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1. Introduction

In elliptic theory there is a lot of problems where the equation depends on a
complex parameter. A wide and very important class of such problems was treated
by Agmon [1] and Agranovich-Vishik [3] who introduced a very clear notion of
ellipticity with parameter. This concept was further elaborated by Grubb [11] in
the framework of pseudodifferential operators and Boutet de Monvel problems. In
the classical theory there are two main concepts of ellipticity: ellipticity without
parameter in the sense of, e.g., Agmon–Douglis–Nirenberg [2] and ellipticity with
parameter in the sense of Agmon [1] and Agranovich–Vishik [3]. During the last
years, however, several elliptic problems were treated which do not belong to one
of these classes. For instance, the resolvent of a Douglis–Nirenberg system (mixed
order system) depends on a complex parameter but in general its principal symbol
is not quasi-homogeneous with respect to the co-variables and the parameter which
implies that the theory of ellipticity with parameter cannot be applied. On closed
manifolds such systems were considered by Kozhevnikov in [12] and by the authors
in [4], where rather complete results concerning solvability and a priori estimates
was obtained.

On manifolds with boundary (for instance, bounded domains in Rn) the situation
is more complicated. Here one has to impose boundary conditions, and one has to
ask for the analog of the Shapiro–Lopatinskii condition (which is well-known both
in the parameter-independent case and in the case of ellipticity with parameter)
and for the norms on the boundary which appear in the a priori estimates.

These questions are not restricted to the resolvent of mixed order systems but
appear for general parameter-dependent operator pencils (scalar or matrix) which
do not satisfy the Agmon–Agranovich–Vishik condition. Let us consider scalar
operators of the form

(1) A(x,D, λ) = A2m(x,D) + λA2m−1(x,D) + · · ·+ λ2m−2µA2µ(x,D)
1
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with m > µ > 0, where Aj(x,D) =
∑

|α|≤j aαj(x)Dα (j = 1, . . . ,m) are partial
differential operators with smooth coefficients acting on a compact manifold M
with boundary ∂M . Here and in the following, we use the standard multi-index
notation Dα = Dα1

1 . . . Dαn
n with Dj = −i∂/∂xj . The Dirichlet problem connected

with (1) was treated in [5] (see also [8]). In the present paper we want to deal with
general boundary conditions.

The symbol of the operator (1) is of the same structure as the determinant of
the symbol of a matrix-valued operator which is of Douglis–Nirenberg type and
depends on the complex parameter λ in the way

(2) A(x,D, λ) =
(
A11(x,D) A12(x,D)
A21(x,D) A22(x,D)− λ2m−2µ

)
,

where we assume (for simplicity) that Aij(x,D) are scalar partial differential op-
erators with ordA11 = 2µ and ordA22 = 2m − 2µ. Again the main question is to
find Shapiro–Lopatinskii type conditions which lead to a priori estimates.

The essential tool for analyzing operators (1) and (2) is the so-called Newton
polygon which can be assigned to general parameter-dependent partial differential
operators. For the present text we don’t want to summarize the general theory for
which we refer the reader to [10], [4]–[6] and also to [8], but restrict ourselves to
the application of the Newton polygon approach to the operators (1) and (2).

In the following, we will mainly deal with operators of the form (1) and only in-
dicate the corresponding definitions and results for (2). A more detailed exposition
of the results below (and additional considerations) can be found in the preprints
[6] for operators of the form (1) and [7] for operators of the form (2); in the lat-
ter preprint also the case that Aij(x,D) itself is a mixed order matrix operator is
treated.

2. Ellipticity conditions

The definition of ellipticity for the operator (1) (as well as the formulation of the
a priori estimate) uses a parameter-dependent weight function Wr(ξ, λ) defined for
ξ ∈ Rn, λ ∈ C and r = (r1, r2) ∈ R2 by

(3) Wr(ξ, λ) := (1 + |ξ|)r1(|λ|+ |ξ|)r2

and the similarly defined (ξ, λ)–homogeneous function

Vr(ξ, λ) := |ξ|r1(|λ|+ |ξ|)r2 .

For integer and positive r1 and r2 these functions appear as the weight function
corresponding to the Newton polygon Nr. This polygon is defined as the convex
hull of the set

{(0, 0), (0, r2), (r1, r2), (r1 + r2, 0)}
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in R2. In the first step we have to define ellipticity for the operators (1) without
boundary conditions.

