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Abstract
High-dimensional data poses a significant challenge for analysis, as patterns typically exist only in subsets of dimensions
or records. A common approach to reveal patterns, such as meaningful structures or relationships, is to split the data and
then to create a visual representation (views) for each data subset. This introduces the problem of ordering the views effectively
because patterns can depend on the presented sequence. Existing methods provide metrics and heuristics to achieve an ordering
of views based on their data characteristics. However, an effective ordering of subspace views is expected to rely on task- and
data-dependent properties. Hence, heuristic-based ordering methods can be highly objective and not relevant to the task at
hand, which is why the user involvement is key to find a meaningful ordering. We introduce a concept for a consensus-based

ordering of views that learns to form sequences of subset views fitting the overall users’ needs. This concept allows users to
decide on the ordering freely and accumulates their preference into a global view that reflects the consensus. We showcase and
discuss this concept based on ordering colored tiles from the controversially discussed rainbow color map.

1. Introduction

There is no optimal view sequence. While this strong statement is

incorrect for numerical data, time-dependent data, or any data that

shows a natural ordering, it is held true for most sequences of views

of high-dimensional data, as there is no universal criterion on how

to order sets of views. High-dimensional data is special in a sense

that both the vast amounts of records as well as dimensions hinder

the effective identification of meaningful structures and relations,

which can be traced to the curse of dimensionality [Bel61]. There-

fore, the data is often split into subsets of records or dimensions

and visualized using multiple connected or unconnected views on

the data [Tuf91]. However, a key challenge in finding meaning-

ful structures and relations across views is to find an appropriate

sequence to lay out the views. We hereby focus on the order of

one-dimensional sequences.

Recent research proposes various metrics and heuristics that

can find a data-driven sequence for different classes of visualiza-

tions. Such approaches can be found in axis-based plots [CvW11],

glyphs [War02,BKC∗13], pixel-based visualizations [KAK95], and

matrix visualizations [BBR∗16]. The commonality between the

aforementioned approaches is that they are based on certain data

or image characteristics and do not take into account the users’

subjective preference. However, a data- or image-driven ordering

may go hand in hand with the users’ expectations and preferences,

raising the question: What is an optimal ordering? We argue that

the notion of optimal is subjective and task-dependent. In general,

we cannot assume that an optimal order exists, which all potential

users may agree on. Consider, for example, a sequence that con-

sists of n different views on the data. There exist n! different se-

quential orderings. We aim to tackle the research question: How to
integrate the user into the ordering process to efficiently derive an
optimal ordering of high-dimensional data representations? Note

the strong connection between the representation of the sequence

and the order being optimal. Dependent on the visualization, users

may prefer diverse sequences. Based on the assumption that any

high-dimensional data can be brought into a meaningful sequence,

we propose to integrate the user into the ordering process.

In this paper, we contribute a concept for the consensus-based
ordering of views on high-dimensional data. Note that we consider

high-dimensional data because it typically gives rise to many subset

views for inspection. Our approach, in general, will work on any set

of views, as long as a distance matrix can be defined on the views.

Our concept accumulates multiple users’ subjective preferences on

the ordering and proposes the learned ordering to other users. To

do so, we use distance as a quantitative measure between views

and train a weighting scheme to influence these distances. This ap-

proach allows us to find a consensus ordering from multiple users

through an averaging of weights. Additional statistical measures

can be applied to sense disagreement and, further, propose multi-

ple possible solutions reflecting different tasks or user groups. We

are providing a concept and thus, leave a comprehensive evaluation

open for future work.

2. Background and Challenges

One-dimensional ordering is relevant for a plethora of applica-

tions and visualization tasks. Liu et al. provide a categorization of
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transformation steps within the information visualization pipeline,

which also covers visual mapping techniques [LMW∗17]. We con-

sider three of these visual mapping techniques as relevant for the

problem of 1D ordering and describe them in the following includ-

ing the available approaches regarding the ordering as well as the

problems that remain. In the following, we provide example ap-

proaches that motivate the need to incorporate the domain-specific

knowledge in this problem in a feedback-based manner.

Axis-Based visualization techniques map dimensions of an ele-

ment to different axes and, thus, allow a user to investigate relation-

ships of the data across these dimensions. Well-known techniques

include parallel coordinates, scatterplot matrices, and radial lay-

outs [WGK10]. For each of these techniques, the order of the axes

is crucial as it reveals different visual patterns. Claessen and van

Wijk’s approach on Flexible Linked Axes [CvW11] allows users to

place axes in various ways for different visualization techniques.

