
Path-based supports for hypergraphs✩

Ulrik Brandes a, Sabine Cornelsen a,∗, Barbara Pampel a, Arnaud Sallaberry b

a Department of Computer and Information Science, University of Konstanz, Box 67, 78457 Konstanz, Germany
b CNRS UMR 5800 LaBRI, INRIA Bordeaux – Sud Ouest, Pikko, 351, cours de la Libration, 33405 Talence Cedex, France

a b s t r a c t

Keywords:
Graph algorithm
Graph drawing
Hypergraph
Metro map layout

A path-based support of a hypergraph H is a graph with the same vertex set as H in which
each hyperedge induces a Hamiltonian subgraph. While it is N P-hard to decide whether a
path-based support has a monotone drawing, to determine a path-based support with the
minimum number of edges, or to decide whether there is a planar path-based support, we
show that a path-based tree support can be computed in polynomial time if it exists.

1. Introduction

A hypergraph is a pair H = (V , A) where V is a finite set and A is a (multi-)set of non-empty subsets of V . The
elements of V are called vertices and the elements of A are called hyperedges. A support (or host graph) of a hypergraph
H = (V , A) is a graph G = (V , E) such that each hyperedge of H induces a connected subgraph of G , i.e., such that the
graph G[h] := (h, {e ∈ E, e ⊆ h}) is connected for every h ∈ A. See Fig. 1 for an example.

Applications for supports of hypergraphs are, e.g., in hypergraph coloring [12,6], databases [2], or hypergraph drawing [9,
10,5,16]. E.g., see Fig. 1 for an application of a support for designing Euler diagrams. An Euler diagram of a hypergraph
H = (V , A) is a drawing of H in the plane in which the vertices are drawn as points and each hyperedge h ∈ A is drawn as
a simple closed region containing the points representing the vertices in h and not the points representing the vertices in
V \ h. There are various well-formedness conditions for Euler diagrams, see e.g. [7,16].

Recently, many papers have been devoted to the problem of deciding which classes of hypergraphs admit what kind of
supports. It can be tested in linear time whether a hypergraph has a support that is a tree [17], a path or a cycle [5]. It can
be decided in polynomial time whether a hypergraph has a tree support with bounded degrees [5] or a cactus support [4].
A minimum weighted tree support can be computed in polynomial time [11]. It is N P-complete to decide whether a
hypergraph has a planar support [9], a compact support [9,10] or a 2-outerplanar support [5]. A support with the minimum
number of edges can be computed in polynomial time if the hypergraph is closed under intersections [5]. If the set of
hyperedges is closed under intersections and differences, it can be decided in polynomial time whether the hypergraph has
a planar or outerplanar support [4].

In this paper we consider a restriction on the subgraphs of a support that are induced by the hyperedges. A support G of
a hypergraph H = (V , A) is called path-based if the subgraph G[h] contains a Hamiltonian path for each hyperedge h ∈ A, i.e.,
G[h] contains a path that contains each vertex of h. This definition was motivated by the aesthetics of metro map layouts.
I.e., the hyperedges could be visualized as lines along the Hamiltonian path in the induced subgraph of the support like the

✩ A preliminary version of this paper was presented at the 21st International Workshop on Combinatorial Algorithms (IWOCA 2010) and appears in the
corresponding proceedings (Brandes et al. (2011), [3]).

* Corresponding author. Tel.: +49 7531 88 4375; fax: +49 7531 88 3577.

E-mail addresses: Ulrik.Brandes@uni-konstanz.de (U. Brandes), Sabine.Cornelsen@uni-konstanz.de (S. Cornelsen), Barbara.Pampel@uni-konstanz.de
(B. Pampel), arnaud.sallaberry@labri.fr (A. Sallaberry).

Konstanzer Online-Publikations-System (KOPS)
URL: http://nbn-resolving.de/urn:nbn:de:bsz:352-209250

Erschienen in: Journal of Discrete Algorithms ; 14 (2012). - S. 248-261
https://dx.doi.org/10.1016/j.jda.2011.12.009

249

Fig. 1. Three representations of the hypergraph H = (V , A) with hyperedges h1 = {v1, v2}, h2 = {v2, v3}, h3 = {v3, v4}, h4 = {v4, v5}, h5 = {v5, v6}, h =
{v2, v3, v4, v5}, h′ = {v2, v3, v4, v5, v7}, and V = {v1, . . . , v7}.

Fig. 2. Local train map of Zurich (www.zvv.ch) and the metro map of Amsterdam (www.amsterdam.info). In (b) the union of all lines forms a tree.

metro lines in a metro map. See Fig. 2 for examples of metro maps, Fig. 3 for an example of natural sciences drawn in the
metro map anthology, and Figs. 1(c) and 6(f) for a representation of some hyperedges in such a metro map like drawing.
For metro map layout algorithms see, e.g., [13,18].

We briefly consider monotone, planar, and minimum path-based supports. Our main result is a characterization of those
hypergraphs that have a path-based tree support and a polynomial time algorithm for constructing path-based tree supports
if they exist. E.g., Fig. 1 shows an example of a hypergraph H = (V , A) that has a tree support but no path-based tree
support. However, the tree support in Fig. 1(b) is a path-based tree support for (V , A \ {V }).

The contribution of this paper is as follows. In Section 2 we give the necessary definitions. We then briefly discuss
monotone path-based supports in Section 3 and mention that finding a minimum path-based support or deciding whether
there is a planar path-based support, respectively, is N P-hard. We consider path-based tree supports in Section 4. In
Section 4.1 we review a method for computing tree supports using the Hasse diagram. In Section 4.2 we show how to apply
this method to test whether a hypergraph has a path-based tree support and if so how to compute one in polynomial time.
Finally, in Section 4.3 we discuss the run time of our method.

250

Fig. 3. A map of modern science (www.crispian.net).

2. Preliminaries

In this section, we give the necessary definitions that were not already given in the introduction. Throughout this paper
let H = (V , A) be a hypergraph. We denote by n = |V | the number of vertices, m = |A| the number of hyperedges, and
N = ∑

h∈A |h| the sum of the sizes of all hyperedges of a hypergraph H . The size of the hypergraph H is then N + n + m.
A hypergraph is a graph if all hyperedges contain exactly two vertices. A hypergraph H = (V , A) is closed under intersections if
h1 ∩h2 ∈ A∪{∅} for h1,h2 ∈ A. We say that two hyperedges h1,h2 overlap if h1 ∩h2 	= ∅, h1 � h2, and h2 � h1. A hypergraph
H = (V , A) is connected if for any pair of vertices v, w ∈ V there is a sequence of hyperedges h1, . . . ,h� ∈ A such that
v ∈ h1, w ∈ h� , and hi ∩ hi+1 	= ∅, i = 1, . . . , � − 1.

