation issue may be regarded as one of the

major drawbacks in the application of quantal response models, particularly, if the

focus of interest is on estimating volatility at the transaction level. Gerhard, Hess,

and Pohlmeier (1998) propose a minimum distance approach applied to the intraday

estimates to identify �0 and the volatility of the latent price variable relative to a

benchmark period. Alternatively, Pohlmeier and Gerhard (2001) suggest a nonlin-

ear restriction to identify �0 that relates the variance of the observable discrete price

change variable to the variance of the latent counterpart.

As indicated in the previous section, transaction price changes at many European

stock markets are not really characterized by a small number of discrete price jumps.

In this case, adopting a count data approach or a multinomial model seems to be

a reasonable research strategy. Contrary to quantal response models no threshold

parameters have to be estimated, which may become numerically diÆcult in the case

of many categories. A natural starting point is the Poisson regression model for the

analysis of absolute price changes. Since the Poisson distribution belongs to the linear

exponential family, the Pseudo ML (PML) estimates of the mean function are robust

against distributional misspeci�cation. Because of the large number of observations

eÆciency considerations can usually be neglected. Moreover, count data models can

easily be interpreted and can be extended in many ways to capture the nature of the
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underlying data generating process.6 In the following section we also present estimates

of the zero-inated Poisson model (ZIP) which adds additional mass to the pdf at zero

counts and nests the simple Poisson model. The ZIP can easily be extended to account

also for additional mass at realizations of the count variable in order to capture the

higher probabilities of round transaction returns. The density of the ZIP is given by:

Pr [yi = 0 jxi ] = 'i + (1� 'i) exp(��i); (3.7)

Pr [yi = j jxi ] = (1� 'i)
exp(��i)�

j

i

j!
; j = 1; 2; : : :

where �i = exp(x0
i
�). In the application below the ination parameter 'i is treated as

constant across all observations but it can also be modelled as a function of covariates.

For 'i > 0 the ZIP implies overdispersion which usually can be found in transaction

count data. The ZIP model boils down to the Poisson model if 'i = 0.

3.2 Models of the Trade Intensity

A well-known feature of transaction based durations is the occurrence of clustering,

i.e. short (long) durations tend to be followed by short (long) durations. For this

reason, �nancial duration models originate from traditional time series concepts. The

most popular autoregressive duration approach was proposed by Engle (1996)7 and

Engle and Russell (1998). They specify a model for point processes with serial de-

pendent arrival rates which shows a strong resemblance to the GARCH approach for

price processes. The main principle of the Autoregressive Conditional Duration (ACD)

model is a dynamic parameterization of the conditional mean function

	i =E[ti j Fi�1; �2] (3.8)

=

Z
s � fT (s j �ti�1; �yi�1; �2)ds:

In its standard form the ACD(p,q) model is de�ned as

	i = ! +

pX
j=1

�jti�j +

qX
j=1

 j	i�j; (3.9)

with the error term �i entering multiplicatively:

ti = 	i � �i: (3.10)

6See Cameron and Trivedi (1998) for an comprehensive survey of count data models.
7The paper is now published as Engle (2000).
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Engle and Russell (1998) illustrate that the ACD(p; q) model can be written in terms

of an ARMA model

ti = ! +

max(p;q)X
i=1

(�i +  i)ti�j �

qX
i=1

 j�i�j + �i; (3.11)

where �i � ti � 	i is a martingal di�erence.

The most obvious choice for the distribution of the error terms �i is the standard

exponential distribution which allows for parsimony and yields robust parameter es-

timates since the maximum likelihood estimates of the Exponential ACD model have

PML properties. Assuming exponentially distributed errors, the pseudo-true log like-

lihood function is given by

lnLPLM = �

nX
i=1

ln	i +
ti

	i

: (3.12)

Several recent contributions to the literature deal with the extension of the ACD

framework. One string of the literature focuses on alternative speci�cations of the

conditional mean function. Bauwens and Giot (2000) and Lunde (2000) introduce a

logarithmic ACD model which allows for the inclusion of explanatory variables without

accounting for parameter restrictions due to non-negativity conditions.

Bauwens and Veredas (1999) speci�ed the conditional mean function (3.9) stochas-

tically leading to the Stochastic Conditional Duration (SCD) model which implies

more exible dynamics and, because of its property as mixture model, more exible

distributions of the underlying duration process. Zhang, Russell, and Tsay (1999)

propose a Threshold Autoregressive Conditional Duration (TACD) model to account

for state dependent dynamics and to capture nonlinear relationships between the con-

ditional expected duration and past information variables. Dufour and Engle (2000)

propose more general functional forms, like a Box-Cox-ACD model or an ACD models

based on a piecewise linear conditional mean function. They show that the functional

form of the conditional mean function has a strong inuence on the predictive perfor-

mance of ACD models.