Their work highlights the high importance of ordering interaction

for the user. While this system is capable of placing axes beyond a

1D ordering (e.g., 2D as for TimeWheels [TAS04]), it is not possi-

ble that multiple users agree in their ordering preferences. Similar

to axis-based methods, also matrices require an ordering to reveal

patterns and many ordering methods exist to date [BBR∗16].

Glyphs are popular to visualize high-dimensional data within a

small graphical entity. Ward [War02] and Borgo et al. [BKC∗13]

give an overview of different glyph placement strategies includ-

ing data-, structure-, feature-, and user-driven. Chung et al. pro-

vide a so-called IMG plot where the user can actively influence the

2D axes that are used to place the glyphs [CLP∗15]. The related

work in this field either suggests automatic approaches [SFO∗15,

KDFB16] or interactive approaches [CLP∗15] where features are

selected by the user to find an order/placement for glyphs.

Pixel-Oriented visualizations provide the most compact encoding

of information in a given display [LMW∗17]. With pixel displays

and appropriate layout techniques including aggregation and inter-

action, finding patterns and trends in large amounts of data is sup-

ported. Naturally, the way of mapping of data to pixel values is cru-

cial. Keim et al. proposed recursive patterns [KAK95]. The general

idea is to arrange the data records in such way that their spatial

distance represents similarity of values to each other.

All of these techniques highlight the importance of ordering

and placement, and there exist works to use features from the data

(dimensions) to infer an order. Interactive approaches allow the

user to explicitly select features or combinations to derive an order.

Furthermore, various approaches have been presented that in-

clude the user to explore ranked data. In contrast to orderings,

ranking-based approaches help users to navigate the data con-

tent [GLG∗13]. This is typically done by involving the user

in attribute prioritization tasks or filter customization [dSSV15,

dSSV16,WDC∗18]. Other approaches, more related to the ordering

issue, involve the domain knowledge of the user and enable the in-

teractive selection of different ordering algorithms [FGS∗17,JJ17].

There exists a rich variety of ordering algorithms, which we do

not aim to survey here. Users perceive orderings differently and

have differing opinions as to what characterizes an optimal order-

ing. Typically, the ordering is determined based on features of inter-

est in the data, depending on user and task. Hullman et al. [HKL17]

evaluate the perception of sequences, finding that participants have

different views on how a sequence should look like.

Recent work incorporates the idea of adapting distances in high-

dimensional planar projections [YMSJ05,BLBC12,ECNZ15]. The

analyst can make use of her domain knowledge and thus, change

the relations between data points in the display. Each interaction

impacts the corresponding visualization model, which is the pa-

rameterization of the projection. However, these works focus on

the relationship between data points and do not consider the order.

In other works [WDC∗18], the user is enabled to rank data items,

and an algorithm finds the appropriate feature weighting. However,

the order does not necessarily imply a ranking, and we do not weigh

features but a given distance matrix.

We aim to incorporate the users’ knowledge by providing an im-

plicit solution, in which the user must not explicitly know about

features and their importance, but in which this information can be

extracted by analyzing the preferred order of one or more users.

3. Consensus-based ordering of views

Our general idea of consensus-based ordering of views on high-

dimensional data is to incorporate the users’ subjective ordering

preferences on the ordering problem. This means that different

users may not share the same ordering preferences, but prefer dif-

fering sequences. Note that we do not require users to issue a com-

plete ordering, but that also partial orderings can be supplied. All

the collected preferences of the users on the ordering problem are

then incorporated as feedback into the generation of a new se-

quence that is learned based on a majority vote. We consider this

learned sequence as the consensus-based ordering. In the follow-

ing, we introduce and discuss a general model that implements this

concept. We consider a view as a visual and application-dependent

representation of a subset or a projection of the data. In our exam-

ple case in the next Section, a view is merely a colored tile, but any

form of small multiples, glyphs, or axes of a parallel coordinates

plot are possible. Our approach learns a sequence from the way dif-

ferent users order the views and presents this learned sequence to

the next user. The concept enables each user to bring in her knowl-

edge and reorder the sequence, which again serves as input to the

generation of the overall learned sequence.

A related approach, introduced by Stormo et al. [SSGE82], pro-

poses Position Weight Matrices (PWM) that are trained to classify

DNA/mRNA sequences. A PWM, hereby, encodes the probability

for each element at each position, which is highly relevant to our

ordering problem. In contrast to Stormo et al., we aim for an ap-

proach that is robust to shifts in sequences and enables users to

sort-in new elements.