The Hasse diagram of a hypergraph H = (V , A) is the directed acyclic graph with vertex set A ∪ {{v}; v ∈ V } and there is
an edge (h1,h2) if and only if h2 � h1 and there is no set h ∈ A with h2 � h � h1. Fig. 1(a) shows an example of a Hasse
diagram. Let (v, w) be an edge of a directed acyclic graph. Then we say that w is a child of v and v a parent of w . For a
descendant d of v there is a directed path from v to d while for an ancestor a of v there is a directed path from a to v .
A source does not have any parents, a sink no children and an inner vertex has at least one parent and one child.

3. Path-based supports

In a metro map like drawing of a hypergraph vertices are drawn as disjoint simple closed regions in the plane and each
hyperedge h is drawn as a curve Ch with the end points within the regions of different vertices of h, visiting the region
of every vertex of h exactly once, not visiting the vertices not in h, and such that the pieces of Ch within the region of a
vertex or between two such regions are simple. A path-based support of a hypergraph H = (V , A) is a graph G such that
G[h] contains a spanning path for every hyperedge h ∈ A.

On one hand, a metro map like drawing of a hypergraph H = (V , A) induces a path-based support G = (V , E) of H :
For a hyperedge h ∈ A let ph : v1, . . . , v |h| be the sequence of vertices of h in the order in which they are visited by
the curve representing h. Starting with an empty set E add for every hyperedge h ∈ A with ph : v1, . . . , v |h| the edges
{vi−1, vi}, i = 2, . . . , |h| to E . On the other hand, if we have a path-based support G of H and we fix for every hyperedge
h ∈ A a spanning path ph of G[h] then this induces a metro map like drawing of H .

In order to have a readable metro map like drawing of a hypergraph it is typically desirable to draw any curve repre-
senting a hyperedge without self intersection or even monotone.

251

3.1. Monotone path-based supports

A drawing of a graph is a mapping of each vertex to a distinct point in the plane and of each edge to a simple curve
between the image of its adjacent vertices not containing the image of any other vertex. In a straight-line drawing of a
graph each edge is drawn as a line segment. Given a drawing of G , a path p of G is monotone with respect to a straight line
� — called the axis of monotonicity — if every line perpendicular to � intersects the drawing of p in at most one point. Note
that a path p in a straight-line drawing is monotone with respect to the axis � if and only if the orthogonal projections of
the vertices of p on � appear along � in the order induced by p.

Let G = (V , E) be a path-based support of a hypergraph H = (V , A). A drawing of G is monotone with respect to H if for
each hyperedge h ∈ A there is a spanning path ph of G[h] and a straight line �h such that ph is monotone with respect to
the axis �h . G is a monotone path-based support of H if G has a monotone drawing with respect to H .

Remark 1. If G has a monotone drawing with respect to a hypergraph H then G has a straight-line drawing that is monotone
with respect to H with the same axes of monotonicity.

Proof. Let a drawing D of G that is monotone with respect to H = (V , A) be given and let ph,h ∈ A be a spanning path
of G[h] that is monotone with respect to the axis �h . If for each edge {v, w} of G the line segment between v and w does
not contain any vertex of G other than v or w then the straight-line drawing of G in which the vertices are mapped to the
same points as in D is monotone with respect to H .

Consider now for two vertices v, w in a hyperedge h the distances disth(v, w) between the orthogonal projections of v
and w to �h . Let � be the minimum of all distances disth(v, w) over all h ∈ A and v, w ∈ h with v 	= w . Let 0 < ε � �/3.

Consider now the vertices of V in an arbitrary order v1, . . . , vn,n = |V |. For k = 1, . . . ,n, we can now place vk on the
circle with radius ε around the position of vk in D but not on the intersection with the line through the already fixed
drawings of vi and v j , 1 � i < j < k. The corresponding straight-line drawing is monotone with respect to H with the axes
of monotonicity �h,h ∈ A. �
Remark 2. Not every path based support of a hypergraph is monotone.

Proof. Consider the following hypergraph. Let I = {(i, j,k, �);1 � i < j � 5,1 � k < � � 5, i < k, {i, j}∩{k, �} = ∅} be an index
set representing unordered pairs of disjoint edges of the complete graph K5. Let V I = {vi; i = 1, . . . ,5}∪{vi, j,k,�,x; (i, j,k, �) ∈
I, x = 1, . . . ,3}, let hijk� = {vi, vi, j,k,�,1, v j, vi, j,k,�,2, vk, vi, j,k,�,3, v�}, (i, j,k, �) ∈ I , let AI = {hijk�; (i, j,k, �) ∈ I}, and let
HI = (V I , AI). Let E contain the edges {vi, vi, j,k,�,1}, {vi, j,k,�,1, v j}, {v j, vi, j,k,�,2}, {vi, j,k,�,2, vk}, {vk, vi, j,k,�,3}, {vi, j,k,�,3, v�}
for (i, j,k, �) ∈ I . The resulting path-based support G = (V , E) of HI is shown in Fig. 4(a). Note that G[hijk�] is a path
for any hyperedge hijk� ∈ A visiting the vertices vi, v j, vk, v� in this order. Consider now any drawing of G . Since a K5 is
not planar, there are two straight line segments vi v j, vk, v�, (i, j,k.�) ∈ I that intersect. Hence, the path G[hijk�] cannot be
drawn monotonously. �
Remark 3. Every hypergraph has a monotone path-based support.

Proof. Order the vertices of H = (V , A) with respect to an arbitrary ordering <. The support G< = (V , E<) of H with respect
to the ordering < is constructed as follows. For each hyperedge {v1, . . . , vk} ∈ A with v1 < · · · < vk the edge set E< contains
the edges {vi−1, vi}, i = 1, . . . ,k. Assume now that in a drawing of G< the x-value of a vertex v is smaller than the x-
value of the vertex w if v < w and that the edges are drawn monotonously in x-direction. Then for each hyperedge h =
{v1, . . . , vk} ∈ A with v1 < · · · < vk the path ph : v1, . . . , vk is drawn monotonously with respect to the x-axis. See Fig. 4(c)
for an example. �

Note that the problem of deciding whether a given support is a support with respect to an ordering and if so, finding
such an ordering, is closely related to the betweenness problem [14].

Theorem 1. Given a support G of a hypergraph H

1. it is N P-hard to decide whether G is a monotone path-based support of H, and
2. it is N P-complete to decide whether there exists an ordering < of the vertex set such that G is the support of H with respect to <,

even if G has the minimum number of edges among all supports of H.

Proof.

