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Abstract
Anemia management with erythropoiesis stimulating agents is a challenging task in
hemodialysis patients since their response to treatment varies highly. In general, it
is difficult to achieve and maintain the predefined hemoglobin (Hgb) target levels in
clinical practice. The aim of this study is to develop a fully personalizable controller
scheme to stabilizeHgb levelswithin a narrow targetwindowwhile keeping drug doses
low to mitigate side effects. First in-silico results of this framework are presented in
this paper. Based on a model of erythropoiesis we formulate a non-linear model pre-
dictive control (NMPC) algorithm for the individualized optimization of epoetin alfa
(EPO) doses. Previous to this work, model parameters were estimated for individual
patients using clinical data. The optimal control problem is formulated for a continu-
ous drug administration. This is currently a hypothetical form of drug administration
for EPO as it would require a programmable EPO pump similar to insulin pumps
used to treat patients with diabetes mellitus. In each step of the NMPC method the
open-loop problem is solved with a projected quasi-Newton method. The controller is
successfully tested in-silico on several patient parameter sets. An appropriate control
is feasible in the tested patients under the assumption that the controlled quantity is
measured regularly and that continuous EPO administration is adjusted on a daily,
weekly or monthly basis. Further, the controller satisfactorily handles the following
challenging problems in simulations: bleedings, missed administrations and dosing
errors.
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1 Introduction

According to the 2018 United States Renal Data System annual data report (USRDS
2018), approximately 2.5 million patients were treated world-wide for end-stage renal
disease in 2016. In nearly all reporting countries hemodialysis (HD) was the predom-
inant form of dialysis therapy. On December 31, 2016, there were 726,331 prevalent
cases of end-stage kidney disease in the U.S., of which 63.1% were receiving HD.
Due to reduced erythropoietin production in the kidneys almost all HD patients suf-
fer from a chronically decreased number of circulating red blood cells (RBCs) and
associated low hemoglobin (Hgb) levels. This condition is called anemia. Untreated
anemia is associated with poor quality of life and increased morbidity and mortality.
Therefore, physicians aim for a partial correction of anemia with erythropoiesis stim-
ulating agents (ESA). In this paper we consider the treatment with epoetin alfa (EPO),
a human recombinant erythropoietin produced in cell culture.

Currently, the recommendedHgb target range for anemiamanagement is 10–12 g/dl
(see Mactier et al. 2011). Albeit, the KDIGO (Kidney Disease Improving Global Out-
comes)Work Group, which provides clinical practice guidelines for anemia in chronic
kidney disease and guidance on diagnosis, evaluation, management and treatment of
HD patients, recommends not to exceed the limit of 11.5 g/dl in general but suggests
to individualize therapy for patients whose quality of life may be improved at Hgb
levels above 11.5 g/dl. Usually, dialysis facilities use dosing protocols that work as
follows: A starting dose gets specified and based on the resulting Hgb change and
depending on whether the patient is within the Hgb target range the ESA dose gets
adjusted. This one-size-fits-all approach results in about 65% of patients achieving the
set Hgb target. The Dialysis Outcomes and Practice Patterns Study (DOPPS) Practice
Monitor reports that in the US, since December 2014, the percentage of patients with
Hgb above 12 g/dl is 14–15% while 18–20% of patients have a Hgb below 10 g/dl.
Moreover, Hgb variability and cycling are well known to occur in HD patients treated
with ESA (Berns et al. 2003; Fishbane and Berns 2005, 2007). According to Yang
et al. (2007) a greater Hgb variability is independently associated with higher mor-
tality. The challenge in anemia treatment is the patients’ difference in long-term Hgb
response to ESA. The drug concentration in plasma influences the maturation, pro-
liferation and apoptosis of cells in the erythroid lineage. However, these cells remain
about two weeks unobservable in the bone marrow before being released into the
bloodstream. Consequently, it is difficult to anticipate the resulting delayed effect of
the drug administration.

The mathematical model of erythropoiesis presented in Fuertinger et al. (2013)
predicts patients’ erythropoietic response. We utilize this model to design a model-
based feedback controller. The successful use of control algorithms for drug dosing
has been shown, for example, in Magni et al. (2007) and in Bequette (2013). Both
works are about closed-loop insulin dosing (i.e., the artificial pancreas). The control
strategy we use is called model predictive control (MPC), also known as moving or
receding horizon control. In 2011, Brier and Gaweda have already published anMPC-
based algorithm for improved anemia management that has been tested and validated
in clinical studies. Unlike our approach their predictive model is based on the concept
of artificial neural networks (see also Barbieri et al. 2016; Brier et al. 2010). One
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of the limitations of using an artificial neural network approach is the need for large
training and validation data sets making it very difficult to fully tailor this approach to
individual patients and to personalize target Hgb ranges for patients whose quality of
life would improve from a Hgb level higher than 11.5 g/dl as suggested by the KDIGO
work group.

The purpose of this work is to develop a controller scheme that is fully per-
sonalizable. Previous to the study, the used model was adapted to individual patients
using clinical data on Hgb levels and EPO administration. The details of the parameter
estimation procedure and its results were published in Fuertinger et al. (2018). Note
that insufficient iron availability is not modelled explicitly. However, several bone
marrow parameters of the erythropoiesis model that are influenced by iron availability
were estimated on a per patient level. The presented feedback controller is tested on
various patient parameter sets. Throughout this manuscript we assume that EPO is
administered continuously. This is currently not done in clinical practice but could be
achieved with an “EPO pump” similar to the programmable insulin pumps used to
treat diabetes mellitus. The approach is chosen nonetheless since it yields a continuous
control which provides the best situation for stabilizing a system. Having developed a
functional controller scheme it can then be adapted to actual dosing schedules and the
effect of reducing the dosing frequency on the achievable stability can be analyzed. The
given model equations are coupled hyperbolic partial differential equations (PDEs)
and the control variable enters these equations non-linearly. In the presence of a non-
linearmodelMPC is referred to as non-linearMPC (NMPC).More details onMPCcan
be found, e.g., in the books by Grüne and Pannek (2011) and by Rawlings and Mayne
(2009). The basic principle of MPC consists of repeatedly solving finite horizon open
loop optimal control problems. In each step, an open loop problem is solved. Then,
only the first component of the obtained optimal control is applied and the optimization
horizon gets pushed. This allows to include measurements and to react to unforeseen
disturbances or complications. Here, we assume to know the true model and that we
are able to measure Hgb perfectly. We simulate (gastro-intestinal) bleedings which are
a common complication in HD patients and consider a malfunction of the pump by
simulating the complete failure to administer EPO for an entire day or by applying an
incorrect dose. Further, we simulate different frequencies of rate change with which
the pump is programmed, ranging from daily to only once a month.

The paper is organized as follows: In Sect. 2 we introduce the control variable and
present the model equations. The numerical approximation of these so-called state
equations is investigated in Sect. 3. Both the model and its numerical approximation
are recalled from Fuertinger et al. (2013). In addition, we regularize the erythrocytes
model equation to obtain differentiability required for numerically solving the optimal
control problem utilizing first-order optimality conditions. In Sect. 4 we formulate the
optimal control problem and the NMPC algorithm is described. In Sect. 5 we present
our numerical results of the following in-silico experiments: bleedings, missed admin-
istrations or wrongly administered doses and the restriction of EPO administration
rates to be constant over several weeks. We draw some conclusions in Sect. 6. Finally,
all parameters used for simulations are presented in Appendix A.
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Control u
Vector of EPO
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No. of
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Fig. 1 Schematics of the control structure

2 Themodel of erythropoiesis

We start by describing the structure of the control process; compare Fig. 1. The control
which is a vector of EPO administration rates can be altered to change a patient’s
Hgb being the outcome. First, the EPO rates change the patient’s EPO concentration
in plasma which affects the production of RBCs. The process of erythropoiesis is
described by a mathematical model presented in Fuertinger et al. (2013). The different
cell types during erythropoiesis are grouped into five population classes and the model
allows to calculate their densities y1, y2, . . . , y5. From a control perspective these are
our states. Given the density y5 of erythrocytes we can calculate their number and
finally the Hgb.