Another string of contributions deals with ACD models based on more exible

distributions, like Grammig and Maurer (2000) who introduce the Burr-ACD model,

Lunde (2000) who speci�es the Generalized Gamma ACD model or Hautsch (2001)

who proposes an ACD model based on the Generalized F distribution. A semipara-

metric ACD model has been suggested by Drost and Werker (2000).
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The inclusion of explanatory variables requires to account for two aspects: First, a

direct inclusion of explanatory variables in the conditional mean function requires to

ensure parameter restrictions due to the non-negativity condition. Thus, a straight-

forward speci�cation arises by an exponential form. Secondly, explanatory variables

may enter the model dynamically or statically. Therefore, by using the Log-ACD form

of Bauwens and Giot (2000), the conditional mean function becomes

	i = exp

 
! +

pX
j=1

�j ln ti�j +

qX
j=1

 j ln	i�j + x
0

i
�

!
(3.13)

for the dynamic case. Specifying the explanatory variables outside the dynamics one

obtains

~	i =
	i

exp(x0
i
�)
; (3.14)

with: ~	i = exp

 
! +

pX
j=1

�j ln ti�j +

qX
j=1

 j ln ~	i�j

!
:

Note that (3.13) implies that the explanatory variables enter the model with an in�nite

lag structure.

Engle and Russell (1998) illustrate that the standard ACD model (3.9) implies a

conditional hazard rate of the duration ti which can be written in terms of the hazard

rate �0 of the ACD residual �i

�(ti j Fi�1) = �0

�
ti

	i

�
1

	i

; (3.15)

which can be estimated nonparametrically, due to the PML properties of the Expo-

nential ACD model.

Eq. (3.15) illustrates that duration models of the ACD type belong to the class of

accelerated failure time models, i.e. explanatory variables (here the duration history)

accelerate or decelerate the time to failure, and in this context the time between trades.

A more traditional way of specifying the duration process is to characterize it

directly in terms of the hazard rate, e.g. by using the popular proportional hazard

speci�cation. While covariates in accelerated failure time models deform the time

scale, they change the hazard rate in the proportional hazard framework. In �nancial

studies based on transaction data estimates of hazard rates and survivor functions

can be used to characterize the trading activity (see Gourieroux, Jasiak, and LeFol

(1999)). The application of this class of models is useful if one has to deal with censored
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observations. While the inclusion of censoring e�ects in hazard rate models is relatively

straightforward, it is quite cumbersome in the ACD framework. In order to account

for serial dependencies in �nancial durations Gerhard and Hautsch (2001) propose

a method to include autoregressive structures in semiparametric proportional hazard

models. They illustrate that such speci�cations serve as valuable tools to construct

individual and speci�c risk measures. Especially estimates of the probability to observe

a certain price change within a given time interval can be used for risk management

and portfolio strategies.

3.3 Multivariate Speci�cations

Because of the complexity of the estimation problem, only a few studies focus on

modelling the joint transaction process for marks and intertrade durations. Since the

marks are usually qualitative variables and intertrade durations are continuos vari-

ables de�ned over the positive domain there is no obvious probability density function

which also allows for a straightforward introduction of dynamics in the marks and the

intertrade durations. Rydberg and Shephard (1998) employ a discrete time framework

by decomposing the transaction duration into a sequence of binary indicators for pe-

riods in which a trade occurs or not. Given the occurrence of a trade, positive price

changes are modelled on the basis of a dynamic count data model. Trade occurrence

and price changes conditional on trade occurrence are both modelled within the gen-

eralised linear modeling framework. Russell and Engle (1998) propose to combine the

ACD with a generalized Markov Chain for the transition from a price change of one

category to another in order to obtain a joint model of price changes and time between

transactions in a a continuos time framework. The model proposed by Gerhard and

Pohlmeier (2000) combines the two approaches sketched above by accounting for the

discrete nature of price changes while remaining in the continuous time framework

and keeping the advantage of a parsimonious transaction duration model. A bivariate

system of trade intensities and limit order arrival times is analyzed by Russell (1999).