1. Consider an instance of the strictly monotone trajectory drawing problem consisting of a set of paths P on a set of vertices
Vt . It is N P-hard to decide whether the vertices can be mapped to points in the plane such that each path is monotone
with respect to some axis (one for each path) [15].

252

Fig. 4. Three different supports for the hypergraph HI introduced in Section 3.1. The small black vertices are the vertices vσ ,x, σ ∈ I, x = 1,2,3. The thick
red path indicates the hyperedge h1324. (For interpretation of the references to color, the reader is referred to the web version of this article.)

Consider the hypergraph H = (V , A) with V containing Vt and for each path p ∈ P and each edge e ∈ p a vertex vep .
The set A contains for each path p ∈ P a hyperedge hp = ⋃

{v,w}∈p{v, v{v,w}p, w} as well as the hyperedges {v, v{v,w}p}
and {v{v,w}p, w} for each edge {v, w} ∈ p. The graph G = (V , E) with E = ⋃

p∈P

⋃
e∈p{{v, vep}; v ∈ e} is a path-based

support of H and has the minimum number of edges among all supports of H . G is monotone if and only if P is
drawable with each path monotone with respect to some axis.

2. Consider an instance of the betweenness problem consisting of a set of vertices Vb and a set of constraints C . Each
constraint c ∈ C consists of a sequence of three vertices. It is N P-complete to decide whether the vertices can be
totally ordered such that for each constraint c = (u, v, w) the vertex v is between the vertices u and w [14].
Consider the hypergraph H = (V , A) with V containing Vb and for each constraint c ∈ C vertices vc2 and vc4. The set A
contains for each c = (vc1, vc3, vc5) ∈ C a hyperedge hc = {vc1, . . . , vc5} and hyperedges hci = {vci, vc(i+1)} for 1 � i � 4.
The graph G = (V , E) with E = ⋃

c∈C {hci;1 � i � 4} is a path-based support of H and has the minimum number of
edges among all supports of H .
There is an ordering < of V such that G is the support of H with respect to < if and only if for each constraint c =
(vc1, vc3, vc5) ∈ C the five vertices in hv are either ordered vc1 < vc2 < vc3 < vc4 < vc5 or vc5 < vc4 < vc3 < vc2 < vc1.
Since the vertices vc2 and vc4 do not appear in a hyperedge hc′ for any constraint c 	= c′ it follows that there is an
ordering < of V such that G is the support of H with respect to < if and only if Vb can be totally ordered while
satisfying all betweenness constraints in C . �

3.2. Minimum path-based supports

Assuming that each hyperedge contains at least one vertex, each hypergraph H = (V , A) has a monotone path-based
support G = (V , E) with at most N − m edges. Just take the support G< with respect to an arbitrary ordering < of the
vertex set V . It is, however, N P-hard to find an ordering that minimizes the number of edges among all path-based
supports of H with respect to an ordering of the vertex set [8].

Further, note that a path-based support that minimizes the number of edges among all path-based support of a hy-
pergraph H with respect to some ordering of the vertex set might not be a path-based support of H with the minimum
number of edges over all path-based supports of H . E.g., consider the hypergraph HI from the previous section (Fig. 4) or
the hypergraph H with hyperedges {1,2,4}, {1,3,4}, and {2,3,4} for an easier example: the unique minimum path-based
support of H is a star centered at 4 which cannot be created from any ordering of the vertex set. The problem of finding a
minimum path-based support remains, however, N P-hard.

Theorem 2. It is N P-hard to minimize the number of edges among all path-based supports (or among all monotone path-based
supports) of a hypergraph — even if the hypergraph is closed under intersections.

253

Fig. 5. Illustration of the augmented Hasse Diagram for the hypergraph H = (V , A) indicated in 5(a). Ā = A ∪ {h13, {v2}, . . . , {v5}}. The two hyperedges h21
and h22 are both implied but no summery edges. They are not present in the augmented Hasse diagram. The summary hyperedge hs is added to A′ .

Proof. Reduction from Hamiltonian path. Let G = (V , E) be a graph. Let H = (V , E ∪ {V } ∪ {{v}; v ∈ V }) and K = |E|. Note
that any support of H contains G as a subgraph. Hence, H has a path-based support with at most K edges if and only if G
is a path-based support of H which is true if and only if G contains a Hamiltonian path. �
3.3. Planar path-based supports

A graph is planar if it has a drawing in which no pair of edges intersect but in common end points. For the application of
Euler diagram like drawings, planar supports are of special interest. However, like for general planar supports, the problem
of testing whether there is a path-based planar support is hard.

Theorem 3. It is N P-complete to decide whether a hypergraph — even if it is closed under intersections — has a path-based planar
support.

Proof. The support that Johnson and Pollak [9] constructed to prove that it is N P-complete to decide whether there is a
planar support, was already path-based. �
4. Path-based tree supports

In this section we show how to decide in polynomial time whether a given hypergraph has a path-based tree support. If
such a support exists, it is at the same time a path-based support of minimum size, a monotone path-based support [1], and
a planar path-based support. Moreover the intersection of any subset of hyperedges induces again a path in a path-based
tree support. So far it is known how to decide in linear time whether there is a path-based tree support if V ∈ A [5].

4.1. Constructing a tree support from the Hasse diagram

A support with the minimum number of edges and, hence, a tree support if one exists can easily be constructed from
the Hasse diagram if the hypergraph is closed under intersections [5]. Note, however, that the number of intersections of
any subset of hyperedges could be exponential in the size of the hypergraph.

To construct a tree support of an arbitrary hypergraph H = (V , A), it suffices to consider the augmented Hasse diagram —
a representation of “necessary” intersections of hyperedges. The definition is as follows. First consider the smallest set Ā of
subsets of V that contains A and that is closed under intersections. Consider the Hasse diagram D̄ of H̄ = (V , Ā). Note that
any tree support of H is also a tree support of H̄ : The intersection of two subtrees is again a subtree.

Let h1, . . . ,hk be the children of a hyperedge h in D̄ . The hyperedge h ∈ Ā is implied if the hypergraph (h1 ∪ · · · ∪
hk, {h1, . . . ,hk}) is connected and non-implied otherwise. Let {h1, . . . ,hk} be a maximal subset of the children of a non-
implied hyperedge in Ā such that (h1 ∪ · · · ∪ hk, {h1, . . . ,hk}) is connected. Then h1 ∪ · · · ∪ hk is a summary hyperedge. Note
that a summary hyperedge might not be in Ā. Let A′ be the set of subsets of V containing the summary hyperedges,
the hyperedges in Ā that are not implied, and the sources of D̄ . For an example consider Fig. 5(c). In this example, the
hyperedge hs is a summary hyperedge, h31 and h11, . . . ,h

1
5 are non-implied, and V is a source.