In the following we explain the named components step by step. Note that the
lemmas of this section will allow to utilize first-order optimality conditions for solving
the optimal control problem numerically.

2.1 The dosing of EPO as the control variable

We first write the time-varying EPO concentration in plasma as a function of EPO
administration rates. Let us consider the time interval [0, T ] with large final time
T � 1. We assume that EPO can be applied continuously, with a constant administra-
tion rate per day or permultiple days. TheEPO rates are given inU/day,whereU stands
for units. The EPO concentration E(t), t ∈ [0, T ], in plasma is separated into a con-
stant summand Eend > 0modeling the patient’s remaining endogenous erythropoietin
level and a time-dependent summand Eex(t) resulting from the administered EPO:

E(t) = Eend + Eex(t) for t ∈ [0, T ]. (1)

Note that the endogenous EPO production Eend is estimated for each patient individ-
ually when adapting the model to patient data. For the number nu ∈ N let the days
{t ju }nu+1

j=1 with a constant EPO rate in [t ju , t j+1
u ), j = 1, . . . , nu , be given as

0 ≤ t1u < · · · < tnu+1
u ≤ T . (2)

We introduce the associated finite-dimensional control space U = R
nu . Only non-

negative EPO rates with a given upper positive limit umax ∈ R can be applied.
Therefore, we are considering the (convex and compact) admissible set

Uad = {
u = (u j )1≤ j≤nu ∈ U

∣∣ 0 ≤ u ≤ umax
}
,
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where ‘≤’ is interpreted componentwise. Throughout, vectors are denoted by bold-
face letters. Let u ∈ Uad be given. Then, the time- and control-dependent summand
Eex = Eex(·; u) satisfies the following initial value problem (cf. Fuertinger et al.
2013, equation (12)):

d

dt
Eex(t; u) = 1

ctbv

⎛

⎝
nu∑

j=1

u jχ j (t)

⎞

⎠ − λEex(t; u) for t ∈ (0, T ],

Eex(0; u) = Eex◦ ,

(3)

where

χ j = χ[t ju ,t j+1
u )

, j = 1, . . . , nu,

are characteristic functions of the intervals [t ju , t j+1
u ), ctbv > 0 stands for the total

blood volume, Eex◦ is a non-negative initial condition for the exogenous EPO level and
λ = log(2)/T1/2 > 0 is the EPO degradation rate with half-life time T1/2. Thus, for

t ∈ [t ju , t j+1
u ), j = 1, . . . , nu , the EPO concentration is given by

E(t; u) = Eend + e−λt Eex◦

+ e−λt

ctbvλ

⎛

⎝u j
(
eλt − eλt ju

) +
j−1∑

i=1

ui
(
eλt i+1

u − eλt iu
)
⎞

⎠ .
(4)

It follows from (4) that u �→ E(·; u) is a function mapping from the admissible set
Uad ⊂ U intoC([0, T ]), whereC([0, T ]) is the space of all continuous functions from
[0, T ] to R. From (4) and λ > 0 we infer that

E(t; u) ≥ Eend + e−λT Eex◦ =: Emin > 0 for t ∈ [0, T ] and u ∈ Uad.

Thus, we define the interval of possible EPO concentrations

Ead = [Emin,∞) = {
E ∈ R

∣∣ E ≥ Emin
}

and observe that E(t; u) ∈ Ead holds for all t ∈ [0, T ] and u ∈ Uad.

Lemma 1 The mapping E introduced in (4), has the following properties.

(1) For every u ∈ Uad the function E(·; u) : [0, T ] → R is continuously differen-
tiable.

(2) The mapping E(t; ·) : Uad → R is twice continuously differentiable for any
t ∈ [0, T ]. Its gradient is given as
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∇uE(t; u) = e−λt

ctbvλ

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

eλt2 − eλt1

...

eλti − eλti−1

eλt − eλti

0
...

0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

∈ U

at t ∈ [t ju , t j+1
u ), j = 1, . . . , nu, and u ∈ Uad. Further, the hessian matrix

∇2
u E(t; u) ∈ R

nu×nu is zero.

Proof The claims follow directly from formula (4). Since ∇uE(t; u) is independent
of u, the hessian ∇2

u E(t; u) is zero. �

2.2 The PDEmodel of erythropoiesis

A schematic of the model is shown in Fig. 2. For the underlying assumptions and more
details we refer to Fuertinger (2012), Fuertinger et al. (2013). Stem cells commit to
the erythroid lineage at a constant rate S0 > 0. Once a stem cell has committed it
passes the five shown cell classes/stages over time (if it does not die along the way):
BFU-E (burst-forming unit erythroids), CFU-E (colony-forming unit erythroids), ery-
throblasts, marrow reticulocytes and erythrocytes (including blood reticulocytes). This
means that there is a flux of cells from each population class to the subsequent one.
For example, when a CFU-E cell has reached maximum age of that class it leaves
the class and becomes an erythroblast with minimum maturity. The population densi-
ties depend on maturity and time. For each class an age-structured population model
is given which describes the development of the respective class subject to a given
EPO concentration in plasma. EPO has a direct effect on the rate of apoptosis of
CFU-E cells (α2), the maturation velocity of marrow reticulocytes (ν) and the mor-
tality rate of erythrocytes (α5). For each class we are given an individual maturity
interval Ωi = (xi , xi ) ⊂ R, 1 ≤ i ≤ 5, in days. The interval boundaries are given by
x1 = 0, x1 = 3 = x2, x2 = 8 = x3, x3 = 13 = x4, x4 = 15.5, x5 = 0, whereas the
RBC lifespan x5 is patient-dependent. Ma et al. (2017) have measured this shortened
RBC lifespan in HD patients to be in the range of 37.7 to 115.8days. Note that the first
four cell classes are in bone marrow while the fifth class describes cells circulating in
blood. That is why x5 is set to 0.

For conciseness , we write all five state equations in one form. Suppose that for
given u ∈ Uad and Eex◦ ≥ 0 the EPO concentration E = E(t; u) is given as (4). Then,
the equation reads

yi,t (t, x) = κi (x; E(t; u))yi (t, x) − vi (E(t; u))yi,x (t, x) in Qi ,

yi (t, xi ) = gi (t; E(t; u)) in (0, T ],
yi (0, x) = yi,0(x) in Ωi ,

(S.i)
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BFU-E
y1(t, x)

CFU-E
y2(t, x)

Erythroblasts
y3(t, x)

Marrow
reticulocytes

y4(t, x)
Erythrocytes

y5(t, x)

S0 y1(t,x1) y2(t,x2)
y3(t,x3)/
ν(E(t;u))

ν(E(t;u))·
y4(t,x4)

β1
β 2

α 2
(E

(t;u
))

β3
ν(
E(
t;u

))α 4

α 5
(x;E

(t;u
))

Fig. 2 Schematic of the PDE model of erythropoiesis

with the maturity interval Ωi = (xi , xi ) ⊂ R, the cylinder Qi = (0, T ) × Ωi

and the initial condition yi,0. The solution yi (t, x) to (S.i) denotes the cell density
of the respective cell population with maturity x at time t . The function vi describes
the maturation velocity and κi (·) is of form βi − αi (·), where βi > 0 describes
the profileration rate and αi the rate of apoptosis. Actually, the function α5 and the
sigmoid functions α2 and ν depend on the bounded (patient-dependent) parameter
vector µ = (μi ) ∈ R

10+ with R+ = {s ∈ R | s > 0}. To simplify the notation we
do not indicate dependencies on µ. We refer to Appendix A, where all fixed and all
individualized parameters, which we utilize in our numerical experiments, are listed.
The individualized parameters are obtained via parameter estimation; see Fuertinger
et al. (2018). The functions for the different classes read as follows:

vi (E) =
{

ν(E) if i = 4,

1 otherwise,
κi (x; E) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

β1 if i = 1,

β2 − α2(E) if i = 2,

β3 if i = 3,

− α4 if i = 4,

− α5(x; E) if i = 5,

yi,0(x) = yi,0(x) for i = 1, . . . , 5, gi (t; E) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

