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Computing a Field of Optimal Pacing Strategies 

for Cycling Time Trials 

Introduction, Related Work, and Target Application 

Optimal pacing strategies for cycling time trials have been treated in literature in nu- 

merous publications, e.g. Gordon (2005). Generally, the minimum time pacing is 

sought subject to a mechanical model and a physiological model. The mechanical 

model (Martin, 1998) comprises the pedaling power P and forces for gravity on a 

cycling track of varying slope, rolling resistance, aerodynamic drag, frictional losses 

in wheel bearings, and inertia. The physiological model defines the capability of a 

cyclist to perform a pedaling power. 

Both models have the form of a set of non-linear differential equations and poten-

tially additional pedal power constraints: 

            

       
                       

 

where  ,  ,   denote state variables for the distance, speed, and quantities defining 

the physiological state of the cyclist. The functions    and   represent the mechani-

cal and the physiological model, respectively, whereas    is the maximum afforda-
ble pedaling power. 
Recently, Dahmen (2012) discussed numerical solutions for the minimum time pac-
ing strategy resulting in an optimal power control   and an optimal trajectory in the 

state space as functions the distance   using state-of-the-art, general purpose and 
open-source optimal control software (Rao, 2010) for three different physiological 
models. 
However, in particular the physiological model is generally prone to many disturbing 
influences during training and competition. In practice, it is impossible to follow a 
pre-computed minimum time pacing strategy exactly.  
Therefore, in this contribution, we extend the approach such that we compute a 
field of minimum time pacing strategies, i.e., an optimal closed-loop pedal power 
law as a function not only of the distance but also of the state variables   and   in a 

neighborhood   of the previously computed trajectory. The optimal solution is 

stored for discrete states in  . Then the optimal pedal power can be interpolated ef-

ficiently for any state in   and thus be presented as feedback to the cyclist during 
training and in competition. 

Computing the field of optimal pacing strategies 

In recent years, mature open-source software packages for solving general optimal 

control problems have become available (Rao 2010, Becerra 2010). Commonly, di-

rect transcription using pseudospectral methods is employed and recommended in 
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particular if only at least piecewise smooth functions and simple domains are in-

volved. These conditions are met by the minimum time pacing strategy problem at 

hand and several versions of this problem have been solved successfully in 

Dahmen (2012). 

Methods for the computation of the field of minimum time pacing strategies are de-

rived from Bellman's principle of optimality. For the same reasons as above, we 

chose a direct method, specifically dynamic programming.  

Furthermore, we decide to use pseudospectral collocation methods for discretiza-

tion in order to minimize the grid density and thus tackle the curse of dimensionali-

ty, which generally arises with dynamic programming. 

More precisely, we use the following Algorithm to compute the optimal feedback 

pedal power, which is depicted in Figure 1. 

 

1. Compute an optimal pacing strategy as described in Dahmen (2012). The so-

lution is given on   discrete distances   , with       as a result of mesh 

refinement. 

2. Define a box-shaped region   in the state space as the neighborhood of the 
optimal pacing trajectory for which we want to obtain the solution: 

                        

 
            

            
   

 
 
 
   

 
     

          
     

   . 

3. For each point in  , we define the time to finish the course from this point 

           as the cost functional to be minimized. Trivially, at the finish line, 

             
           . This constant function can be perfectly repre-

sented by the function values at the 4 Chebychev points in the corners of   at 

  . 

Fig 1: Computing the field of optimal pacing strategies using dynamic programming on 

pseudospectral grids. 
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4. Slightly, increase the number of Chebychev points in the plane     . Calcu-

late the minimum time to finish the course and the optimal pedal power on 

these Chebychev points using the GPOPS software (Rao, 2010) with the 

sum of        and the time to reach    from      as the cost functional. The 

corresponding Chebychev expansion defines             . Reduce the num-

ber of Chebychev points in      as far as the accurary criterion holds 

(Trefethen, 2011). 

5. Repeat step 4 with   replaced by     until    . 

 

Saving the values           and            at the Chebychev points in each plane 

   allows to compute the optimal pacing using barycentric interpolation with linear 

complexity within  , (Trefethen, 2012). 

Results and Discussion 

As an example, Figure 2 depicts the slope of a course as well as the optimal power 

   in the        -plane.  

Fig. 2: Sample field of optimal pacing strategy. 
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The parameters for the mechanical and physiological models are taken from 

Dahmen (2012) which is itself based on Gordon (2005). It is clearly visible, that the 

optimal pedalling power increases if the cyclist moves to slow or if he faces a steep 

ascent. The proposed method is general and should be useful in many optimal con-

trol problems, where the computation of a  field is desired. 
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