The augmented Hasse diagram of H is the Hasse diagram D ′ of H ′ = (V , A′). If H has a tree support, then the augmented
Hasse diagram has O(n+m) vertices and can be constructed in O(n3m) time [5] (without explicitly constructing the closure
under intersection Ā). Further note that if H has a tree support and h ∈ A′ is non-implied, then all children of h in D ′ are
disjoint: Otherwise there would be a summary hyperedge between h and intersecting children.

254

If a tree support G = (V , E) of H exists, it can be constructed as follows [5]. Starting with an empty graph G , we proceed
from the sinks to the sources of D ′ . If h ∈ A′ is not implied, choose an arbitrary ordering h1, . . . ,hk of the children of h in
D ′ . We assume that at this stage, G[hi], i = 1, . . . ,k are already connected subgraphs of G . For j = 2, . . . ,k, choose vertices

v j ∈ ⋃ j−1
i=1 hi , w j ∈ h j and add edges {v j, w j} to E .

If we want to construct a path-based tree support, then G[h j], j = 1, . . . ,k are paths and as vertices v j+1 and w j for
the edges connecting G[h j] to the other paths, we choose the end vertices of G[h j]. The only choices that remain are
the ordering of the children of h and the choice of which end vertex of G[h j] is w j and which one is v j+1. The implied
hyperedges give restrictions on how these choices might be done.

4.2. Choosing the connections: A characterization

When we want to apply the general method introduced in Section 4.1 to construct a path-based tree support G , we
need to make sure that we do not create vertices of degree greater than 2 in G[h] when processing non-implied hyperedges
contained in an implied hyperedge h.

Definition 1 (Conflicting hyperedges). Two overlapping hyperedges h′,h′′ ∈ A′ have a conflict if there is some hyperedge in A′
that contains both h′ and h′′ . Two overlapping hyperedges h′,h′′ ∈ A′ have a conflict with respect to h ∈ A′ if h′ has a conflict
with h′′ , h′ ∩ h′′ ⊆ h and h is a child of h′ or h′′ . In that case we say that h′ and h′′ are conflicting hyperedges of h. Let A′

h
be the set of conflicting hyperedges of h. Let Ac

h be the set of children hi of h such that h ∈ A′
hi
.

E.g., consider the hypergraph in Fig. 5(c). Then h31 and h11 are both contained in the hyperedge V and they both contain

{v2}. Hence, they have a conflict. Further, is the intersection h31 ∩ h11 = {v2} contained in the child hs of h31. Hence, h
3
1 has a

conflict with h11 with respect to hs . Similarly does h31 have a conflict with h15 with respect to hs and we have on one hand

A′
hs

= {h11,h12,h31}. On the other hand does hs have a conflict with h11 with respect to h12 and with h15 with respect to h14
and we have Ac

hs
= {h12,h14}. Note that there might be hyperedges that have a conflict but not with respect to any of their

children. As an example see the hyperedges h41 and h42 in Fig. 6(a). In the lemmas in this section, we will prove that it
suffices if the algorithm considers only conflicts with respect to some child.

Assume now that H has a path-based tree support G and let h′,h′′ ∈ A′ be such that h′ and h′′ have a conflict with
respect to a child h of h′′ . Since h′ ∪h′′ is contained in a hyperedge it follows that G[h′ ∪h′′] is the subgraph of a path. Since
in addition h′ and h′′ intersect and G[h′] and G[h′′] are paths, it follows that G[h′ ∪ h′′] is also a path. Hence, we have the
following situation.

Note especially that among the two end vertices of G[h′′] exactly one is contained in h′ and that this end vertex is also an
end vertex of G[h]. This yields the following three types of restrictions on the connections of the paths.

1. G[h′ \ h] and G[h′′ \ h] must be paths that are attached to different end vertices of G[h].
2. Assume further that h′′′ does also have a conflict with h′′ with respect to h. Then both, G[h′ \ h] and G[h′′′ \ h], must be

appended to the common end vertex of G[h] and G[h′′].
3. Assume further that h2,h1 ∈ Ac

h,h2 	= h1. Let hi ∈ A′
h have a conflict with h with respect to hi, i = 1,2, respectively.

Then G[hi \h] has to be appended to the common end vertex of G[h] and G[hi]. Hence, G[h1 \h] and G[h2 \h] must be
appended to different and vertices of G[h].

E.g., consider the hypergraph H = (V , A) in Fig. 5(c). Then on one hand, h31 has a conflict with h11 and h15 with respect to

hs . Hence, by the first type of restrictions G[h11 \ hs] and G[h15 \ hs] must be appended to the same end vertex of G[hs], i.e.
the end vertex of G[hs] to which G[h31 \ hs] is not appended. On the other hand, h11 and hs have a conflict with respect to

h12, while h15 and hs have a conflict with respect to h14. Hence, by the third type of restrictions it follows that G[h11 \ hs] and

G[h15 \ hs] must be appended to different end vertices of G[h]. Hence, there is no path-based tree support for H .
This motivates the following definition of conflict graphs.

255

Definition 2 (Conflict graph). The conflict graph Ch,h ∈ A′ is a graph on the vertex set A′
h ∪ Ac

h . The conflict graph Ch contains
the following three types of edges.

1. {h′,h′′},h′,h′′ ∈ A′
h if h′ and h′′ have a conflict with respect to h.

2. {h′,h1},h′ ∈ A′
h,h1 ∈ Ac

h if h′ ∈ A′
h1

and h′ and h have a conflict with respect to h1.

3. {h1,h2},h1,h2 ∈ Ac
h,h1 	= h2.

E.g., consider the hypergraph H = (V , A) in Fig. 5(c). Then the conflict graph Chs contains the edges {h31,h15} and {h31,h11}
of type one, the edges {h12,h11} and {h14,h15} of type 2 and the edge {h12,h14} of type 3. (See the figure below.) Hence, Chs

contains a cycle of odd length, reflecting that there is no suitable assignment of the end vertices of G[hs] to h11,h
1
5 and h31.

Theorem 4. A hypergraph H = (V , A) has a path-based tree support if and only if

1. H has a tree support,
2. no hyperedge contains three pairwise overlapping hyperedges h1,h2,h3 ∈ A′ with h1 ∩ h2 = h2 ∩ h3 = h1 ∩ h3 , and
3. all conflict graphs Ch,h ∈ A′, |h| > 1 are bipartite.

From the observations before the definition of the conflict graph it is clear that the conditions of Theorem 4 are necessary
for a path-based tree support. In the remainder of this section, we prove that the conditions are also sufficient.