S0 if i = 1,

y1(t, x1) if i = 2,

y2(t, x2) if i = 3,

y3(t, x3)
/
ν(E) if i = 4,

ν(E) y4(t, x4) if i = 5,

(5)

where, for E ∈ Ead, the real-valued functions α2 and ν are given by

α2(E) = μ1

1 + eμ2E−μ3
, ν(E) = μ4 − μ5

1 + e−μ6E+μ7
+ μ5, (6)

and the function

α5 : Ω5 × Ead → R,

α5(x; E) = α0
5 +

⎧
⎪⎨

⎪⎩

min

(
μ8

Eμ9
, μ10

)
if x ∈ Ω̂5, E ∈ Ead with E ≤ τE ,

0 otherwise,
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stands for the erythrocytes mortality rate with an EPO threshold τE > 0 for neocy-
tolysis. The (closed) non-empty interval Ω̂5 � Ω5 denotes the age interval, where
neocytolysis is possible.

Lemma 2 The mappings α2, ν : Ead → R are continuously differentiable.

Proof The claim follows directly from (6). �
We denote the coupled system (S.1)–(S.5) by (S).

2.3 Total RBC population

If the erythrocytes population density y5 is known, the total RBCpopulation P = P(t),
t ∈ [0, T ], is given as

P[ y](t) =
∫

Ω5

y5(t, x) dx for t ∈ [0, T ], (7)

where y = (yi )1≤i≤5 solve the state system (S).

2.4 Hgb concentration

Given a patient’s total blood volume ctbv (in ml) together with the total number of
RBCs P , the Hgb concentration (in g/dl) is calculated as

Hgb = P · MCH

ctbv · 1010 , (8)

where MCH = 29 pg denotes the mean corpuscular hemoglobin.

2.5 Regularization of the equation for the erythrocytes

In Sect. 4 we formally introduce the non-linear optimal control problem. In order to
solve it numerically by utilizing first-order necessary optimality conditions we have to
differentiate the state system (S)with respect to the state variable y = (yi )1≤i≤5 and the
control variable u = (u j )1≤ j≤nu . FromLemma1wealreadyknow that u �→ E(t; u) is
continuously differentiable for every t ∈ [0, T ]. Moreover, the mappings α2 and ν are
continuously differentiable byLemma2.However, themappingEad � E �→ α5(x; E)

is non-differentiable for every x ∈ Ω̂5. Therefore, we have to regularize α5 in order
to get smooth state equations.

For that reason we introduce the Heaviside function H : R → R defined as

H(s) = 0 for s ≤ 0 and H(s) = 1 for s > 0.

Then, the mortality rate can equivalently be written as

α5(x; E) = α0
5 + χΩ̂5

(x)H(τE − E)R(E), for x ∈ Ω5 and E ∈ Ead (9)
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with

R(E) = min

(
μ8

Eμ9
, μ10

)
for E ∈ Ead. (10)

For ε > 0 we utilize the following regularized Heaviside function H ε : R → R

H ε(s) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if s ≤ 0,

s4

ε6

(
10s2 − 24εs + 15ε2

)
for s ∈ (0, ε),

1 if s ≥ ε,

which is twice continuously differentiable. Notice that the function

Fε(s, τ ) = (s − τ)H ε(τ − s) + τ, s, τ ∈ R

is an approximation of min(s, τ ). Thus, the function R defined in (10) can be regular-
ized as

Rε(E) = Fε

(
μ8

Eμ9
, μ10

)
for E ∈ Ead

which allows us to replace the non-smooth coefficient function α5 by the smooth (with
respect to E) mapping

αε
5(x; E) = α0

5 + χΩ̂5
(x)H ε(τE − E)Rε(E) for x ∈ Ω5 and E ∈ Ead. (11)

Lemma 3 For every x ∈ Ω5 the mapping αε
5(x; ·) : Ead → R is continuously differ-

entiable.

Proof The claim follows directly from (11) because of Emin > 0. �
In the sequel we replace α5 in (5) by αε

5 and hence κ5 by κε
5 to account for the

regularized fifth state equation which we denote by (S.5ε). Let (Sε) be the state system
(S.1)–(S.4) and (S.5ε).

3 Numerical approximation of the state equations

The numerical solution of the age-structured populationmodels is based on semigroup
theory. We formulate the five state equations as abstract Cauchy problems which are
then approximated by semigroups acting on finite dimensional subspaces. We have
compared this discretization to an upwind finite difference scheme (cf. Strikwerda
2004). Due to computational speed while obtaining a similar approximation quality
we have favored the semigroup based approach. We refer the reader to, e.g., Ito and
Kappel (2002) and Kappel and Zhang (1993) for results on evolution operators and
their approximation.
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In the following we derive the discretization of the state equations by means of the
general form (S.i) where we omit the dependency on i but replace κ by κε.

3.1 The state equations as abstract Cauchy problems

For n ∈ N we introduce the function

δn(x) =

⎧
⎪⎪⎨

⎪⎪⎩

− 2n2
(
x − x − 1

n

)
for x ≤ x ≤ x + 1

n
,

0 for x + 1

n
< x ≤ x,

where (x, x) = Ω denotes the maturity interval of the respective cell class. Hence, the
sequence {δn}n∈N approximates the δ-distribution. Let yn , n ∈ N, be a mild solution
of the non-homogeneous Cauchy problem

d

dt
yn(t) = Aε(E(t; u))yn(t) + g(t; E(t; u))δn for t ∈ (0, T ], yn(0) = y0 (12)

for given u ∈ Uad, where the linear operator Aε(E), E ∈ Ead, is defined as

domAε(E) = {
ϕ ∈ L2(Ω)

∣∣ ϕ is absolutely continuous on Ω,

ϕ(x) = 0, v(E)ϕ′ − κε(·; E)ϕ ∈ L2(Ω)
}
,

Aε(E)ϕ = −v(E)ϕ′ + κε(·; E)ϕ for ϕ ∈ domAε(E).

It can be shown that limn→∞ yn(t) = y(t) in L2(Ω) holds for t ∈ [0, T ], where y is
the solution to the corresponding state equation (S.1)–(S.4) or (S.5ε).

Since the range for the attribute is different for the cell populations considered, it
is useful to normalize these attributes such that the range of the normalized attribute
ξ is [0, 1]. In order to achieve this we set w = x − x > 0 and define the mapping

h : [0, 1] → Ω = [x, x], h(ξ) = x + wξ for ξ ∈ [0, 1]

with its inverse given by

h−1 : Ω → [0, 1], h−1(x) = x − x

w
for x ∈ Ω.

We denote by L2
w(0, 1) the Hilbert space L2(0, 1) endowed with the weighted inner

product

〈ϕ̃, φ̃〉w = w

∫ 1

0
ϕ̃(ξ)φ̃(ξ) dξ = w 〈ϕ̃, φ̃〉L2(0,1) for ϕ̃, φ̃ ∈ L2

w(0, 1).

The induced norm is ‖ · ‖w = w1/2‖ · ‖L2(0,1). The Hilbert spaces L2
ω(0, 1) and

L2(Ω) are isomorphic with the isomorphism Ξ : L2(Ω) → L2
w(0, 1) and its inverse

Ξ−1 : L2
w(0, 1) → L2(Ω) given by
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Ξϕ = ϕ ◦ h for ϕ ∈ L2(Ω), Ξ−1ϕ̃ = ϕ̃ ◦ h−1 for ϕ̃ ∈ L2
w(0, 1).

Applying the operator Ξ to the sequence {δn}n∈N yields

δ̃n(ξ) = (Ξδn)(ξ) =

⎧
⎪⎪⎨

⎪⎪⎩

− 2n2
(

wξ − 1

n

)
for 0 ≤ wξ ≤ 1

n
,

0 for
1

n
< wξ ≤ 1.