We introduce a general, linear concept that incorporates user-

defined sequences by weigh adaption as depicted in Figure 1. In

the first step, the data is visualized in the form of views, and basic

interaction techniques such as drag and drop are enabled allowing

to adapt the ordering. We hereby refer to the well-known visual-

ization pipeline by Card et al. [CMS99]. The second step is key to
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Figure 1: General model for consensus-based ordering. Initial or-
dering of views is generated based on the well-known visualization
pipeline by Card et al. [CMS99]. A learned weighting scheme is
then applied to the sequence, causing the views to reorder about a
common user-driven understanding of the sequence.

our concept: Based on the visual representation of the views, we

initialize the ordering of views taking into account a given distance

matrix and learned distance weights. The notion of distance is a

natural way of indicating how similar elements are and what order

they follow. For high-dimensional data, the notion of distance be-

comes blurred due to the curse of dimensionality [Bel61], which is

why different user groups may find different orderings to be correct.

Algorithm 1 shows the process of deriving a new weight ma-

trix (wm) for one user. The algorithm takes a given distance ma-

trix that can be based on any distance measure (data- or image-

based). The second parameter is a weight matrix that either reflects

the original distances (all elements are 1), or any consensus based

on the input of previous users (in our case, obtained by averaging,

see below). When multiplied (Hadamard product) with the orig-

inal distance matrix, the resulting distance matrix represents the

users’ subjective feedback. The distance matrix can be transformed

into a 1D ordered sequence based on well-known linear approaches

such as the classical Multi-dimensional Scaling (MDS) [CC00] or

force-directed drawing using Hooke’s Law [Kob12]. Examples in-

clude [JHB∗17, vdEHBvW16, BSH∗16]. When the user changes

the order, i.e., switches two views of the sequence, the distances

(rows and columns) of the respective elements are switched. The

weight matrix can be derived by a Hadamard-division of the cur-

rent distance matrix with the original distance matrix. Therefore,

the original distance matrix multiplied by the weight matrix and

piped into the projection method always reflects the currently pre-

ferred sequence of the current user. The final weight matrix of each

user is stored. The weight matrices can be averaged to reflect a con-

sensus. This is, however, not robust to outliers but other statistical

measures can be included in combining the various weight matri-

ces. We consider this as future work.

The described approach uses a projection to one dimension to

derive the order. This can be extended to additionally reflect dis-

tances by visually separating the views. This requires to adapt the

distance matrix differently when the user swaps two views, but the

rest of the procedure is not subject to any change.

The issue with storing pairwise distances is that the layout algo-

rithms are unaware whether the sequence starts with the first or the

last view. In other words, the sequence is flipped and still reflects

the correct pairwise distances, which can be traced back to the rota-

Algorithm 1 A weight matrix (wm) is calculated for one user.

Input: odm =original distance matrix; wm =weight matrix

Output: wm, a weight matrix that, multiplied with odm reflects

one user’s optimal order

do
dm = odm◦wm //Hadamard product

order = pro jectlinear(dm,1) //e.g., MDS

display order to user

dm = switch rows and columns of dm according to the user’s

change

wm = dm�odm //Hadamard division

while user not satisfied with order

return wm

tion invariance; the distance matrix does not reflect any order using

an ordering flipped by π. In fact, for a flipped ordered sequence

the distance matrix is identical, and the layout approach cannot de-

termine which view is the first. We, therefore, add two additional

and artificial elements to our distance matrix, which also hold the

information if they start or end the sequence [PZS∗15]. These two

elements serve as anchors. In a visual metaphor, these anchors are

placed at the beginning and ends of the sequence. This implies that

the distance between these two anchors is maximal and no other

distance must be greater.

When new and previously unseen elements are added to the se-

quence, their position can be extrapolated. A generated consensus

distance matrix can be compared to any other distance matrix that

is being generated from a data- or image-based distance measure.

A simple comparison can be achieved by calculating the mean

squared error and choose the distance matrix with the lowest er-

ror. An extension could be to derive feature weights from a given

consensus-based distance-matrix [WDC∗18]. We consider this as

future work. With this information, the position of the new element

can be recommended to the user which may or may not result in

additional iterations for refinements by the user.

In summary, our concept incorporates the user using interaction

and learns an ordering based on the user consensus. The concept

is not restricted to 1D sequences and can be extended to higher di-

mensions such as 2D and 3D; the notion of distance is not restricted

to a number of dimensions.

4. Example Case: Color Ordering

We use the controversially discussed rainbow color map [BI07] as

an example case as it nicely represents the subjectiveness of an op-

timal ordering. Furthermore, it allows a simple visual representa-

tion, but this could be extended to more complex views such. Our

approach scales to any number of dimensions yet is only limited

by the curse of dimensionality which is subject to current research.

Even though the example case is not of a very high-dimensional

nature, any derived distance matrix can be used in our approach.