In the following assume that the conditions of Theorem 4 are fulfilled. We show in Algorithm 1 how to construct a
path-based tree support G of H . We consider the vertices of the augmented Hasse diagram D ′ from the sinks to the sources
in a reversed topological order, i.e., we consider a hyperedge only if all its children in D ′ have already been considered. During
the algorithm, a conflicting hyperedge h′ of a hyperedge h is labeled with the end vertex v of G[h] if the path G[h′ \ h]
will be appended to v . We will call this label sideh(h

′). Concerning the choice of the ordering of the children in Line 8 of
Algorithm 1: the sets Ac

h,h ∈ A′ contain at most two hyperedges — otherwise the subgraph of Ch induced by Ac
h contains a

triangle and, hence, is not bipartite.
Algorithm 1 constructs a tree support G of H [5]. Before we show that G is a path-based tree support, we illustrate

the algorithm with an example. Consider the hypergraph H in Fig. 6. We show how the algorithm proceeds h51 and all its

descendants in D ′ . For the hyperedges h13,h
1
4,h

1
6, and h18 the conflict graphs are empty. For the other leaves we have

sideh15

(
h22

) = sideh15

(
h23

) = sideh15

(
h31

) = sideh15

(
h42

) = v5,

sideh17

(
h24

) = sideh17

(
h31

) = v7, and

sideh19

(
h24

) = sideh19

(
h41

) = sideh19

(
h25

) = sideh19

(
h26

) = sideh19

(
h27

) = v9.

When operating h22 and h23, respectively, we add edges {v4, v5} and {v5, v6}, respectively, to G . While the conflict graph

of h22 does only contain h15 with sideh22
(h15) = v4, the assignment of side in Ch23

is illustrated in Fig. 6(b). h24 has a conflict

with respect to the children h17 and h19. Hence, we add edges {v7, v8} and {v8, v9} to G . The conflict graph of h24 is shown

in Fig. 6(c). When operating h31 we can choose h1 = h23 and h2 = h17, since sideh23
(h31) = v6 and sideh17

(h31) = v7. We add the

edge {v6, v7} to G . The conflict graph Ch31
is shown in Fig. 6(d). The hyperedge h41 is implied and we set sideh41

(h24) = v4.

We can finally connect v3 to v4 or v9 when operating h51.
To prove the correctness of Algorithm 1, it remains to show that all hyperedges of H induce a path in G . Since we

included all inclusion maximal hyperedges of H in A′ , it suffices to show this property for all hyperedges in A′ . We start
with a technical lemma.

Lemma5. Let h′ and h′′ be two overlapping hyperedges and let h′ be not implied. Then there is a hyperedge h ∈ A′ with h′ ∩h′′ ⊆ h � h′ .

Proof. Let hc ∈ Ā be maximal with h′ ∩ h′′ ⊆ hc � h′ . The hyperedge hc is a child of the non-implied hyperedge h′ in D̄ .
Consider the summary hyperedge h with hc ⊆ h � h′ . By definition of A′ it follows that h ∈ A′ . �

256

Algorithm 1: Path-based tree support.

Input : augmented Hasse diagram D ′ of a hypergraph H = (V , A) fulfilling the conditions of Theorem 4;
conflict graphs Ch on vertex sets A′

h ∪ Ac
h , h non-source vertex of D ′

Output : path-based tree support G = (V , E) of H
Data : labels sideh(h

′) indicating the end vertex of G[h] to which h′ \ h should be appended

begin
E ← ∅;
foreach vertex h of D ′ in a reversed topological order of D ′ do

if h = {v} for some v ∈ V then
foreach vertex h′ of Ch do

sideh(h
′) ← v;

else
8 Let h1, . . . ,hk be the children of h such that h2, . . . ,hk−1 /∈ Ac

h ;
if h is non-implied then

Let wi , vi+1, i = 1, . . . ,k be the end vertices of G[hi] such that
• sideh1 (h) = v2 if h ∈ A′

h1
and

• sidehk (h) = wk if h ∈ A′
hk
;

Add the edges {vi , wi}, i = 2, . . . ,k to E;

else
Let w1 	= vk+1 be the end vertices of G[h] such that

• vk+1 /∈ h1 and
• w1 /∈ hk ;

if h1 ∈ Ac
h then sideh(h1) ← vk+1;

if hk ∈ Ac
h then sideh(hk) ← w1;

Label the remaining vertices of Ch with vk+1 or w1 such that no two adjacent vertices have the same label;

For an edge {v, w} of G let hvw be the intersection of all hyperedges of A′ that contain v and w . Note that hvw is not
implied since v and w are contained in different children of hvw in D̄ and {v, w} is an edge of the tree support G of H̄ .
Hence, hvw ∈ A′ .

Lemma 6. Let Conditions 1–3 of Theorem 4 be fulfilled and let G = (V , E) be the graph computed in Algorithm 1. Let h′,h′′ ∈ A′ have
a conflict with respect to a child h of h′ and let G[h′] and G[h′′] be paths. Then

1. sideg(h
′′) = sideh(h

′′) for all g ∈ A′ with h′ ∩ h′′ ⊆ g ⊆ h,
2. sideh(h

′′) ∈ h′′ ,
3. sideh(h

′′) is an end vertex of G[h′],
4. G[h′ \ h′′] is a path, and
5. sideh(h

′′) is adjacent in G to a vertex of h′′ \ h′ .

Proof. We prove the lemma by induction on the sum of the steps in which h′ and h′′ were considered in Algorithm 1. If h′
and h′′ had been considered in the first two steps, then at least one of them is a leaf of D ′ and, hence, h′ and h′′ have no
conflict. So there is nothing to show. Let now h′ and h′′ be considered in later steps. Let h′′ ∈ A′ have a conflict with h′ with
respect to a child h of h′ and let G[h′] and G[h′′] be paths.

1. + 2. if h′ ∩ h′′ ∈ A′: There is nothing to show if h = h′ ∩ h′′ . So let h1 be the child of h with h1 ⊇ h′ ∩ h′′ . Then h,h′′ have
a conflict with respect to h1. Hence, Ch contains the path h′,h′′,h1. By the inductive hypothesis on Property 3, it
follows that sideh1 (h

′′) is an end vertex of G[h], and especially, that h1 and h share an end vertex. By construction
it follows that sideh(h1) is the end vertex of h that is not in h1. Hence, sideh(h

′′) ∈ h1 and sideh1 (h
′′) = sideh(h

′′).
By the inductive hypothesis it follows that sideg(h

′′) = sideh(h
′′) for h∩h′′ ⊆ g ⊆ h1. Since the labels in sideh′∩h′′ (.)

are the end vertices of G[h′ ∩ h′′], it follows that sideh(h
′′) ∈ h′ ∩ h′′ ⊂ h′′ .