Then, from (12), we derive the normalized Cauchy problem in L2
w(0, 1):

d

dt
ỹn(t) = Ãε(E(t; u))yn(t) + g(t; E(t; u))δ̃n for t ∈ (0, T ], ỹn(0) = ỹ0, (13)

where the operator Ãε(E), E ∈ Ead, is defined as

dom Ãε(E) = {
ϕ̃ ∈ L2

w(0, 1)
∣∣ ϕ̃ is absolutely continuous on [0, 1],

ϕ̃(0) = 0, v(E)ϕ̃′ − κε(h(·); E)ϕ̃ ∈ L2
w(0, 1)

}
,

Ãε(E)ϕ̃ = −v(E)ϕ̃′ + κε(h(·); E)ϕ̃ for ϕ̃ ∈ dom Ãε(E)

and ỹ0 = y0 ◦ h : [0, 1] → R holds. Note that yn = Ξ−1 ỹn solves (12), where ỹn is
the mild solution of the Cauchy problem (13).

3.2 Approximation of the abstract Cauchy problems

In the followingwe derive a discretization of the Cauchy problem (13) based on shifted
Legendre polynomials. This approach was originally presented in Kappel and Zhang
(1993) where they apply it to a very similar type of equation. In the considered 1D case
only few basis elements are needed which yields a fast approximation. However, there
are situationswhere onewould expect diffculties due to the (oscillating) characteristics
of Legendre polynomials. Higher spatial dimension of the hyperbolic equation or large
maturation velocities are examples for such situations. In the following, we first recall
certain characteristics and further utilized features of Legendre polynomials. For more
details we refer the reader to the book by Abramowitz and Stegun (1970).

Legendre polynomials Legendre polynomials L j , j ∈ N, are orthogonal polynomi-
als on [−1, 1] with

1∫

−1

L j (x)Lk(x)dx =
{
2/(2 j + 1) for j = k,

0 otherwise.

The polynomials can be computed with Bonnet’s recursion formula

( j + 1)L j+1(x) = (2 j + 1)xL(x) − j L j−1(x), j = 2, 3, 4, . . . , (14)
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where L0(x) = 1, and L1(x) = x . Thus, the first five Legendre polynomials are of
the following form

L0(x) = 1,

L1(x) = x,

L2(x) = 1

2
(3x2 − 1),

L3(x) = 1

2
(5x3 − 3x),

L4(x) = 1

8
(35x4 − 30x2 + 3).

To compute the approximations for the partial differential equations we use the
following formula representing the derivatives of Legendre polynomials in terms of
Legendre polynomials:

L ′
j (x) =

{∑m−1
ν=0 (4ν + 3)L2ν+1(x) for k = 2m,

∑m
ν=0(4ν + 1)L2ν(x) for k = 2m + 1.

(15)

Furthermore, the following consequences from Bonnet’s formula (eq. (14)) are
needed for the approximation:

xL j (x) = j + 1

2 j + 1
L j+1 + j

2 j + 1
L j−1, j ∈ N,

x2L j (x) = ( j + 1)( j + 2)

(2 j + 1)(2 j + 3)
L j+2 +

(
( j + 1)2

(2 j + 1)(2 j + 3)
+ j2

(2 j − 1)(2 j + 1)

)
L j

+ j( j − 1)

(2 j − 1)(2 j + 1)
L j−2, j ∈ N,

where we set L−1(x) ≡ L−2(x) ≡ 0.
Another property of the Legendre polynomials which is used is:

L j (1) = 1

L j (−x) = (−1) j L j (x), j ∈ N.
(16)

Approximation Let us define the basis functions

e j (ξ) = 1√
w

L j (−1 + 2ξ), 0 ≤ ξ ≤ 1, j ∈ N.

The sequence {e j } j∈N is an orthogonal sequence in L2
w(0, 1) with

〈e j , ek〉w = 0 for j �= k and ‖e j‖2w = 〈e j , e j 〉w = 1

2 j + 1
. (17)
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For N ∈ N we introduce the N -dimensional subspace XN ⊂ L2
w(0, 1) by

XN = span
{
e0, . . . , eN−1

}
.

Let PN : L2
w(0, 1) → XN be the orthogonal projection defined as

PN ϕ̃ =
N−1∑

j=0

〈ϕ̃, e j 〉w
‖e j‖2w

e j for ϕ̃ ∈ L2
w(0, 1).

The approximating delta distribution δ̃N on XN is defined by

〈δ̃N , ϕ̃〉w = ϕ̃(0) for ϕ̃ ∈ XN . (18)

For any E ∈ Ead we define the approximating linear operator Aε
N (E) : XN → XN

by

Ãε
N (E)ϕ = −v(E)

w
ϕ′ + PN

(
κε(h(·); E)ϕ

) − δ̃Nϕ(0) for ϕ ∈ XN .

Note that the projection PN needs only be applied on κε
(
h(·); E)

ϕ in case of the
erythrocytes model equation due to ϕ′ ∈ XN for ϕ ∈ XN . Now, the discretization of
(13) is given as

d

dt
ỹN (t) = Ãε

N (E(t; u))ỹN (t) + g(t; E(t; u))δ̃N for t ∈ (0, T ],
ỹN (0) = PN ỹ0.

(19)

Let

yN (t, ·) = Ξ−1(ỹN (t, ·)) = ỹN (t, h−1(·)) : Ω → R, t ∈ [0, T ],

where ỹN is a solution to (19). It follows that limN→∞ yN (t) = y(t) in L2(Ω) for
t ∈ [0, T ]. A proof for the case g ≡ 0 can be found in Kappel and Zhang (1993,
Theorem 4.3). Using (17), (18) and

ỹN (t, ξ) =
N−1∑

j=0

ỹ j (t)e j (ξ), (t, ξ) ∈ [0, T ] × [0, 1],

we derive the Galerkin scheme

‖ei‖2w
d

dt
ỹi (t) =

N−1∑

j=0

ỹ j (t)〈Aε
N (E(t; u))e j , ei 〉w + g(t; E(t; u))ei (0),

ỹi (0) = 〈ỹ0, ei 〉w
‖ei‖2w

(20)
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for i = 0, . . . , N − 1. Setting

ỹ(t) = (
ỹi−1(t)

)
1≤i≤N for t ∈ [0, T ],

Aε(E) =
( 〈Aε

N (E)e j−1, ei−1〉w
‖ei−1‖2w

)

1≤i, j≤N
for E ∈ Ead,

d =
(
ei−1(0)

‖ei−1‖2w

)

1≤i≤N
, ỹ0 =

( 〈ỹ0, ei−1〉w
‖ei−1‖2w

)

1≤i≤N

we can express (20) as the following system of N ordinary differential equations

d

dt
ỹ(t) = Aε(E(t; u)) ỹ(t) + g(t; E(t; u))d for t ∈ (0, T ], ỹ(0) = ỹ0. (21)

Theorem 1 Let E(·; u) given by (4) for an arbitrarily chosen u ∈ Uad. Moreover,
g(·; E) : [0, T ] → R is assumed to be piecewise continuous for every E ∈ Ead. Then,
the function

ỹ(t) = e
∫ t
0 Aε(E(s;u)) ds ỹ0 +

( ∫ t

0
e
∫ t
τ Aε(E(s;u)) dsg(τ ; E(τ ; u)) dτ

)
d (22)

is the only one that satisfies (21) at every time instance, where g(·; E) is continuous
for every E ∈ Ead. Furthermore, ỹ ∈ H1(0, T ; R

N ) holds.