Since the multivariate �ltration of arrival times is somewhat arbitrary to parameterize

in terms of a likelihood decomposition his approach is to derive a joint likelihood for

the bivariate process.

4 Some Empirical Illustrations

4.1 Estimating the Process of Price Changes

Based on the simple Poisson model and the ZIP model we present empirical evidence

for the determinants of volatility at the transaction level under two di�erent trading

mechanisms. Our dependent variable is the absolute price change from transaction
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i � 1 to transaction i measured in the number of ticks. As explanatory variables we

use lagged absolute price changes, intertrade duration and volume including lagged

values as well as intradaily seasonality dummies8.

Table 4 contains the estimation results for the simple Poisson regressions where

heteroskedasticity and autocorrelation robust standard errors have been computed as

GMM standard errors (see e.g. Cameron and Trivedi (1998), chap. 7.3). The results

illustrate that past absolute price changes have a strong positive impact on volatility.

The overall impact of intertrade durations on volatility is positive for all shares. For

the XETRA trading we �nd that longer intertrade durations lead to higher and larger

price jumps which are somewhat dampened for the following trades. The instantaneous

e�ect of intertrade durations can also be found for the oor trading. However, a clear

pattern for the impact of lagged intertrade durations on volatility cannot be found.

Our results nicely con�rm that liquidity is an issue for both shares at both market

places. Volume has a signi�cant impact on absolute price changes in all four cases. For

Allianz, the more liquid share, the price impact of volume is only contemporaneous at

both trading platforms. Contrarily, prices for the Henkel shares are also a�ected by

lagged volumes. As already indicated graphically in Figure 8, left panel, the intradaily

seasonal pattern of absolute price changes is only mildly pronounced so that three

time dummies suÆce to capture volatility di�erences during the trading day. The

highest volatility can be observed for the opening phase. This time period is even

more volatile than the closing phase. Apparently, there are no large di�erences in the

seasonal volatility patterns with regard to the trading mechanism.

8Because absolute price changes show only weak intraday seasonality patterns (compare to Figure

8) we restrict the seasonality variables to three dummies capturing the trading period until 10.00,

10.00-13.00 and 13.00-15.00
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Table 4: Regression results for the Poisson Model. Dependent vari-

able: Absolute price changes in number of ticks (j�pji). P-values based

on robust standard errors. Data sets: (a) Allianz, XETRA trading, (b)

Henkel, XETRA trading, (c) Allianz, Frankfurt, (d) Henkel, Frankfurt.

Diagnostics: ACF and Ljung-Box statistic of the �rst three lags of the

standardized Poisson residuals.

(a) (b) (c) (d)

coe�. p-val. coe�. p-val. coe�. p-val. coe�. p-val.

const 1:616 0:000 0:256 0:000 �2:479 0:000 �1:186 0:000

j�pji�1 0:751 0:000 1:547 0:000 0:279 0:000 0:768 0:000

j�pji�2 0:224 0:000 0:556 0:000 0:270 0:000 0:438 0:000

j�pji�3 0:365 0:000 0:645 0:000 0:257 0:000 0:414 0:000

log ti 0:165 0:000 0:204 0:000 0:201 0:000 0:192 0:000

log ti�1 �0:056 0:000 �0:043 0:000 �0:004 0:020 �0:013 0:000

log ti�2 �0:032 0:000 �0:013 0:000 �0:002 0:238 0:021 0:002

log ti�3 �0:034 0:000 �0:023 0:000 0:009 0:000 �0:000 0:831

log vi 0:126 0:000 0:100 0:000 0:499 0:000 0:386 0:000

log vi�1 �0:002 0:193 0:038 0:000 0:003 0:107 �0:016 0:000

until 10.00 0:141 0:000 0:190 0:000 0:223 0:000 0:169 0:000

10.00-13.00 �0:055 0:000 �0:082 0:000 �0:060 0:000 �0:070 0:000

13.00-15.00 �0:011 0:002 �0:015 0:042 0:091 0:000 �0:076 0:000

Obs 89346 28161 43131 12936

LLH 2:72e7 2:01e6 1:56e6 2:54e6

AC Lag1 0:049 0:062 0:025 0:032

AC Lag2 0:031 0:040 0:012 0:026

AC Lag3 �0:005 0:015 0:010 0:017

LB(3) 310:09 162:32 38:55 26:95

In order to evaluate the goodness-of-�t with respect to the dynamics found in the

process of absolute price changes we check for serial correlation in the (standardized)

Poisson residuals. The �rst three lags of the autocorrelation function as well as the

corresponding Ljung-Box statistic indicate a negligible serial dependence in the Poisson

residuals. Nevertheless, the autocorrelation coeÆcients are clearly signi�cant which is

not surprising, given the considerable sample sizes.