1. + 2. + 5. if h′ ∩ h′′ /∈ A′: Let h′′
1 ⊆ h′′ be minimal with h′ ∩h′′ ⊂ h′′

1. Since h′ and h′′
1 overlap, there is an edge {v, w} ∈ E such

that v ∈ h′ ∩ h′′ and w ∈ h′′
1 \ h′ . We show that sideh(h

′′) = v .
By Lemma 5 there is a child hc of hvw that contains h ∩ hvw . Since v ∈ h ∩ hvw , it follows that w /∈ hc and,

hence, v is an end vertex of hc .
Note that by the minimality of h′′

1 it follows that h′ ∩ h′′ � hvw . Since G[h′′],G[h′] are paths, it follows that
hc � h and, hence, hc = h ∩ hvw . Let hp be minimal with hc � hp ⊆ h. Then hp,hvw have a conflict with respect
to hc and it follows from the inductive hypothesis on Property 5 that sidehc (hvw) = v . Let h′

c be maximal with
hc ⊆ h′

c � h. By the inductive hypothesis on Property 1 it follows that sideh′
c
(hvw) = v . Since h,hvw have a conflict

257

Fig. 6. Illustration of Algorithm 1.

with respect to h′
c , it follows by the inductive hypothesis on Property 3 that v is an end vertex of h. In Ch there

is the path h′
c,hvw ,h′,h′′ . By construction, sideh(h

′
c) is the end vertex of h that is not in h′

c . Hence, sideh(hvw) =
sideh(h

′′) = v .
3.: The proof of this part of the lemma is illustrated in Fig. 7. Let v = sideh(h

′′). By the construction in Algorithm 1,
v is an end vertex of G[h′] if h′ is non-implied. So assume that h′ is implied and that v is not an end vertex of
G[h′]. Let w ∈ h′ \ h be a neighbor of v in G . By Property 2, it follows that v ∈ h′′ . Let hc be the child of hvw that
contains hvw ∩ h′′ . By the inductive hypothesis on Property 4, it follows that G[hvw \ h′′] is a path that contains w
but not v . Hence, hc = hvw ∩ h′′ = hvw ∩ h.

Let h′
1,h

′′
1 ∈ A′ be minimal with h′ ⊇ h′

1 � h′ ∩ h′′ and h′′ ⊇ h′′
1 � h′ ∩ h′′ , respectively. Assume first that h′ ∩ h′′ ∈

A′ . Then Ch′∩h′′ contains the triangle hvw ,h′
1,h

′′
1,hvw and, hence, is not bipartite.

258

Fig. 7. Illustration of the proof of Lemma 6.3.

Assume now that h′ ∩h′′ /∈ A′ . By the already proven part of Property 5 it follows that there is an edge {v, x} of
G with x ∈ h′′

1 \h. We have hc = hvw ∩h′′ ⊇ hvw ∩hvx . Further, the child of hvx that contains hvx ∩h equals hvx ∩h.
Since h′′

1 is implied and hvx not, it follows that h′′
1 	= hvx and, hence, hvx � h′ ∩ h′′ . Hence, either hvx ∩ h ⊆ hvw ∩ h

or hvw ∩ h � hvx ∩ h � h′ ∩ h′′ . In the first case let h1 ∈ A′ be minimal with hvw ∩ h � h1 ⊆ h. Then there is the
triangle hvw ,hvx,h1,hvw in Ch∩hvw . In the latter case let h1 ∈ A′ be minimal with hvx ∩ h � h1 ⊆ h. Then there is
the triangle hvw ,hvx,h1,hvw in Ch∩hvx .

4.: By the inductive hypothesis G[h \ h′′] is a path. Further, h and h′ share sideh(h
′′) ∈ h′′ as a common end vertex. By

the precondition of the lemma, G[h′] is a path. Hence, G[h′ \ h′′] is a path.
5. if h′ ∩ h′′ ∈ A′: If h 	= h′ ∩ h′′ , let h1 be the child of h with h′ ∩ h′′ ⊆ h1. By the inductive hypothesis sideh1 (h

′′) is adjacent
in G to a vertex of h′′ \ h = h′′ \ h′ and by Property 1, sideh1 (h

′′) = sideh(h
′′).

If h = h′ ∩ h′′ , let h′′
1 ∈ A′ be minimal with h � h′′

1 ⊆ h′′ . Applying Property 3 with h′′
1 as “h′” and h′ as “h′′”

reveals that sideh(h
′) is an end vertex of G[h′′

1]. Since G[h′′
1] is a path, it follows that some vertex of h′′

1 \ h is
adjacent to sideh(h

′′). �
Lemma 7. If Conditions 1–3 of Theorem 4 are fulfilled, then all hyperedges in A′ induce a path in the graph G constructed in Algo-
rithm 1.

Proof. Again, we prove the lemma by induction on the step in which h was considered in Algorithm 1. There is nothing to
show if h had been considered in the first step. So assume that h ∈ A′ and that G[h] contains a vertex v of degree greater
than two.

Let u1,u2,u3 be the first three vertices connected to v in G . Let hi = hvui , i = 1,2,3. Then h1,h2,h3 are all three
contained in h and its intersection contains v . Hence, any two of them have a conflict if and only if one of them is not
contained in the other. A case distinction reveals that we wouldn’t have appended all three, u1, u2 and u3, to v .

h2 = h3: Since h3 contains no vertex of degree higher than two, it follows that u1 /∈ h3, h3 ∩ h1 = {v}. Hence, h1 and h3
have a conflict with respect to the common child {v}, contradicting that v is added in the middle of h3.

h1 = h2 or h1 = h3: These cases are analogous to the first case.
h1 � h3: Like in the first case it follows that u2 /∈ h3. Let h′

i, i = 2,3 be the child of hi that contains v . Then h2 and h3
have a conflict with respect to h′

i, i = 2,3. Since we add the edge {v,ui} to G when we process hi , it follows on
one hand that sideh′

i
(hi) = v . On the other hand, since h1 is contained in h3 and v ∈ h1, it follows that h1 ⊆ h′

3.

Hence, h′
3 has more than one vertex. If h′

3 	= h3 ∩ h2, then v is the only end vertex of G[h′
3] that is contained in

h2. By Lemma 6 Property 2 it follows that sideh′
3
(h2) = v and hence, sideh′

3
(h3) 	= v . If h′

3 = h3 ∩ h2, let v ′ 	= v be

the other end vertex of h′
2. Since we know that sideh′

2
(h2) = v , it follows that sideh′

2
(h3) = v ′ . Hence, by Lemma 6

Property 1 we can conclude that sideh′
3
(h3) = v ′ . In both cases we have a contradiction.

h1 � h2 or h2 � h3: These cases are analogous to the third case.
h1,h2,h3 pairwise overlapping: Then h1 ∩ h2 = h2 ∩ h3 = h1 ∩ h3 = {v}. Hence, Condition 2 of Theorem 4 is not fulfilled. �

259

Algorithm 2: Conflict computation.