Proof (1) We first show that (22) satisfies (21). Using Emin > 0 it follows from
Lemmas 1-3 that the mappings t �→ vi (E(t; u)), and t �→ κε

i (x; E(t; u)),
1 ≤ i ≤ 5, are continuously differentiable on [0, T ] for every x ∈ Ω . Hence,
the mapping Aε(E(·; u)) : [0, T ] → R

N×N is continuously differentiable for
every u ∈ Uad. We obtain for any t ∈ (0, T ], where g(·; E) is continuous

d

dt
ỹ(t) = Aε(E(t; u))e

∫ t
0 Aε(E(s;u)) ds ỹ◦ + g(t; E(t; u))d

+ Aε(E(t; u))

(∫ t

0
e
∫ t
τ Aε(E(s;u)) dsg(τ ; E(τ ; u)) dτ

)
d

= Aε(E(t; u)) ỹ(t) + g(t; E(t; u))d.

Further, if we choose t = 0 in (22) we get ỹ(0) = ỹ0. Hence, ỹ satisfies (21) at
every time instance, where g(·; E) is continuous.

(2) Uniqueness: Assume there exist two solutions ỹ1, ỹ2 to (21). We set z̃ = ỹ1 − ỹ2.
Then, it follows that

d

dt
z̃(t) = Aε(E(t; u)) z̃(t)

for all t ∈ (0, T ], where g(·; E) is continuous. Since Aε(E(·; u)) and z̃ are con-
tinuous, we can extend the derivative of z̃ by Aε(E(t; u)) z̃(t) for all t ∈ (0, T ].
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Furthermore, we have ỹ1(0) = ỹ2(0). From Gronwall’s inequality we infer that
z̃(0) = 0 in [0, T ], which implies ỹ1 = ỹ2 in [0, T ].

�
Remark 1 (1) Due to Theorem 1 the solution

ỹN (t, ξ) =
N−1∑

j=0

ỹ j (t)e j (ξ), (t, ξ) ∈ [0, T ] × [0, 1],

to (19) belongs to H1(0, T ; L2
w(0, 1)) provided g(·; E) : [0, T ] → R is piecewise

continuous for every E ∈ Ead.
(2) To solve (21) a time integration method has to be applied. In our numerical exper-

iments we apply the implicit Euler method. ♦

3.3 The control-to-state operator

Let u ∈ Uad be a given control variable and E(·; u) be given by (4). Then, the five
state variables (yi )1≤i≤5 solving (Sε) are approximated by the functions

yi,N (t, ·) = ỹi,N (t, h−1(·)) =
N∑

j=0

ỹi j (t)e j (h
−1(·)) ∈ L2(Ω), (23)

where the coefficient vector ỹi = (ỹi, j−1)1≤ j≤N satisfies

d

dt
ỹi (t) = Aε

i (E(t; u)) ỹi (t) + gi (t; E(t; u))di for t ∈ (0, T ],
ỹi (0) = ỹ0i .

(̃Si )

This is Eq. (21) with added index i . Due to Theorem 1 we define the non-linear
solution operator

SN : Uad →
5×

i=1

H1(0, T ; R
N ),

where×is the generalizedCartesian product.Hence, ỹ = ( ỹi )1≤i≤5 = SN (u) satisfies
(˜S1)–(˜S5). Then, the discretized total RBC population is given by (cf. (7))

PN [ ỹ](t) =
N∑

j=0

ỹ5, j (t)
∫

Ω5

e j (h
−1(x)) dx = ỹ5,0(t) ω

1/2
5 for t ∈ [0, T ], (24)

where again ỹ = ( ỹi )1≤i≤5 satisfies (˜S1)–(˜S5). Note that the equations (̃Si ),
i = 1, 2, . . . , 5 can be solved consecutively. At any time t ∈ [0, T ] the discrete
state vector ỹ(t) is of length 5N .
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4 The optimal EPO dosing

In this section we formulate the optimal EPO dosing as an optimal control problem
on the long time horizon [0, T ]. For the number nu ∈ N let the days {t ju }nu+1

j=1 with a

constant EPO rate in [t ju , t j+1
u ), j = 1, . . . , nu , be given as

0 = t1u < · · · < tnu+1
u = T .

4.1 The optimal control problem

The goal is to stabilize the Hgb around a desired value of 10.5 g/dl in order to bring and
keep the Hgb into the target window of 10–12 g/dl. Values in this range are considered
as safe. We choose this lower value within the range because in case of an overshoot
the Hgb can not be pulled down actively but one has to wait till it decreases of itself.
The optimal control problem is formulated for the number of RBCs and not for the
Hgb. This means that, for each patient, prior to optimization a desired total amount
Pd of RBCs is calculated using formula (8).

In the cost functional, we measure and penalize the deviation of the total RBC
population from the desired population Pd over the whole time horizon [0, T ]

ĴN (u) = 1

2

nu∑

j=1

γ j |u j |2 + σΩ

2

∫ T

0

∣∣PN [ ỹ](t) − Pd
∣∣2 dt, (25)

where the discretized total RBC population PN [ ỹ] has been introduced in (24) and
ỹ = SN (u) satisfies (˜S1)–(˜S5). Further, γ1, . . . , γnu > 0 are regularization parameters
and σΩ is a non-negative weight. Now, the optimal control problem is formulated as
follows:

min ĴN (u) subject to u ∈ Uad. (P̂)

Remark 2 (1) Note that (P̂) is a non-linear optimization problem. Hence, (P̂) is non-
convex, so that several local minima might exist. ♦

(2) It can be shown that (P̂) possesses at least one optimal control inUad. For the sake
of brevity, we do not present the proof here.

4.2 The NMPCmethod

Problem (P̂) can not be treated as an open-loop problem since unforeseen events and
disturbances can occur. In reality, predicted andmeasuredHgb values will differ which
has to be taken into account by means of a closed-loop controller. Moreover, patient
parameterswill not be constant over timewhich evenmakes readaptations of themodel
necessary in actual application.
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Let all time intervals of constant administration rates be of same length Δt > 0
and

T = LΔt for L ∈ N.

Suppose we are at time t◦ ∈ [0, T − MΔt ] and consider the time horizon [t◦, tf] with
tf = t◦ + MΔt , M ∈ N and MΔt � T .

Next we introduce a notation for the days

{t jlu }n(t◦)+1
l=1 ⊂ {t1u , . . . , tnu+1

u } ⊂ [0, T ] with t◦ ≤ t j1u < · · · < t
jnu (t◦)+1
u ≤ tf,

which belong to the current horizon [t◦, tf]; cf. (2). At t◦ we are given the initial
conditions ỹ◦ = ( ỹ◦i )1≤i≤5 and Eex(t◦) = Eex◦ . Then, we define the cost functional
on the time horizon [t◦, tf] ⊂ [0, T ] with 0 ≤ t◦ < tf and tf − t◦ � T :

ĴN (u; t◦, ỹ◦, Eex◦ ) = 1

2

nu(t◦)∑

l=1

γ jl |u jl |2 + σΩ

2

∫ tf

t◦

∣∣PN [ ỹ](t) − Pd
∣∣2 dt

+ σf

2

∣∣PN [ ỹ](tf) − Pd
∣∣2,

(26)

where the coefficient vector ỹ = ( ỹi )1≤i≤5 satisfies (˜S1)–(˜S5) on the time horizon
[t◦, tf] with initial conditions ỹ◦i , 1 ≤ i ≤ 5. In (26) we have added a summand
penalizing the deviation of the population at the final time tf for stability reasons. For
U(t◦) = R

nu(t◦) we define the admissible set

Uad(t◦) = {
u ∈ U(t◦)

∣∣ 0 ≤ u ≤ umax
}
.