Table 5 gives the estimation results of the ZIP model. The sign pattern of the

estimated coeÆcients is rather similar to the one for the simple Poisson model. The

estimates of the ination parameter ' are between .43 and .72 and signi�cantly di�er-

ent from zero indicating overdispersion in the absolute price changes for all four shares.

With respect to the explanatory variables we �nd coeÆcients which are very similar to

the Poisson estimates. The diagnostics based on the standardized ZIP residuals given
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by

zi �
yi � (1� 'i)�ip
(1� 'i)(�i + 'i�

2
i
)
;

with �i = exp(x0
i
�), show slightly higher serial correlations in the residual process than

for the Poisson regression. However, the serial dependence is quite small, indicating

that the inclusion of past absolute price changes seem to be suÆcient to capture the

main body of the process dynamics.

Table 5: Regression results for the Zero-Inated Poisson Model.

Dependent variable: Absolute price in number of ticks (j�pji). P-values

based on robust standard errors. Data sets: (a) Allianz, XETRA

trading, (b) Henkel, XETRA trading, (c) Allianz, Frankfurt, (d)

Henkel, Frankfurt. Diagnostics: ACF and Ljung-Box statistic of the

�rst three lags of the standardized ZIP residuals.

(a) (b) (c) (d)

coe�. p-val. coe�. p-val. coe�. p-val. coe�. p-val.

const 2:494 0:000 1:719 0:000 0:774 0:000 1:613 0:000

j�pji�1 0:495 0:000 1:206 0:000 0:231 0:000 0:563 0:000

j�pji�2 0:223 0:000 0:472 0:000 0:235 0:000 0:408 0:000

j�pji�3 0:229 0:000 0:538 0:000 0:217 0:000 0:319 0:000

log ti 0:088 0:000 0:114 0:000 0:088 0:000 0:093 0:000

log ti�1 �0:028 0:000 �0:022 0:000 �0:016 0:000 �0:006 0:000

log ti�2 �0:021 0:000 �0:014 0:000 0:000 0:000 0:019 0:002

log ti�3 �0:021 0:000 �0:017 0:000 0:007 0:000 �0:004 0:831

log vi 0:046 0:000 0:029 0:000 0:121 0:000 0:087 0:000

log vi�1 �0:001 0:556 �0:009 0:000 0:035 0:403 0:005 0:656

until 10.00 0:094 0:000 0:133 0:000 0:156 0:000 0:154 0:000

10.00-13.00 �0:046 0:000 �0:073 0:000 �0:027 0:000 �0:018 0:000

13.00-15.00 �0:016 0:041 �0:024 0:042 0:026 0:213 �0:054 0:407

' 0:722 0:000 0:666 0:000 0:435 0:000 0:542 0:000

Obs 89346 28161 43131 12936

LLH 6:20e6 1:16e6 9:30e5 4:88e5

AC Lag1 0:070 0:095 0:077 0:072

AC Lag2 0:035 0:069 0:075 0:070

AC Lag3 0:010 0:038 0:074 0:046

LB(3) 564:80 435:59 746:66 160:94

Table 6 shows the regression results for the ordered probit with conditional het-

eroskedasticity for the BUND Future trading of the EUREX and the LIFFE. As depen-

dent variable we use (raw) price changes based on the categorization (�1;�2];�1; 0; 1; [2;1).
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In the mean function we include the �rst three lags of price changes. The conditional

variance function depends on the contemporaneous and lagged inter-trade duration

and transaction volume as well as seasonality variables based on the exible Fourier

form (eq. 2.3) of order Q = 5.

Concerning the past price changes we �nd signi�cantly negative coeÆcients which

strongly is in support of the existence of a bid-ask bounce e�ect. Almost all variables

in the variance function are highly signi�cant. The positive coeÆcient of the contem-

poraneous volume is economically quite reasonable. It indicates that volatility and

thus the uncertainty is higher the larger the time between two consecutive trades. For

the lagged intertrade durations we �nd a signi�cantly negative impact on the variance,

thus the higher past market activities the higher the current conditional variance. A

converse e�ect is observed for the transaction volume, thus the higher the contem-

poraneous as well as the past trading volume, the lower the volatility. This result is

quite interesting since it indicates that high volumes tend to go along with less volatile

market periods.9 For the seasonality variables we �nd highly signi�cant coeÆcients,

and thus empirical evidence for the existence of strong seasonalities in the intraday

variance process. The plot of the estimated exible Fourier form for the seasonalities

(not presented here) shows an inverted U-shape for the daily pattern of the volatility

per transaction.

