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Hybrid quantum dot-oscillator systems have become attractive platforms to inspect quantum coherence effects
at the nanoscale. Here, we investigate a Cooper-pair splitter setup consisting of two quantum dots, each linearly
coupled to a local resonator. The latter can be realized either by a microwave cavity or a nanomechanical
resonator. Focusing on the subgap regime, we demonstrate that cross-Andreev reflection, through which Cooper
pairs are split into both dots, can induce nonlocal correlations between the two resonators. Harnessing these
correlations allows to establish and control a nonlocal photon transfer between them. The proposed scheme can
act as a photonic valve with single-photon accuracy, with potential applications for quantum heat engines and
refrigerators involving mesoscopic resonators.
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I. INTRODUCTION

Nonlocality [1,2] and quantum correlations [3] are at
the heart of many quantum technologies [4–6]. In hybrid
quantum-dot devices, Cooper pairs are a source of corre-
lated electrons and their nonlocal splitting has experimentally
[7–17] and theoretically [18–33] drawn much attention over
the last few years. In particular, the nonlocal breaking of the
particle-hole symmetry in such Cooper-pair splitters (CPSs)
gives rise to peculiar thermoelectric effects [34–37]. How-
ever, mesoscopic cavity quantum electrodynamics (cQED)
devices [38,39] are excellent tools for correlating few-level
systems over a distance [40–45]. Such cQED devices have
applications in the readout of charge [46–52], spin [53–57],
and valley-orbit states [58,59], as well as few-phonon manip-
ulation when mechanical modes can be cooled close to the
ground state [60–65]. A mechanism which induces nonlocal
photon or phonon correlations through Cooper-pair transport,
implemented in a hybrid setup, bridges the gap between the
study of heat flows in quantum-dot-based [34–36,66,67] and
circuit-QED devices [68–70].

In this work, we consider a CPS in a double-quantum-dot
setup with each dot linearly coupled to a local resonator,
constituted by either a microwave cavity [49,51,54,71–74]
or a mechanical oscillator [43,75–78]; see Fig. 1(a). We
demonstrate that this system is a platform to obtain full
control on the heat and photon exchange of two originally
uncoupled cavities. This induced coupling arises from the
proximity between the dots and the superconducting lead
and has a purely nonlocal origin due to cross-Andreev re-
flection. Subsequent, we discuss the underlying physical
mechanism following the lines of Ref. [79], where a single-
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quantum-dot system in the single-atom lasing regime has been
investigated.

For large intradot Coulomb interactions, U , and supercon-
ducting gap, |�| → ∞, the proximity of the superconductor
causes a nonlocal splitting (and recombination) of Cooper
pairs into both dots with the pairing amplitude �S > 0. The
corresponding Andreev bound states |±〉 are a coherent su-
perposition of the dots’ singlet, |S〉, and empty state, |0〉. The
dots are further tunnel-coupled to normal contacts, which are
largely negative-voltage-biased with respect to the chemical
potential μS = 0 of the superconductor. In this configuration,
due to single-electron tunneling, the singlet state decays at rate
� into a singly occupied state, |ασ 〉 (α = L, R and σ =↑,↓),
and further into the empty state; see Fig. 1(b). For large
dot onsite energies ε � �S , the charge hybridization is weak
(|+〉 ≈ |S〉, |−〉 ≈ |0〉), and the transitions |+〉 → |ασ 〉 and
|ασ 〉 → |−〉 are faster than the opposite processes [79]; see
Fig. 1(c). This asymmetry in the relaxation ultimately explains
how to pump or absorb energy within a single mode, and how
to transfer photons between the cavities. In the latter case,
when the energy splitting δ between the Andreev bound states
is close to the difference of the cavity frequencies, the relevant
level structure of the uncoupled system is summarized in
Fig. 1(d). We show below that the effective interaction couples
the states |+, nL − 1, nR + 1〉 and |−, nL, nR〉, where nα indi-
cates the Fock number in the resonator α. An electron tunnel-
ing event favours transitions |+〉 → |ασ 〉 → |−〉 conserving
the photon number. When the system reaches the state |−〉 ≈
|0〉, this coherent cycle restarts. When the system is in |+〉,
it can again decay. During each cycle, a boson is effectively
transferred from the left to the right cavity. Since the two cav-
ities are not isolated, but naturally coupled to external baths, a
steady heat flow is eventually established between the cavities.