Considering a constant EPO rate per day in our numerical experiments we set
γ j ≡ cγ

MΔt
for some constant cγ > 0. Note that MΔt is the length of the predic-

tion horizon. Now, the controller predicts the future evolution of the system under
control over this prediction horizon, the cost functional ĴN (u; t◦, ỹ◦, Eex◦ ) gets mini-
mized and we obtain an optimal control vector for the given time period. Then, (only)
the first component of the optimal control vector is applied and yields new initial con-
ditions for the next initial time point t◦ + Δt , to where the finite horizon gets pushed.
In Algorithm 1 we summarize the NMPC method. The iterative computation of the
control u can be seen in line 5 where in each iteration the first component of the
optimal open loop solution to problem (P̂(t◦)) from line 4 is appended to the already
given control vector. Then, this control is applied on the corresponding time interval
[t◦, t◦ + Δt ] and the initial condition for the next iteration is set to ỹ(t◦ + Δt ); see
line 6. If the state vectors can be measured or estimated based on measurements, the
new initial condition ỹ◦ in line 6 can be set therewith.
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Algorithm 1 (NMPC algorithm)
Require: Initial state ỹ◦ = ( ỹ◦i )1≤i≤5, initial exogenous EPO level Eex◦ at time t◦ = 0;
1: Set u = [];
2: for � = 1, 2, . . . , L do
3: Set t◦ = (� − 1)Δt and tf = t◦ + MΔt ;

4: Compute a (numerical) solution ū(�) = (ū(�)
jl

)1≤l≤nu (t◦) to

min ĴN (u; t◦, ỹ◦, Eex◦ ) s.t. u ∈ Uad(t◦); (P̂(t◦))

5: Set u = [u, ū(�)
1 ] and compute the associated state

d

dt
ỹi (t) = Aε

i (E(t; u)) ỹi (t) + gi (t; E(t; u))di for t ∈ (t◦, t◦ + Δt ],
ỹi (t◦) = ỹ◦i

for 1 ≤ i ≤ 5;
6: Set ỹ◦ = ỹ(t◦ + Δt ) and Eex◦ = E(t◦ + Δt , u);
7: end for

4.3 Numerical solution of the open-loop problem (P̂(t◦))

It remains to discuss how the open-loop problem in line 4 of Algorithm 1 is numeri-
cally solved. In this work we apply a projected BFGS method with Armijo linesearch
as described in Kelley (1999, Sect. 5.5.3). This requires to compute the gradient
∇ ĴN = (∂u jl

ĴN )1≤l≤nu(t◦) at u = (u jl )1≤l≤nu(t◦) ∈ Uad(t◦). This is done using a
Lagrangian-based approach as shown in Hinze et al. (2009)[Sect. 1.6.4]. The gradient
is given by

∂u jl
ĴN (u; t◦, ỹ◦, Eex◦ ) = γ jl u jl

+
5∑

i=1

∫ tf

t◦

(
∂E

∂u jl
(t; u)

(∂Aε
i

∂u jl
(E(t; u)) ỹi (t) − ∂gi

∂u jl
(E(t; u))di

))�
Dω p̃i (t) dt,

with the adjoint variable p̃ = ( p̃i )1≤i≤5, where p̃i satisfies

− d

dt
p̃i (t) = D−1

ω Aε
i (E(t; u))�Dω p̃i (t)

+ D−1
ω Di Dωqi (t; E(t; u)) for t ∈ (t◦, tf],

p̃i (tf) = 0,

( Ãi )

for i = 1, . . . , 5, with Dω = diag( 1
2 j+1 | j = 0, . . . , N ), Di = diag(di ), i =

1, . . . , 5 and
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qi (t; E) =

⎧
⎪⎪⎨

⎪⎪⎩

ω
−1/2
i+1 p̃i+1(t) if i = 1, 2,

ω
−1/2
4 p̃4(t)

/
ν(E) if i = 3,

ω
−1/2
5 ν(E) p̃5(t) if i = 4.

Note that the adjoint state p̃ is the Lagrange multiplier associated with the state equa-
tion.

We have presented the gradient and the adjoint equations ( ˜A1)–( ˜A5) in a very
compact format. So let us explain what it actually means to calculate the gradient
∇ ĴN at u = (u jl )1≤l≤nu(t◦) ∈ Uad(t◦):

(1) Solve the state equations (˜S1)–(˜S5) on the time horizon [t◦, tf] forward in time.
(2) Solve the adjoint state equations ( ˜A5)–( ˜A1) on the time horizon [t◦, tf] backward

in time.
(3) Compute the gradient ∇ ĴN .

5 Numerical results

For our numerical experiments we have chosen the data sets from five patients which
capture the main occurring characteristics. The constant endogenous erythropoietin
concentration Eend for example is once far above the threshold for neocytolysis (τE =
80), twice just slightly below and twice clearly smaller. The aim was to find a general
optimization setting that works for diverse data sets. The parameters can be looked up
in Table 8.

For computation of the population densities we scale the hyperbolic equations by
108 which is legitimate since the equations are linear with respect to the state variables
yi , i = 1, . . . , 5. For discretization we use N = 15 Legendre polynomials and the
time step size Δt = 0.01.

Wefirst have a look at the predictedHgb curveswhen noEPO is administered. Then,
we show how the NMPC algorithm is able to correct anemia under the assumption of
knowing the true model and patient parameters and being able to continuously and
perfectly measure Hgb.

5.1 Uncontrolled Hgb concentration

We begin by taking a look at the predicted Hgb concentrations without EPO admin-
istration. As can be seen exemplarily in Fig. 3 the Hgb levels are running in a steady
state far below the target range. This state of anemia would be critical for patients
since it increases cardiovascular disease and death risk (Strippoli et al. 2004).
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Fig. 3 Uncontrolled Hgb levels. The dotted lines mark the target range of 10–12 g/dl

5.2 NMPC

5.2.1 Settings

Throughout we consider a total time period of 24 weeks, i.e. T = 168 days. Excluding
our last experiment, the days {t ju }nu+1

j=1 are given by {0, 1, . . . , 168} and the length of

the NMPC horizon is four weeks. This means, we set Δt = 1, M = 28 and L = 168.
Note that the length of the horizon determines the computational effort of the NMPC
method: the longer the horizon, the more time it takes to calculate the numerical
solution to the open-loop problem in each step. Hence, one is searching for theminimal
horizon that provides stability of the NMPC closed-loop. In our simulations we have
observed that fourweeks serves the purpose for the named setting.The fact that the cells
remain about two weeks in the bone marrow (first four classes) before released into
the bloodstream explains the need for this length. In pratice, the maximum cumulative
weekly EPO dose is 60,000 U with up to three administrations a week. Given our
higher administration frequency we set the maximum weekly EPO dose to 7000 U
which leads us to set umax = 1000 U/day.

Given the time horizon MΔt we set

σΩ = 104

MΔt r2
, σf = 103

r2
, r = 2MCH

ctbv1010
, γ j ≡ cγ

MΔt
, (27)

where only the parameter cγ is chosen in an individualized manner.
We start by testing the NMPC algorithm for different constants cγ . This parameter

penalizes control costs in the objective functional. A larger cγ results in a stronger
penalization of control costs, i.e. the controller must try to bring and keep the Hgb
curve in the target range with less EPO. In Fig. 4 we present the results for patients
1 and 2. For both patients the value cγ = 0.1 is the right choice for control costs
penalization in the sense that it allows to accurately stabilize the Hgb around 10.5 g/dl.
The corresponding EPO rates can be seen in Figs. 5 and 6. Interestingly, the smallest
penalization in patient 1 results in a very specific and time sensitive administration
pattern. Patient 2 requires a lot higher doses than patient 1. It is actually about 2.5
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Fig. 4 Optimal Hgb curves for different values cγ for patients 1 and 2. The dotted lines mark the target
range
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Fig. 5 Patient 1: optimal EPO rates for different values cγ

times as much; see Table 1. When looking at the uncontrolled Hgb levels in Fig. 3
patient 2 shows a higher asymptotic Hgb level than patient 1. So the higher doses
are actually counterintuitive which underlines the need for a closer look into the time
dynamics. For cγ = 10 the Hgb concentration for patient 1 is still within the target
range while this penalization results in a drop below the target range for patient 2.
Still, for cγ = 1 the total population for patient 2 remains as well within the target
range. Using cγ = 100 for patient 1 leads to a Hgb level below the target range. This
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Fig. 6 Patient 2: optimal EPO rates for different values cγ

Table 1 Total EPO doses for different values cγ for patients 1 and 2

Patient 1 Patient 2

cγ 0.1 10 100 0.1 1 10

Total dose (U) 48,323 42,683 30,616 121,354 119,114 71,706

indicates that the penalization of the control costs needs to be chosen carefully on a
subgroup or even per-patient level.