For this we set A(0)
ij (x, ξ) :=

∑
|α|=j aαj(x)ξα and define the principal symbol of

the operator (1) by

(4) A(0)(x, ξ, λ) := A
(0)
2m(x, ξ) + λA

(0)
2m−1(x, ξ) + · · ·+ λ2m−2µA

(0)
2µ (x, ξ) .

The Newton polygon assigned to A(0)(x, ξ, λ) is given by N(2µ,2m−2µ). We define
ellipticity for the pencil A(x,D, λ) of the form (1) in accordance to the general
Newton polygon approach:

Definition 1. The operator (1) is called weakly parameter-elliptic along the ray
[0,∞) if the inequality |A(0)(x, ξ, λ)| ≥ C V(2µ,2m−2µ)(x, ξ), i.e.,

(5) |A(0)(x, ξ, λ)| ≥ C|ξ|2µ(|ξ|+ λ)2m−2µ

holds for all x ∈ M , ξ ∈ Rn and λ ∈ [0,∞) with a constant C which does not
depend on x, ξ or λ.

To define the Shapiro–Lopatinskii condition for (1), we fix a point x0 ∈ ∂M
and local coordinates in a neighbourhood of x0 which correspond to x0 in the
sense that in this system locally M is given by the inequality xn > 0. We use in
Rn

+ := {x ∈ Rn : xn > 0} the coordinates x = (x′, xn) and the dual coordinates
ξ = (ξ′, ξn). From (5) it follows that A(0)(x0, ξ, λ) 6= 0 for all ξ ∈ Rn\{0} and
λ ≥ 0. If n > 2, this implies that the polynomial A(0)(x0, ξ′, ·, λ) has exactly m
roots with positive imaginary part; for n = 2 we will assume this in the following.

It is easily seen that in the case of weak parameter-ellipticity the polynomial
A(0)(x0, 0, ·, 1) has no real roots with the exception of zero which is a root of order
2µ. We say that A(x,D, λ) degenerates regularly at the boundary ∂M if for ev-
ery x0 ∈ ∂M the polynomial A(0)(x0, 0, ·, 1)has exactly m − µ roots with positive
imaginary part. Let us remark that the condition of regular degeneration is known
from the theory of singular perturbations as considered by Vishik–Lyusternik [14],
Nazarov [13], Frank [9] and others. The connection of (1) to singularly perturbed
problems is obvious if we set λ = ε−1 in (1).

Now let us consider boundary operators Bj(x,D) =
∑

|β|≤mj
bjβ(x)Dβ for j =

1, . . . ,m where we assume that

(6) m1 ≤ · · · ≤ mµ < mµ+1 ≤ · · · ≤ mm .

Definition 2. The boundary value problem
(
A(x,D, λ), B1(x,D), . . . , Bm(x,D)

)
is called weakly parameter-elliptic in [0,∞) if the following conditions hold:
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a) A(x,D, λ) is weakly parameter-elliptic in [0,∞) in the sense of Definition 1.
b) For every x0 ∈ ∂M , ξ′ ∈ Rn−1\{0} and λ ∈ [0,∞) and every (h1, . . . , hm) ∈ Cm

the ordinary differential equation on the half-line R+

A(0)(x0, ξ′, Dt, λ)w(t) = 0 (t > 0) ,

B
(0)
j (x0, ξ′, Dt)w(t) = hj (j = 1, . . . ,m) ,

w(t) → 0 (t→∞)

is uniquely solvable. Here we have set Dt := −i∂/∂t.
c) The boundary value problem

(
A2µ(x,D), B1(x,D), . . . , Bµ(x,D)

)
satisfies the

classical Shapiro–Lopatinskii condition.
d) For every x0 ∈ ∂M and every (hµ+1, . . . , hm) ∈ Cm−µ the ordinary differential
equation on the half-line

A(0)(x0, 0, Dt, 1)w(t) = 0 (t > 0) ,

B
(0)
j (x0, 0, Dt)w(t) = hj (j = µ+ 1, . . . ,m) ,

w(t) → 0 (t→∞)

is uniquely solvable.