The effect discussed above refers to a single operation
point of the system. More generally, using a master equation
approach, we show that the interaction between the CPS
and the two resonators opens a rich set of inelastic resonant
channels for the electron current through the dots, involving
either absorption or emission of photons from a local cavity
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FIG. 1. (a) Cooper-pair splitter consisting of two quantum dots
coupled to a common superconductor (S) and two normal-metal
contacts (α = L, R). Each dot is capacitively coupled to a local
resonator with frequency ωα . (b) At large bias voltage, incoherent
tunneling events at rate � lead to a decay of the singlet state, |S〉,
via a singly occupied one, |ασ 〉 (σ =↑, ↓), to the empty state, |0〉,
whereby |0〉 and |S〉 are coherently coupled with amplitude �S .
(c) The latter coupling leads to the formation of hybridized |±〉
states of energy splitting δ. For weakly hybridized states |0〉 and
|S〉, the transitions |±〉 ↔ |ασ 〉 are strongly asymmetric. (d) Photon
transfer cycle occurring around the resonance, δ ≈ ωL − ωR, with the
effective coupling strength λNL.

or nonlocal transfer processes. By tuning ε to match these res-
onances, the CPS acts as a switch allowing the manipulation
of heat between the resonators. Each resonant process can be
captured with good approximation by an effective Hamilto-
nian which is valid close to the resonance and generalizes the
mechanism described above.

This work is structured as follows. After introducing our
model and the employed master equation in Sec. II, we
provide therein an effective Hamiltonian describing local
and nonlocal transport processes. In Sec. III, we discuss
the possibility of simultaneous cooling (and heating) of the
resonators. Section IV is dedicated to the nonlocal photon
transfer between them, and in Sec. V we analyze the efficiency
of this transfer. Finally, we draw our conclusions in Sec. VI.

II. COOPER-PAIR SPLITTER COUPLED TO RESONATORS

We consider the effective model for two single-level quan-
tum dots proximized by a s-wave superconductor, and each
linearly coupled to a local harmonic oscillator. For large
intradot Coulomb interaction, U 	 |ε|, the subgap physics
of the system is described by the effective Hamiltonian
[28,32,80–86]

H =
∑
ασ

εNασ − �S

2
(d†

R↑d†
L↓ − d†

R↓d†
L↑ + H.c.)

+
∑

α

ωαb†
αbα +

∑
α,σ

λα (bα + b†
α )Nασ , (1)

where h̄ = 1. Here, dασ is the fermionic annihilation operator
for a spin-σ electron in dot α, with the corresponding number
operator Nασ and onsite energy ε. The interaction of the
dot with the α-oscillator of frequency ωα and corresponding
bosonic field bα is realized through the charge term, with
coupling constant λα . The relevant subspace of the electronic
subsystem is spanned by six states: The empty state |0〉, the
four singly occupied states |ασ 〉 = d†

ασ |0〉 and the singlet state
|S〉 = 1√

2
(d†

R↑d†
L↓ − d†

R↓d†
L↑)|0〉. Triplet states and doubly oc-

cupied states are inaccessible due to large negative voltages,
see Fig. 1(a), and large intradot Coulomb repulsion. Finally, in
the subgap regime, the superconductor can only pump Cooper
pairs, which are in the singlet state. The states |0〉 and |S〉
are hybridized due to the �S-term, yielding the Andreev states
|+〉 = cos(θ/2)|0〉 + sin(θ/2)|S〉 and |−〉 = − sin(θ/2)|0〉 +
cos(θ/2)|S〉, with the mixing angle θ = arctan[�S/(

√
2ε)].