Our primary goal is Hgb in target. Thus, we choose cγ such that the penalization
of control costs does not block the NMPC algorithm from controlling the Hgb levels
into the target range. The above test we have also done for the other patients. For
patient 5 the value cγ = 0.1 is fine as well while patients 3 and 4 require a weaker
penalization of cγ = 0.01. Concluding, with cγ = 0.01 the Hgb levels of all patients
can be brought into target only that for patients 1,2 and 5 this can as well be achieved
with cγ = 0.1 and consequently a lower total EPO dose.

5.2.2 Bleeding

In the followingwe analyze how theNMPCalgorithmhandles a sudden andunforeseen
(gastro-intestinal) bleeding. This is a frequent complication in HD patients. Note that
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(a) Patient 4: bleeding at day 22 (7.5 g/dl) and at day 90 (9.0 g/dl)
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(b) Patient 3: bleeding at day 60 (7.5 g/dl)

Fig. 7 Bleeding patients 3 and 4. Up to the first bleeding umax equals 1000. The dotted lines mark the target
range

theNMPCalgorithm learns about the bleedingfirst after it has happened by an assumed
measurement. In line 6 of Algorithm 1 the initial condition ỹ◦ is overwritten based on
that measurement. The results for patients 3 and 4 for a bleeding which corresponds
to a drop in Hgb down to 7.5 g/dl are shown in Fig. 7. Patient 4 has a fast recovery
time so that we add a later smaller bleeding to 9.0 g/dl. According to Pottgiesser et al.
(2008) the mean recovery time period after a blood donation of 550 ml is 36 days
(range 20–59). This average recovery time is added as a vertical arrow to Fig. 7. We
run the optimization such that we keep the maximum EPO rate at 1000 U/day or after
the first bleeding we increase umax to analyze by how much the recovery time could
be decreased. In addition, we set cγ = 10−10 and umax = 25, 000 U/day after the first
bleeding to see if this results in an overshoot.

We first analyze the results for a constant maximum EPO rate of 1000 U/day and
when that rate is increased to 2000 U/day after the first bleeding; upper plots in
Figs. 8 and 9. We observe that the NMPC algorithm is reacting to the bleeding by
directly administering the maximum available EPO dose over a certain period of time.
For umax = 2000 U/day this higher amount is administered but for a shorter period
of time. Hence, the total drug amount, see Table 2, is only 13% and 16% higher.
The Hgb curves are shown in Fig. 7. The recovery time after the first bleeding for
patient 4 can be significantly reduced from about 36 to about 25 days by allowing
higher administration rates. For patient 3 the differences are minor. The reason is that
a reduction of the recovery time for patient 3 comes along with an increase of the
overshoot because the constant endogenous EPO concentration Eend for patient 3 is
around 280. For patient 4 it is only 43. Hence, by reducing the administration rate for
patient 4 the controller can abruptly let drop down the EPO concentration in plasma
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Fig. 8 Bleeding patient 4: EPO rates for different values umax after the first bleeding. Up to the first bleeding
umax equals 1000. The first bleeding is at day 22 (7.5 g/d) and the second at day 80 (9.0 g/d)

Table 2 Bleeding patients 3 and 4: total EPO doses for different values umax after the first bleeding

Patient 4 Patient 3

umax 1000 2000 25, 000 1000 2000 25,000

Total dose (U) 79,124 91,853 187,660 83,980 94,948 199,077

Up to the first bleeding umax equals 1000. For patient 3 the first bleeding is at day 22 (7.5 g/d) and the
second at day 80 (9.0 g/d). In case of patient 3 there is only one bleeding at day 60 (7.5 g/dl)

which allows a fast recovery time without any overshoot. Even for the high maximum
EPO rate of 25,000 U/day together with a minor control penalization (cγ = 10−10)
we do not observe an overshoot in patient 4. Note that the maximum rate is never
reached; see Fig. 8c. But for patient 3 the overshoot gets more pronounced while the
target range is reached some days earlier; Fig. 7b. Again, the maximum rate is not hit;
Fig. 9c.

5.2.3 Missed administrations/dosing errors

In this section we consider a malfunction of the EPO pump. We simulate a complete
failure to administer EPO for an entire day or that and incorrect rate is applied (not
known in advance). In Fig. 10 we present the results for patient 1 with missed adminis-
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Fig. 9 Bleeding patient 3: EPO rates for different values umax after the bleeding. Up to the bleeding umax
equals 1000. The bleeding is at day 60 (7.5 g/d)

trations on days 23–25, 35–39 and 110–114. In addition, on days 80–84 the maximum
amount umax = 1000 U/day gets administered by mistake. Missing an administration
leads to a certain direct drop in the Hgb level. After every period of missed administra-
tions the algorithm compensates for these by applying a higher EPO rate which is then
gradually reduced in order to smoothly reincrease the Hgb concentration. After the
period when the maximum rate is wrongly applied the algorithm administers nothing
so that the Hgb level decreases and that an overshoot is avoided. But interestingly, it
then restarts with the maximum amount before dropping on the desired level and a
minor reincrease is even accepted. In doing so it achieves to balance the delayed effect
of having administered no drug before and a later drastic drop-down is avoided. The
total administered EPO dose is 50,853 U.

In Fig. 11 we present the results for periodically missed EPO administrations.
More precisely, starting at day ten, every two weeks three days drop out. This scheme
is chosen for analyzing if a periodic missing of administrations results in periodic
administration rates. But as can be seen, the EPO rates after each period of missed
treatments look different and the NMPC alogithm achieves to keep the Hgb level
within the desired range if umax is set to 1500 U/day. Patient 5 demands comparatively
high EPO rates so that the Hgb concentration falls below the target range if umax
equals 1000 U/day. Note that the Hgb curve can be kept within the target range for
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Fig. 10 Patient 1: optimal EPO rates and Hgb curve for missed treatments on days 23–25, 35–39, 110–114
and on days 80–84 the maximum EPO rate is administered by mistake
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Fig. 11 Patient 5: optimal EPO rates and Hgb curve for missed treatments on days 10–12, 30–32, 50–52,
70–72, 90–92 and umax = 1500. In addition, the optimal Hgb curve for umax = 1000 is shown in the upper
plot

umax = 1000 if there are no missed treatments. The total administered EPO doses
belonging to Fig. 11 are 167,848 (umax = 1500) and 150,921 U/day (umax = 1000).

5.2.4 Constant EPO rates

Finally, we simulate different frequencies of rate change for the EPO pump. Note that
less frequent adaptations could be a consequence of less frequent Hgb measurements.
We investigate the effect of enlarging the period of a constant EPO rate from 1 day
(Δt = 1) to 1 week (Δt = 7), 2 weeks (Δt = 14), 3 weeks (Δt = 21) and 4 weeks
(Δt = 28). This requires to adjust the length of theNMPChorizon to 4weeks (constant
period 1 week), 6 weeks (constant period 2 or 3 weeks) and 8 weeks (constant period
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Fig. 12 Patient 4: optimal Hgb curves for different constant periods
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Fig. 13 Patient 4: optimal EPO rates for different constant periods

4 weeks). In order to penalize control costs likewise for the different constant periods
the parameter cγ in Eq. (27) gets multiplied by the number of days in the respective
constant period.