Input : augmented Hasse diagram D ′ of a hypergraph; vertex h
Output : for each child hc of h the vertices h′ with label(h′) = conflict(hc)
Data : there are the following vertex labels

label(h′) = anc iff h � h′
label(h′) = not-anc only if h ∪ h′ not contained in any source of D ′
label(h′) = desc(hc) iff h′ ⊆ hc for exactly one child hc of h
label(h′) = multi-desc iff h′ is contained in more than one child of h
label(h′) = not-conflict only if h ∩ h′ not contained in any child of h and h ∪ h′ contained in some source of D ′
label(h′) = conflict(hc) only if hc ∩ h′ 	= ∅ for a child hc of h and h ∪ h′ contained in some source of D ′

ancestor(vertex h′) begin
foreach parent h′′ of h′ do

label(h′′) ← anc;
ancestor(h′′);

descendant(vertex h′ , vertex hc) begin
if label(h′) = desc(h′

c),hc 	= h′
c then

label(h′) ← multi-desc;

else
label(h′) ← desc(hc);

foreach child h′′ of h′ do
if label(h′′) 	= multi-desc then

descendant(h′′,hc);

up-search(vertex h′ , vertex hc) begin
foreach parent h′′ of h′ do

if label(h′′) ∈ {∅,conflict(h′
c),h

′
c 	= hc} then

up-search(h′′,hc);
if label(h′) = conflict(h′

c),hc 	= h′
c then

label(h′) ← not-conflict;

else if label(h′) 	= desc(hc) then
if label(h′′) ∈ {conflict(hc),anc, not-conflict} then

label(h′) ← conflict(hc);

if label(h′) 	= conflict(hc) then
label(h′) ← not-anc;

begin
clear all labels;
label(h) ← not-conflict;
ancestor(h);
foreach child hc of h do

descendant(hc,hc);

foreach vertex hd of D ′ with label(hd) ∈ {desc(hc); hc child of h} do
up-search(hd,hc);

This completes the proof of Theorem 4. We conclude this section with the following corollary.

Corollary 8. Algorithm 1 computes a path-based tree support of a hypergraph H if H has a path-based tree support, i.e., if and only if
the conditions of Theorem 4 are fulfilled.

4.3. Conflict computation and run time

In this section we show how to efficiently compute the conflicts and give an upper bound for the run time of testing
whether a hypergraph has a path-based tree support and, if it exists, of constructing one.

Representing the hyperedges as sorted lists of their elements, all conflicts can be determined straight-forwardly in
O(n3(n +m)) time. In the following, we show how this time bound can be improved.

We first compute candidates for conflicting pairs of hyperedges, which in the case of hypergraphs having a path-based
tree support turn out to be a superset of the set of all conflicts. The idea is, that all potential conflicts lie on a path from
an ancestor of h to one of h’s descendants. The method can be found as pseudocode in Algorithm 2. First, all ancestors of h
are marked in Procedure ancestor(h). The procedures descendant(hc,hc),hc child of h label those descendants of a child
hc of h with desc(hc) that are not descendants of any other child of h. Finally, after all calls of up-search a hyperedge h′ is
labeled conflict(hc) if and only if h′ is (1) a descendant of an ancestor of h, but neither a descendant nor an ancestor of h,
(2) an ancestor of a descendant of the child hc of h that is not a descendant of another child of h, and (3) if all descendants

260

Fig. 8. Illustration of Algorithm 2. Computation of the potential conflicts for h41.

Fig. 9. h′ and h do not have a conflict with respect to any child of h but the label of h′ is conflict(h1) in the end of Algorithm 2 applied to h. All
descendants of h2 (black vertices) are labeled multi-desc.

h′ are descendants of hc or of at least two children of h. This implies especially that h and h′ have a conflict, if h′ is labeled
conflict(hc).

Before we show that h′ is labeled conflict(hc) if h and h′ have a conflict with respect to hc , we illustrate Algorithm 2
with an example. Fig. 8 shows the computation of potential conflicts for the hyperedge h41 of the hypergraph H from

Fig. 6(a). The different methods are colored. h25 is the only hyperedge that can be in conflict with h41 with respect to a child

of h41 and if so, with respect to h24.

Lemma 9. Let D ′ be the augmented Hasse diagram of a hypergraph that has a path-based tree support and let h′ and h have a conflict
with respect to a child hc of h. Then the label of h′ in the end of Algorithm 2 applied to D ′ and h is conflict(hc).

Proof. Let G be a path-based tree support of a hypergraph and let h′ and h have a conflict with respect to a child hc of h.

1. Let v be the end vertex of G[h] that is contained in h′ . Then v and all its ancestors on the path from {v} to hc are
labeled desc(hc) (and not multi-desc).

2. If there was a descendant of h′ labeled desc(h′
c) for a child h′

c 	= hc of h, then h′ contains a vertex of h that is not a
contained in hc . Hence, hc does not contain h∩h′ , contradicting that h and h′ have a conflict with respect to hc . Hence,
Algorithm 2 does not label h′ with not-conflict.

For a path P in D ′ from h′ to v let hP be the first vertex on P that is labeled desc(hc). Assume that among all such
vertices hP is the one to which the procedure up-search of Algorithm 2 is applied first. Then up-search(hP ,hc) labels h′
with conflict(hc). �

Note, however, that the converse of Lemma 9 is not true. More precisely, if h′ is labeled conflict(hc) in the end of
Algorithm 2 applied to h then indeed do h and h′ have a conflict, but hc does not have to contain h ∩ h′ . The reason for
this is that all descendants of h′ that are no descendants of hc are descendants of several children of h and, hence, labeled
multi-desc. Fig. 9 shows an example.

Theorem 10. It can be tested in O(n3m) time whether a hypergraph has a path-based tree support and if so, such a support can be
constructed within the same time bounds.

261

Proof. Let H be a hypergraph. First test in linear time whether there is a tree support for H [17]. Let D ′ be the augmented
Hasse diagram of H . The method works in four steps.

1. Start with an empty array conflict indexed with pairs of inner vertices of D ′ . Set conflicth,h′ ← hc if and only if h′ is
labeled conflict(hc) in the end of Algorithm 2 applied to D ′ and h.