Let us make some comments on these conditions. The first and second condition
seem to be quite natural and have their direct counterparts in the classical theories.
However, for ξ′ = 0 condition b) is in general not satisfied even for positive λ,
differently to the Agmon–Agranovich–Vishik theory. In some sense conditions c)
and d) which seem to be less natural are connected with this fact. Both in c) and d)
we take only some of the boundary operators; this is typical for singularly perturbed
problems. We will see below that the last two conditions find their explanation in
the proof of the a priori estimate; they are closely connected with the structure of
the solution, in particular condition d) leads to the boundary layer nature of the
solution. From the point of view of singular perturbation theory and asymptotic
expansions, the last two conditions are very natural, too.

3. A priori estimates

We still consider the operator (1) with general boundary operators B1, . . . , Bm.
If one looks through the proofs of a priori estimates in elliptic theory, one can realize
that one main step consists in the description of the zeros of the symbol, written in
local coordinates and considered as a polynomial of the co-variable ξn. The same is
true for weakly parameter-elliptic operators of the form (1), so let us first consider
the behaviour of these zeros for large λ.
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Throughout this section, we assume that A(x,D, λ) degenerates regularly at
the boundary and that (A,B1, . . . , Bm) is weakly parameter-elliptic in the sense
of Definition 2. We fix x0 ∈ ∂M and assume that the boundary value problem is
written in local coordinates corresponding to x0 as described above.

The following lemma (which is taken from [6]) shows that the zeros of the polyno-
mial A(0)(x0, ξ′, ·, λ) split, for large λ, into two groups, one group staying bounded
and the other group being of order λ. Note that in this lemma the polynomi-
als A(0)

2µ (x0, ξ′, ·) and A(0)(x0, 0, ·, 1) play a particular role; these polynomials also
appear in conditions c) and d) of Definition 2.

Lemma 3. There exists a λ0 > 0 such that with a suitable numbering

τ1(x0, ξ′, λ), . . . , τm(x0, ξ′, λ)

of the roots of A(0)(x0, ξ′, ·, λ) with positive imaginary part the following assertions
hold:
(i) Let γ(1)(x0, ξ′) denote a contour in C+ := {z ∈ C : Im z > 0} which encloses
all zeros of A(0)

2µ (x0, ξ′, ·) with positive imaginary part. Then for all |ξ′| = 1 and all
λ ≥ λ0 the contour γ(1) encloses τ1(x0, ξ′, λ), . . . , τµ(x0, ξ′, λ).

(ii) Let γ(2)(x0) denote a contour in C+ which encloses all zeros of A(0)(x0, 0, ·, 1)
with strictly positive imaginary part. Then for all |ξ′| = 1 and all λ ≥ λ0 the
contour γ(2) encloses τµ+1(x0, ξ′, λ)/λ, . . . , τm(x0, ξ′, λ)/λ.

The next result is the key for proving a priori estimates. In its formulation we
use the “shifted” weight function

V (−a)
r (ξ, λ) :=

{ |ξ|r1−a(|λ|+ |ξ|)r2 , a ≤ r1 ,

(|λ|+ |ξ|)r1+r2−a , a > r1 ,

defined for r = (r1, r2) ∈ R2 and a ∈ R. The name “shifted” comes from the fact
that for positive integers r1 and r2 and for 0 ≤ a ≤ r1 + r2 the function V

(−a)
r

corresponds to the Newton polygon which is constructed from Nr by a shift of
length a to the left parallel to the horizontal axis. The function W

(−a)
r is defined

analogously, with |ξ|r1−a replaced by (1 + |ξ|)r1−a.
For the remainder of this section, let us fix the tuple r = (r1, r2) where we

assume that r1 and r2 are (for simplicity) integer numbers with r1 + r2 ≥ mm + 1
and mµ + 1 ≤ r1 ≤ mµ+1.

Theorem 4. For ξ′ ∈ Rn−1\{0}, λ ∈ [0,∞) and j ∈ {1, . . . ,m} let wj =
wj(t, ξ′, λ) be the unique solution of the problem

A(0)(x0, ξ′, Dt, λ)w(t) = 0 (t > 0) ,

B
(0)
k (x0, ξ′, Dt)w(t) = δkj (k = 1, . . . ,m) ,

w(t) → 0 (t→∞) .
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Then for l = 0, 1, 2, . . . the estimate

(7) ‖Dl
twj(·, ξ′, λ)‖L2(R+) ≤ C

V
(−mj−1/2)
r (ξ′, λ)

V
(−l)
r (ξ′, λ)

holds with a constant C independent of ξ′ and λ.