The results for patient 4 are exemplarily shown in Figs. 12 and 13. The Hgb curves
for the different constant periods are all stabilized within the target range. The same
holds true for the other patients. From a mathematical point of view a longer constant
period means a restriction of degrees of freedom. Therefore, the Hgb level is best
controllable for the shortest constant period. This is why the Hgb level is closest to
the line of 10.5 g/dl when the controller can adjust the doses on a daily basis. And
the longer the constant period is, the larger are the oscillations around this line. The
total EPO doses, see Table 3, differ only little. The results for patient 4 look similar
to those from patient 1 which is very interesting. Figure 5 can lead one to assume
that the patient requires a very specific and time sensitive administration pattern to
stabilize the Hgb level. But even for a constant period of a whole month the Hgb can
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Table 3 Patient 4: total EPO
doses for different constant
periods

Constant period 1 day 1 week 3 weeks 4 weeks

total dose (U) 55,598 56,964 56,721 57,695

be kept within the target range with negligible oscillations. For the other patients the
oscillations are even smaller.

6 Conclusion

The presented NMPC algorithm to correct anemia in HD patients was tested in various
in-silico experiments and showed excellent performance in stabilizing simulated Hgb
levels. The introduced framework uses a system of non-linear hyperbolic PDEs, which
previously has been adapted to individual patients using clinicallymeasuredHgb levels
to predict individual patient response to EPO treatment (Fuertinger et al. 2018). The
proposed NMPC would allow to optimize anemia treatment based on single patient
data sets only. It would further allow to set individual Hgb targets for certain patient
groups as proposed by the KDIGO work group. Thus, the presented work is a first
step towards fully individualized anemia therapy.

The conducted in-silico experiments show that a fixed optimization setting for the
controller scheme is sufficient to correct the anemia of patients with very different
characteristics in the underlying prediction model. However, the penalization of the
control costs needs to be tuned on a subgroup or even per-patient level to minimize
the amount of administered EPO. The NMPC method requires a comparatively long
horizon to account for the system’s large time delay. We have determined the required
horizon length experimentally. Given this horizon length, the controller can handle the
delay of the system response to treatment and achieves to stabilize Hgb levels even
when presented with simulated events such as bleedings, missed administrations and
EPO dosing errors. The presented controller has been tested under the assumption
that treatment with EPO can be provided continuously. While this is an interesting
in-silico experiment, such a therapy is currently clinically not possible as there are no
“EPO pumps”, similar to the insulin pumps used for diabetes treatment, available. As
a first restriction on the control we have investigated to allow changes in the EPO rate
less frequently resulting in constant EPO rates over several weeks. These lead to slight
oscillations of the total RBC population around the target state. However, for periods
of up to four weeks the oscillations are negligible.

Different controller schemes to correct anemia in HD patients have been proposed
over the last years by various groups (Barbieri et al. 2015, 2016; Brier and Gaweda
2011; Brier et al. 2010; Martínez-Martínez et al. 2014; McAllister 2017; Nichols et al.
2011). Some of them have been successfully tested in clinical trials (Brier and Gaweda
2011; Brier et al. 2010) or even been implemented in the clinical routine (Barbieri et al.
2015, 2016). Most of the proposed solutions to correct anemia are based on MPC
techniques. In general, the time-varying nature of the process, long time delays in the
system, high inter-individual variability in the specifics or the response of the system to
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treatment and the need to react to unforeseen events such as bleedings andmissed doses
renders the problem of correcting and stabilizing anemia in HD patients more suitable
to MPC based controller approaches than PID (proportional-integral-derivative) ones.
Previously presented and clinically validated MPC approaches have been based on
neural networks as the underlying prediction model (Barbieri et al. 2015, 2016; Brier
andGaweda 2011; Brier et al. 2010). Suchmodels require large training and validation
sets to find the optimal weights for the neural network. The presented approach, where
the underlying model is a system of coupled PDEs, although one of the more complex
ones currently proposed, allows to optimize anemia treatment based on single patient
data sets only. The required data from a single patient is routinely measured in clinics
(as presented in Fuertinger et al. 2018). Thus, the proposed NMPC approach would
provide a fully personalized anemia treatment strategy that even allows the setting
of individual Hgb goals as suggested by the KDIGO guidelines. Further, estimated
model parameters and their longitudinal development in individual patients potentially
allow to gain further insights in the specifics of renal anemia. It might allow to better
understand why some patients do not respond to treatment (e.g. short red blood cell
life span versus insufficient bone marrow reaction to treatment).

In summary, the presentedNMPC algorithm has the potential to bringmore patients
in the Hgb target range while decreasing Hgb variability and EPO utilization. How-
ever, we are still two major steps away from clinically testing the proposed NMPC
approach: First, the control structure needs to be changed such that EPO is only admin-
istered during dialysis treatments (in general three times per week). With the chosen
approach wewill be able to analyze the effect of reducing administration times on Hgb
stability. Second, the patient-model mismatch and uncertainty in parameter estimates
together with measurement noise need to be addressed. In order to deal with parameter
uncertainty in the underlying model, for instance, so called “robust MPC” methods
would need to be incorporated into the framework. In addition, model estimates will
need to be updated on a regular basis using the measured Hgb data. This is currently
under investigation by the group but is beyond the scope of this publication.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

A Appendix: Parameters for themodel and themethods

In Tables 4, 5, 6, 7 and 8 we present all parameters and units utilized in our numerical
experiments.
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Table 4 Fixed model parameters, values and units

Par. Meaning Value Unit

β1 Proliferation rate for BFU-E cells 0.6 1/day

β2 Proliferation rate for CFU-E cells 1.2 1/day

β3 Proliferation rate for erythroblasts 0.723 1/day

x1 Maximal maturity for BFU-E cells 3 Days

x2 Minimal maturity for CFU-E cells 3 Days

x2 Maximal maturity for CFU-E cells 8 Days

x3 Minimal maturity for erythroblasts 8 Days

x3 Maximal maturity for erythroblasts 13 Days

x4 Minimal maturity for marrow reticulocytes 13 Days

x4 Maximal maturity for marrow reticulocytes 15.5 Days

α4 Rate of ineffective erythropoiesis 0.09 1/day

α05 Intrinsic mortality rate for erythrocytes 0.002 1/day

Ω̂5 Age interval for erythrocytes, where [14, 34] Days

neocytolysis is possible

ε Regularization parameter for the mortality rate 10−8 –

τE EPO threshold for neocytolysis 80 mU/ml

Table 5 Fixed μ-parameters, values and units

Parameter Meaning Value Unit

μ1 Constant for the sigmoid
apoptosis rate for CFU-E
cells

0.5 1/day

μ3 Constant for the sigmoid
apoptosis rate for CFU-E
cells

0.5 Dimension-less

μ4, μ5 Constants for the sigmoid
maturation velocity for
marrow reticulocyte

2, 0.35 Dimension-less

μ7 Constant for the sigmoid
maturation velocity for
marrow reticulocytes

2.3 Dimension-less

μ8 Constant in the mortality rate
for erythrocytes

3.5 · 103 mU3/ml2

μ9 Constant in the mortality rate
for erythrocytes

3 mU3/ml2

μ10 Constant in the mortality rate
for erythrocytes

0.1 mU3/ml2
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Table 6 Individualized model
parameters and units

Parameter Meaning Unit

ctbv Total blood volume ml

x5 Maximal life span for
erythrocytes

Days

S0 Rate at which cells are
committing to the erythroid
lineage

1/day

Eend Assumed constant
endogenous EPO
concentration in plasma

mU/ml

T1/2 Half-life of Epoetin-α 1/day

Table 7 Individualized
μ-parameters and units

Parameter Meaning Unit

μ2 Constant for the sigmoid
apoptosis rate for CFU-E
cells

ml/mU

μ6 Constant for the sigmoid
maturation velocity for
marrow reticulocytes

ml/mU

Table 8 Individualized
parameters for considered
patients

Patient no.

Parameter 1 2 3 4 5

ctbv 3567 7373 4543 6102 2600

Eend 42.60 79.42 282.46 43 79

μ2 0.016 0.009 0.008 0.011 0.010

μ6 0.122 0.049 0.072 0.049 0.032

T1/2 4.78 9.65 5.59 10.80 5.12

x5 92.3 74.3 43.1 94.8 50.5
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