2. For each pair h,h′ of inner vertices of D ′ , test whether conflicth,h′ contains h∩h′ . Otherwise set conflicth,h′ ← ∅. Now, if
H has a path-based tree support, then h,h′ has a conflict with respect to the child hc of h if and only if hc = conflicth,h′ .

3. Apply Algorithm 1 to compute a support G . If the algorithm stops without computing a support, then H does not have
a path-based tree support.

4. Test whether every hyperedge induces a path in G . If not, H does not have a path-based tree support.

D ′ has O(n+m) vertices, O(n2 +nm) edges, and can be computed in O(n3m) time if H has a tree support [5]. Algorithm 2
visits every edge of D ′ at most twice and, hence, runs in O(n2 + nm) time for each of the O(n) inner vertices of D ′ .

We may assume that the hyperedges are given as sorted lists of their elements. If not given in advance, these lists could
straight forwardly be computed from D ′ in O(n3 +mn2) time by doing a graph search from each leaf. Now, for each of the
O(n2) pairs h,h′ of inner vertices, it can be tested in O(n) time whether conflicth,h′ contains h ∩ h′ .

The sum of the sizes of all conflict graphs is in O(n2). Hence, Algorithm 1 runs in O(n2 + mn) time. For each of the
O(m) hyperedges h, it can be tested in O(n) time whether G[h] is a path. Hence, the overall run time is dominated by the
computation of the augmented Hasse diagram and is in O(n3m). �
5. Conclusion

We have introduced path-based supports for hypergraphs. Hence, as a new model, we considered a restriction on the
appearance of those subgraphs of a support that are induced by the hyperedges. We have discussed that monotone path-
based supports are desirable. We have shown that it is N P-hard to decide whether a given path-based support is monotone
or to find a path-based support with the minimum number of edges. Further, it is N P-complete to decide whether there is
a planar path-based support. As a main result, we characterized those hypergraphs that have a path-based tree support and
we gave an algorithm that computes a path-based tree support in O(n3m) run time if it exists. Our algorithm completed
the paths for the hyperedges in the order in which they appear in a reversed topological ordering of the augmented Hasse
diagram. To connect these subpaths in the right order, we introduced a conflict graph for each hyperedge h and colored its
vertices with the end vertices of the path induced by h.

References

[1] P. Angelini, E. Colasante, G. Di Battista, F. Frati, M. Patrignani, Monotone drawings of graphs, in: U. Brandes, S. Cornelsen (Eds.), Proceedings of the 18th
International Symposium on Graph Drawing (GD 2010), in: Lecture Notes in Computer Science, vol. 6502, Springer, 2011, pp. 13–24.

[2] C. Beeri, R. Fagin, D. Maier, M. Yannakakis, On the desirability of acyclic database schemes, Journal of the Association for Computing Machinery 30 (4)
(1983) 479–513.

[3] U. Brandes, S. Cornelsen, B. Pampel, A. Sallaberry, Path-based supports for hypergraphs, in: C. Iliopoulos, W. Smyth (Eds.), Proceedings of the 21st
International Workshop on Combinatorial Algorithms (IWOCA 2010), in: Lecture Notes in Computer Science, vol. 6460, Springer, 2011, pp. 20–33.

[4] U. Brandes, S. Cornelsen, B. Pampel, A. Sallaberry, Blocks of hypergraphs applied to hypergraphs and outerplanarity, in: C. Iliopoulos, W. Smyth (Eds.),
Proceedings of the 21st International Workshop on Combinatorial Algorithms (IWOCA 2010), in: Lecture Notes in Computer Science, vol. 6460, Springer,
2011, pp. 201–211.

[5] K. Buchin, M. van Kreveld, H. Meijer, B. Speckmann, K. Verbeek, On planar supports for hypergraphs, in: D. Eppstein, E.R. Gansner (Eds.), Proceedings
of the 17th International Symposium on Graph Drawing, GD 2009, in: Lecture Notes in Computer Science, vol. 5849, Springer, 2010, pp. 345–356.

[6] C. Bujtás, Z. Tuza, Color-bounded hypergraphs, II: Interval hypergraphs and hypertrees, Discrete Mathematics 309 (2009) 6391–6401.
[7] J. Flower, A. Fish, J. Howse, Euler diagram generation, Journal on Visual Languages and Computing 19 (6) (2008) 675–694.
[8] D.S. Johnson, S. Krishnan, J. Chhugani, S. Kumar, S. Venkatasubramanian, Compressing large boolean matrices using reordering techniques, in: M.A.

Nascimento, M.T. Özsu, D. Kossmann, R.J. Miller, J.A. Blakeley, K.B. Schiefer (Eds.), Proceedings of the 13th International Conference on Very Large Data
Bases (VLDB’04), Morgan Kaufmann, 2004, pp. 13–23.

[9] D.S. Johnson, H.O. Pollak, Hypergraph planarity and the complexity of drawing Venn diagrams, Journal of Graph Theory 11 (3) (1987) 309–325.
[10] M. Kaufmann, M. van Kreveld, B. Speckmann, Subdivision drawings of hypergraphs, in: I.G. Tollis, M. Patrignani (Eds.), Proceedings of the 16th Inter-

national Symposium on Graph Drawing (GD 2008), in: Lecture Notes in Computer Science, vol. 5417, Springer, 2009, pp. 396–407.
[11] E. Korach, M. Stern, The clustering matroid and the optimal clustering tree, Mathematical Programming, Series B 98 (2003) 385–414.
[12] D. Král’, J. Kratochvíl, H.-J. Voss, Mixed hypercacti, Discrete Mathematics 286 (2004) 99–113.
[13] M. Nöllenburg, An improved algorithm for the metro-line crossing minimization problem, in: D. Eppstein, E.R. Gansner (Eds.), Proceedings of the 17th

International Symposium on Graph Drawing, GD 2009, in: Lecture Notes in Computer Science, vol. 5849, Springer, 2010, pp. 381–392.
[14] J. Opatrny, Total ordering problem, SIAM Journal on Computing 8 (1) (1979) 111–114.
[15] B. Pampel, Constrained graph drawing, Ph.D. thesis, University of Konstanz, 2011, in preparation.
[16] P. Simonetto, D. Auber, D. Archambault, Fully automatic visualisation of overlapping sets, Computer Graphics Forum 28 (3) (2009) 967–974.
[17] R.E. Tarjan, M. Yannakakis, Simple linear-time algorithms to test chordality of graphs, test acyclicity of hypergraphs, and selectively reduce acyclic

hypergraphs, SIAM Journal on Computing 13 (3) (1984) 566–579.
[18] A. Wolff, Drawing subway maps: A survey, Informatik-Forschung und Entwicklung 22 (1970) 23–44.