Sketch of proof. The proof of the above estimate is rather envolved, so we only
want to mention the main ideas. We may restrict ourselves to the case |ξ′| = 1 and
large λ.

First of all, it is possible to show, using conditions 2 c) and d), respectively,
and Lemma 3, that there exist polynomials (with respect to τ) Nk(x0, ξ′, τ, λ)
(k = 1, . . . ,m) such that

(8)
1

2πi

∫
γ(1)

Bl(x0, ξ′, τ)Nk(x0, ξ′, τ, λ)
A1(x0, ξ′, τ, λ)

dτ = δkl (k, l = 1, . . . , µ)

and

(9)
1

2πi

∫
γ(2)

Bl(x0, ξ′/λ, τ)Nk(x0, ξ′, τ, λ)
A2(x0, ξ′/λ, τ, 1)

dτ = δkl (k, l = µ+ 1, . . . ,m).

Here γ(1) and γ(2) are the contours appearing in Lemma 3, and we have set

A1(x0, ξ′, τ, λ) :=
µ∏

j=1

(τ − τj(x0, ξ′, λ)) ,

A2(x0, ξ′, τ, λ) :=
m∏

j=µ+1

(τ − τj(x0, ξ′, λ)) .

The relations (8) and (9) allow us to write wj in the form

(10)

wj(t, ξ′, λ) =
µ∑

k=1

ψk(ξ′, λ)
1

2πi

∫
γ(1)

Nk(x0, ξ′, τ, λ)
A1(x0, ξ′, τ, λ)

eitτ dτ

+
m∑

k=µ+1

ψk(ξ′, λ)
1

2πi

∫
γ(2)

Nk(x0, ξ′, τ, λ)
A2(x0, ξ′/λ, τ, 1)

eitλτ dτ

with unknown functions ψk(ξ′, λ). It can be shown that the conditions

Bk(ξ′, Dt)wj(t, ξ′, λ) = δkj (k = 1, . . . ,m)
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lead to a linear equation system for ψ1, . . . , ψm which is uniquely solvable for suf-
ficiently large λ; we also obtain estimates (with respect to λ for |ξ′| = 1) for its
solution. From this and from estimates for the integrands in (10) (where we use
Lemma 3 again) one can see that

‖Dl
twj(ξ′, ·, λ)‖L2(R+) ≤

{
O(1) +O(λl−mµ+1−1/2), j ≤ µ,

O(λmµ−mj ) +O(λl−mj−1/2), j > µ

holds for |ξ′| = 1 and large λ. Now it remains to compare this with the right-hand
side of (7), using the definition of the shifted weight function. �

Inequality (7) already gives an idea which norms should appear in the a priori
estimate. For arbitrary r ∈ R2 we define the Sobolev space Hr(Rn) as the set of all
distributions u ∈ Hr1+r2(Rn) depending on the parameter λ for which a constant
C(u) exists such that

‖u‖r,Rn := ‖F−1Wr(ξ, λ)Fu‖L2(Rn) ≤ C(u)

holds. Here F stands for the Fourier transform. By standard methods, it is possible
to define the analog of the parameter-dependent norms ‖ · ‖r,Rn in the half-space
Rn

+, in Rn−1 = ∂Rn
+ and on the manifold M and its boundary ∂M . The Sobolev

space connected with the shifted weight function W
(−a)
r will be denoted by H(−a)

r

with norm ‖ · ‖(−a)
r .

Theorem 5 (A priori estimate). There exists a λ0 > 0 and a constant C such
that for all λ ≥ λ0 the inequality

‖u‖r,M ≤ C
(
‖A(x,D, λ)u‖(r1−2µ,r2−2(m−µ)),M

+
m∑

j=1

‖Bj(x,D)u‖(−mj−1/2)
r,∂M + λr2‖u‖L2(M)

)
holds.

Sketch of proof. Again we restrict on mentioning some ideas of the proof. By
the standard method of freezing the coefficients (localization method), it suffices
to consider for fixed x0 the operator A(0)(x0, D, λ) as an operator acting in the
whole space for x0 ∈ M , and the same operator supplemented with the boundary
operators B(0)

j (x0, D) as a boundary value problem in Rn
+ for x0 ∈ ∂M . The case

of the whole space is easily proved using the inequality of Definition 1.
For the half-space Rn

+ we have to investigate

A(0)(x0, D, λ)u(x) = f in Rn
+,

B
(0)
j (x0, D)u(x) = gj (j = 1, . . . ,m) on Rn−1 .
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Again by standard methods (using the results in Rn), we may assume that f = 0.
Now we take partial Fourier transform F ′ with respect to x′ ∈ Rn−1 and obtain for
the function w(t) := (F ′v)(ξ′, t) the problem on the half-line

A(0)(x0, ξ′, Dt, λ)w(t) = 0 (t > 0),

B
(0)
j (x0, ξ′, Dt)w(t) = (F ′gj)(ξ′) (j = 1, . . . ,m) .