To check for dynamic misspeci�cation we use a test on �rst order serial correlation

in the error term of the latent model based on generalized residuals. Gourieroux,

Monfort, and Trognon (1987) generalize the concept of the residual to qualitative

and limited dependent variable models with a latent dependent variable that belongs

to the exponential family and show that a wide range LM-tests can be expressed in

terms of their concept of generalized residuals. Following this idea we compute the

autocorrelations of the resulting generalized residuals and the corresponding Ljung-

Box statistic. The diagnostics indicates that serial dependencies are negligible.

9Note that we omit the volume variables in the LIFFE regression. This is quite reasonable since

the recording of the trading volume at the LIFFE is extremely inaccurate.
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Table 6: Regression results for the ordered probit with conditional

heteroskedasticity. Dependent variable: (Categorized) price changes

in ticks. Categories: (�1;�2];�1; 0; 1; [2;1). Data sets: (a) Bund-

Future trading, EUREX, (b) Bund-Future trading, LIFFE. Diagnostics:

ACF and Ljung-Box statistic of the �rst three lags of generalized

residuals.

(a) (b)

coe�. p-val. coe�. p-val.

Mean function

�pi�1 �0:458 0:000 �0:433 0:000

�pi�2 �0:108 0:000 �0:122 0:002

�pi�3 �0:003 0:307 �0:024 0:000

Thresholds

�1 �3:835 0:000 �3:932 0:000

�2 �2:597 0:000 �2:264 0:000

�3 �0:838 0:000 �1:229 0:000

�4 0:424 0:000 0:377 0:000

Variance function

log ti 1:182 0:000 �0:560 0:000

log ti�1 �0:248 0:000 �0:151 0:001

log ti�2 �0:282 0:000 �0:131 0:003

log ti�3 �0:222 0:000 �0:157 0:000

log vi �0:359 0:000

log vi�1 �0:061 0:007

Æ �0:209 0:000 �0:059 0:067

Æ1;s �0:118 0:000 �0:059 0:000

Æ2;s �0:022 0:002 �0:019 0:017

Æ3;s �0:014 0:011 0:000 0:473

Æ4;s �0:030 0:000 �0:026 0:000

Æ5;s 0:016 0:002 0:004 0:285

Æ1;c 0:083 0:000 0:059 0:000

Æ2;c 0:016 0:000 0:002 0:330

Æ3;c 0:004 0:198 �0:014 0:020

Æ4;c 0:014 0:002 �0:002 0:347

Æ5;c �0:009 0:035 �0:018 0:002

Obs 64679 89346

LLH 5:97e4 6:20e6

AC Lag1 0:012 0:001

AC Lag2 0:002 0:001

AC Lag3 0:000 0:001

LB(3) 10:77 9:98
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4.2 Estimating Intertrade Durations

Table 7 gives the estimation results of the Log-ACD model applied to the intertrade

durations of the Henkel and the Allianz shares for XETRA and Frankfurt oor trad-

ing. Unlike the vast majority of empirical studies on intertrade durations which explain

trade intensities solely by past �ltration of trade intensities rather than accounting for

the impact of other marks of the trading process, we include volume and lagged abso-

lute price changes in a dynamic version of an Log-ACD(1,1) speci�cation. To adjust

for seasonalities we use a two-step procedure where in the �rst step the seasonalities

are estimated based on cubic splines (1 hour knots). With some reservations we may

conclude that both variables contribute to the explanation of trade intensities and

should not be ignored if information on these variables is available. The sign pat-

tern of the corresponding coeÆcients, however, is ambiguous so that a clear economic

interpretation of these e�ects is premature.

Table 7: Regression results for the Log-ACD model with dynamically

included explanatory variables. P-values based on robust standard

errors. Data sets: (a) Allianz, XETRA trading, (b) Allianz, oor

trading Frankfurt, (c) Bund-Future trading, EUREX, Frankfurt, (d)

Bund-Future trading, LIFFE, London. Diagnostics: Mean and standard

deviation of ACD residuals. Ljung-Box statistics of the �rst 20 lags of

ACD residuals.