The colors are selected from the HSV color space where the sat-

uration and value are set to the maximum, and the hue is alternated

to generate differently colored tiles (see Figure 2). While there ex-

ist some short sections that can be perceptually ordered, implying
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Figure 2: Different possible orderings of the rainbow color map.
(1) and (6) represent an ordering according to the wavelength in
an ascending and descending order.

a total order is difficult or even impossible [War12, p.128]. More

recent studies [CAB∗16] are consistent with this claim. Figure 2

shows different possible orderings. (1) and (6) hereby reflect the

sequence of the wavelength in an ascending and descending order.

The other sequences diverge as the starting/ending point of the hue

in the HSV color space is varied. Nevertheless, the short sections
are still in order.

Four possible input orders can be presented to the user which

originate only from the adaption of the input weight matrix. (i) the

order based on original distance matrix (all weights are 1); (ii) a

randomized order (random weights); (iii) other distance matrices

from different distance measures reflected through the weight ma-

trix; (iv) a consensus-based order of previously user-defined order-

ings. The second and third might be useful to prevent converging

into a local optimum as a user might be tempted to agree on a given

ordering. Especially, when the user knows about the fact that the in-

put order is not randomized. In any case, the interactions of the user

trying to find a new optimal ordering are captured, and the weights

reflecting the majority vote are adjusted.

It is likely that, in this case, random users do not agree on one or

a limited number of orderings. However, we can assume that spe-

cific user groups do. The rainbow color map originates from the

field of physics. In this example user group, we could assume that

the orderings converge to the ordering according to the wavelength

as physicists know about this matter. While there is no correct or-

dering per se, such a convergence would reflect the background

knowledge of this specific user group.

5. Discussion and Concluding Remarks

We propose a general concept for the consensus-based ordering

of views. With our concept, it is possible to find a consensus of

multiple users’ opinions about the subjective preference of order.

While we do not allow the explicit selection or ranking of features,

we encourage the user to interactively change the order until she

thinks it is optimal. The concept then allows us to derive the

ranking/selection and use this information for additional data or

similar tasks. Note that our concept is based on the assumption

that a consensus can be found by averaging. This assumption may

be violated in practice. Future work will include mechanisms to

detect disagreement and possible contradictory preferences of

users, and visualization to show these to the user. In case of strong

contradictions, users should be enabled to overrule influence by

particularly contradictory other user preferences. We intend to

use methods and best practices of related fields such as consensus

clustering and consensus trees [SG02].

Our concept provides much control to the user which includes

all of the user’s possible cognitive biases.While some biases can be

limited by the consensus of a user group others might be leveraged.

However, we do not allow the user(s) to influence the underlying

distance function directly but, moreover, change the weights which

might impact the global order. The rapid feedback that is provided

to the user allows her to reconsider the actions and she might come

to a different solution.

The concept is flexible enough to be aware of different tasks, user

groups, or even converging optimal solutions over time, for exam-

ple, due to changing data or real-world knowledge. The modular

weight adaption method can be adjusted or exchanged to cover all

of these cases. A simple use case is to weight each weight matrix

(scalar multiplication) according to the user’s expertise. However,

more complex scenarios are imaginable in practice.

Another interesting aspect is the combined weight matrix itself.

Analyzing this data can shed light on what views of a sequence are

mostly subject to change and also to what magnitude. More statis-

tics such as the variance or distributions may help to identify vari-

ous subgroups of users that have a diverging consensus of optimal

order. Comparing the resulting distance matrix to other various ma-

trices provides insight on what data- or image-based distance mea-

sure best reflects the users’ optimal ordering – and also for which

views it fails. Furthermore, it is possible to derive feature weights

based on the resulting distance matrix, which then provides a simi-

lar use case to Wall et al. [WDC∗18]

The initial distance matrix in combination with the learned

weights can be combined and compared to various other distance

metrics based on data or image features. This may be fruitful in a

scenario where the user is presented with a (small) subset of the

views, defines an order, and then additional views can be placed

automatically based on the available feedback.

High-dimensional data and the curse of dimensionality impose

the risk of distortions that can occur in projection techniques. This

challenging problem conveys an active field of research. While we

cannot solve this problem here, we argue that orderings impose a

great difference in the weights and that such great differences are

less impacted by distortions. Again, the rapid feedback supports the

user to spot possible distortions and find countermeasures.

We are planning an user evaluation to seek answers to the follow-

ing open questions: How (early) can a consensus be measured? Are

users satisfied with the consensus? How scalable is our approach?

We are confident that by answering these questions we can pro-

vide a practical solution to the initially stated problem of finding a

subjective and task-dependent ordering strategy.
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