Due to condition 2 b), for ξ′ 6= 0 the solution is unique and given by

w = w(t, ξ′, λ) =
m∑

j=1

wj(t, ξ′, λ)(F ′gj)(ξ′) .

It is not difficult to see that (Vr(ξ, λ))2 is equivalent to

r1+r2∑
l=0

[
ξl
nV

(−l)
r (ξ′, 0, λ)

]2

and that therefore the norm ‖u‖2
r,Rn

+
is equivalent to the norm

∫
Rn−1

r1+r2∑
l=0

[
V (−l)

r (ξ′, 0, λ)‖Dl
tw(ξ′, ·, λ)‖L2(R+)

]2

dξ′ + λ2r2‖u‖2
L2(Rn

+) .

Note that due to our assumptions on r1 and r2 we have r1 + r2 ∈ N. Now the basic
estimate for wj in Theorem 4 leads to the desired a priori estimate. �

Remark 6. In [7] it is also shown that the a priori estimate of the previous the-
orem implies weak parameter-ellipticity in the sense of Definition 2, so these two
assertions are equivalent. In particular, this shows that the conditions of Definition
2 are in some sense the “correct” conditions. Moreover, it is possible to construct a
(right) parametrix to the operator

(
A(x,D, λ), B1(x,D), . . . , Bm(x,D)

)
, see Section

5 of [7]. The definitions and results above have a direct counterpart for singularly
perturbed problems.

4. Remarks on the matrix operator (2)

As already mentioned in the introduction, the above concept of weak parameter-
ellipticity can be used for matrix operators of the form (2), too. In the present
section we only want to indicate the main definitions and results of this approach.

For the remainder of this section, let A(x,D, λ) be an operator given in (2). We
assume that there exist nonnegative integers s1, s2, t1, t2 such that

Aij(x,D) =
∑

|α|≤si+tj

aijα(x)Dα
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with s1 + t1 = 2µ and s2 + t2 = 2m− 2µ. Then we can define the principal symbol
(in the sense of Douglis–Nirenberg)

A
(0)
ij (x, ξ) :=

∑
|α|=si+tj

aijα(x)ξα ,

A(0)(x, ξ, λ) :=
(
A

(0)
11 (x, ξ) A

(0)
12 (x, ξ)

A
(0)
21 (x, ξ) A

(0)
22 (x, ξ)− λ2m−2µ

)
.

The determinant of this symbol has the same structure as the symbol of the scalar
pencil (1), so we can define:

Definition 7. The operator A(x,D, λ) is weakly parameter-elliptic in [0,∞), if

|detA(0)(x, ξ, λ)| ≥ C |ξ|2µ(|ξ|+ λ)2m−2µ

holds for all x ∈M , ξ ∈ Rn and λ ∈ [0,∞).

It can be seen easily that the analog of the condition of regular degeneration at
the boundary is satisfied automatically.

Now let us assume that we have a matrix

B(x,D) =
(
Bjk(x,D)

)
j=1,...,m

k=1,2

of boundary operators with ordBjk ≤ mj + tk for some integers mj for which (6)
holds. We define the principal symbols B(0)

jk (x, ξ) and B(0)(x, ξ) in an obvious way.

Definition 8. The boundary value problem
(
A(x,D, λ), B(x,D)

)
is called weakly

parameter-elliptic if the following conditions hold:
a) A(x,D, λ) is weakly parameter-elliptic in [0,∞) in the sense of Definition 7.
b) For every x0 ∈ ∂M , ξ′ ∈ Rn−1\{0} and λ ∈ [0,∞) and every (h1, . . . , hm) ∈ Cm

the ordinary differential equation system on the half-line

A(0)(x0, ξ′, Dt, λ)
(
w1(t)
w2(t)