(a) (b) (c) (d)

coe� p-value coe� p-value coe� p-value coe� p-value

! 0.108 0.000 0.0515 0.0000 0.0486 0.1672 0.1065 0.0000

� 0.048 0.000 0.0397 0.0000 0.0389 0.0000 0.0753 0.0000

 0.939 0.000 0.9225 0.0000 0.9485 0.0000 0.9167 0.0000

log vi -0.012 0.000 -0.0034 0.0491 0.0028 0.0034 -0.0218 0.0000

j�pji�1 0.012 0.001 0.0873 0.0004 -0.0181 0.0329 -0.0194 0.0000

Obs 89346 28161 12936 64682

LLH 82138.904 27254.694 12398 57052.693

Mean �̂i 1.000 1.002 1.013 1.000

Std.dev. �̂i 1.354 1.374 1.115 1.303

LB(20) �̂i 730.237 234.283 700.787 268.905

LB(20) ti -15024.551 2323.730 3106.386 29535.599

Interestingly, the coeÆcients � and  , which pick up the dynamics of the model, are

quite similar across trading mechanisms and shares. We �nd that not only the dynam-

ics of the trade intensity for the same asset traded on the oor and electronically is
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surprisingly similar, but also that the dynamics of assets with considerable di�erences

in liquidity (BUND future vs. Allianz) are resembling. The two coeÆcients nearly

add up to one indicating that long-term persistence is an issue in the modelling of in-

tertrade durations. Given that the mean function of the Log-ACD model is correctly

speci�ed, our estimates are robust against dynamic misspeci�cation in the residuals.

To obtain correct inference, even under dynamic misspeci�cations, we use Newey and

West (1987) robust standard errors. However, the diagnostics based on the ACD

residuals indicate that correlations in the residual are still present and thus calling for

richer dynamics or alternative speci�cations of the conditional mean function. Since

these estimates serve primarily as illustrations, more sophisticated speci�cations are

beyond the scope of the paper.

5 Conclusions

This paper presents a partial survey on the econometrics of transaction data. We focus

on models de�ned in the calendar time dimension which combine microeconometric

and time series tools. Complementary directions of research, not surveyed here, are

dedicated to the development of appropriate econometric models in continuos (calen-

der) time and in intrinsic time (time deformation models). Much of the current work

is concerned with the proper modelling of the underlying stochastics of the transaction

price process. Generalizations of these approaches with respect to estimation meth-

ods, functional form and dynamics are necessary. A demanding but pro�table research

task will be the development of multivariate speci�cations for the analysis of the joint

dynamics of markets and of several marks of a trading process. Multivariate duration

models can account for the arrival times of di�erent types of trades (e.g. buyer and/or

seller initiated trades). Such extensions may also serve as the methodological basis for

an analysis of order book dynamics and the relationship between the trade and quote

process.

Experience in applied work concerning the performance and the bene�ts of partic-

ular model speci�cations and estimators is still limited. Thus future research needs to

stress the comparison and evaluation of existing duration models and other microe-

conometric tools with respect to goodness-of-�t, prediction performance and robust-

ness.

In order to accomplish the full value of transaction data more research has to be

dedicated to tackle questions raised by the literature on market microstructures. Stud-

ies on the quote formation and the price process can generate insights about adverse-

selection costs of market-making. The analysis of the limit order book dynamics based

on transaction data may provide valuable insights on the cost and bene�ts of a partic-

ular market design. The measurement of liquidity is rendered diÆcult, as it requires
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accounting for the dimensions time, volume and price. For instance, the econometric

techniques surveyed above could be valuable for the development of liquidity measures

useful for speci�c market scenarios (e.g. when options expire, after block trades or in

extremely volatile market phases like after announcements of news releases). Another

application is related to Value-at-Risk (VaR)concepts. Value-at-Risk is an important

quantitative tool used to assess �nancial risks in terms of the potential trading loss of

a trader or a bank. There is little experience with respect to the development of VaR

measures based on transaction data. The speci�cation of VaR concepts appropriate for

investors or market makers operating on an intraday basis seems a promising research

topic.

As has been pointed out in detail empirical studies on transaction data can help to

assess the di�erences between speci�c markets and their trading systems and the link-

ages between di�erent markets. The pure description price discovery process on these

markets by econometric studies using transaction data may yield a typology of �nan-

cial markets in terms of risk and liquidity. In the light of the current trend towards

merging and restructuring of exchanges in Europe and elsewhere the comparison of

market designs and institutional settings on the micro level is of high relevance not

only for �nancial economists but also for macroeconomists and policy makers.
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