)
=

(
0
0

)
(t > 0) ,

B
(0)
k1 (x0, ξ′, Dt)w1(t) +B

(0)
k2 (x0, ξ′, Dt)w2(t) = hk (k = 1, . . . ,m) ,

wj(t) → 0 (t→∞; j = 1, 2)

is uniquely solvable.
c) The boundary value problem

(
A11(x,D), B11(x,D), . . . , Bµ1(x,D)

)
satisfies the

classical Shapiro–Lopatinskii condition.
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d) For every x0 ∈ ∂M and every (hµ+1, . . . , hm) ∈ Cm−µ the ordinary differential
equation system on the half-line

A(0)(x0, 0, Dt, 1)
(
w1(t)
w2(t)

)
=

(
0
0

)
(t > 0) ,

B
(0)
k1 (x0, 0, Dt)w1(t) +B

(0)
k2 (x0, 0, Dt)w2(t) = hk (k = µ+ 1, . . . ,m) ,

wj(t) → 0 (t→∞; j = 1, 2)

is uniquely solvable.

The analogy to Defintion 2 is obvious. If (A,B) is weakly parameter-elliptic, the
assertions of Lemma 3 hold for the polynomial detA(0)(x0, ξ′, ·, λ). Along similar
steps as for scalar operators of the form (2), we can estimate the solution wj(t) =(
wj1(t, ξ′, λ)
wj2(t, ξ′, λ)

)
of the boundary value problem in Definition 8 b) with (h1, . . . , hm)

replaced by the j-th unit vector. For fixed integers r1, r2 with r1 + r2 ≥ mm + 1
and mµ + 1 ≤ r1 ≤ mµ+1 we obtain:

Theorem 9. For l = 0, 1, 2, . . . the inequalities

‖Dl
twj1(·, ξ′, λ)‖ ≤ C

V
(−mj−1/2)
r (ξ′, λ)

V
(−l)
(r1+t1,r2)

(ξ′, λ)
,

‖Dl
twj2(·, ξ′, λ) ≤ C

V
(−mj−1/2)
r (ξ′, λ)

V
(−l)
(r1,r2+t2)

(ξ′, λ)

hold.

Note that this estimate is slightly different from the estimate in Theorem 4 due
to the Douglis–Nirenberg structure of our operators. We also want to mention that
the proofs for the matrix case are technically somewhat more difficult that in the
scalar case.

Now the operators A and B act in products of Sobolev spaces. It turns out that
an appropriate choice of these spaces is given by

(A,B):H(r1+t1,r2)(M)×H(r1,r2+t2)(M) → H(r1−s1,r2)(M)×H(r1,r2−s2)(M)

×
m∏

j=1

H(−mj−1/2)
r (∂M) .

For these spaces, the operator (A,B) is continuous in the sense that it is a bounded
operator with norm bounded by a constant which is independent of λ. In the case
of weak parameter-ellipticity the inequalities of Theorem 9 lead to the desired a
priori estimate:



THE NEWTON POLYGON APPROACH 11

Theorem 10. Let (A,B) be weakly parameter-elliptic in the sense of Definition 8.
Then there exists a λ0 > 0 and a constant C such that for all λ ≥ λ0 the a priori
estimate

‖u1‖(r1+t1,r2),M + ‖u2‖(r1,r2+t2),M ≤ C
(
‖f1‖(r1−s1,r2),M + ‖f2‖(r1,r2−s2),M

+
m∑

j=1

‖gj‖
(−mj−1/2)
r,∂M + λr2‖u1‖L2(M) + λr2+t2‖u2‖L2(M)

)

holds for u =
(
u1

u2

)
, where we have set f = A(x,D, λ)u and g = B(x,D)u.

Remark 11. Due to the Douglis–Nirenberg structure of the boundary value prob-
lem, the numbers mj appearing in the above a priori estimate (and, consequently,
also r1) may be negative. This is one main difference to the scalar problem and one
of the reasons why we defined the shifted weight function W

(−a)
r also for negative

a, where the definition does not coincide with the geometrical interpretation.

Final remarks. The operators considered in the present text show that the con-
cept of weak ellipticity (which is a particular case of ellipticity connected with the
Newton polygon) is useful for various classes of boundary value problems. The
considerations above are part of a larger program which includes the resolvent of
Douglis–Nirenberg systems (already solved on closed manifolds in [4]) and general
elliptic and parabolic problems. Applications of this approach can be found, e.g.,
for singularly perturbed problems, transmission problems and problems with free
boundary.
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