We denote their energy splitting by δ =
√

4ε2 + 2�2
S .

Electron tunneling into the normal leads and dissipation
for the resonators can be treated in the sequential-tunneling
regime to lowest order in perturbation theory, assuming small
dot-lead tunneling rates, � � �S, kBT , and large quality
factors Qα = ωα/κα for the resonators, i.e. κα � ωα, kBT .
Here, κα is the decay rate for the α-resonator and T is
the temperature of the fermionic and bosonic reservoirs.
The fermionic and bosonic transition rates between two
eigenstates |i〉 and | j〉 of Hamiltonian Eq. (1) are given by
Fermi’s golden rule [87],

wα,s
el, j←i = � f (s)

α (sE ji )
∑

σ

∣∣〈 j|d (s)
ασ |i〉∣∣2

, (2)

wα,s
ph, j←i = sκαnB(Eji )

∣∣〈 j|b(s)
α |i〉∣∣2

, (3)

with f (s)
α (x) = {exp[s(x − μα )/kBT ] + 1}−1 the generalized

Fermi function (s = ±) at chemical potential μα ,
and nB(x) = [exp(x/kBT ) − 1]−1 the Bose function.
Eji ≡ Ej − Ei denotes the energy difference between two
eigenstates. We use the notation d (−)

ασ (d (+)
ασ ) for fermionic

annihilation (creation) operators, and correspondingly b(±)
α for

the bosonic ones. The populations Pi of the system eigenstates
obey a Pauli-type master equation of the form [28,88,89]

Ṗi =
∑

j

wi← jPj −
∑

j

w j←iPi, (4)

which admits a stationary solution given by Pst
i . The total

rates entering Eq. (4) are given by w j←i = ∑
α,s(w

α,s
el, j←i +

wα,s
ph, j←i ). As mentioned before, we assume the chemical po-

tentials of the normal leads μα = −eV to be largely negative-
biased, i.e., U, |�| 	 eV 	 kBT, ε, �S , with V > 0 and
e > 0 denoting the applied voltage and the electron charge,
respectively. In this regime, the electrons flow unidirectionally
from the superconductor via the quantum dots into the leads;
the temperature of the normal leads becomes irrelevant,
and the rates wα,+

el, j←i vanish. Under these assumptions, the
stationary electron current through lead α is simply given by
Iα = e�

∑
σ 〈Nασ 〉. For a symmetric configuration, as assumed

here, both stationary currents coincide, IL = IR. To evaluate
the stationary current and the other relevant quantities, we
diagonalize numerically Hamiltonian Eq. (1), and build the
transition rates matrices appearing in Eq. (4). Then, the vector
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of the stationary populations, Pst
i , is found by setting Ṗi = 0 in

Eq. (4) and by solving numerically the resulting linear system.
To explain our numerical results, we perform the Lang-

Firsov polaron transformation [90–92] to Hamiltonian Eq. (1).
For an operator O, we define the unitary transformation Ō =
eξ Oe−ξ , with ξ = ∑

ασ 
αNασ and 
α = (λα/ωα )(b†
α − bα ).

The polaron-transformed Hamiltonian reads then

H̄ =
∑
ασ

ε̄αNασ − �S√
2

(|S〉〈0|X + |0〉〈S|X †) +
∑

α

ωαb†
αbα,

(5)
with ε̄α = ε − λ2

α/ωα and X = exp(
∑

α 
α ) [93]. Equation
(5) contains a transverse charge-resonator interaction term to
all orders in the couplings λα . Intriguingly, this coupling has
a purely nonlocal origin stemming from the cross-Andreev
reflection. By expanding X in powers of 
 ≡ ∑

α 
α assum-
ing small couplings λα � ωα , and moving to the interaction
picture with respect to the noninteracting Hamiltonian, we can
identify a family of resonant conditions given by

δ̄ ≈ |pωL ± qωR|, (6)

with p, q nonnegative integers, as discussed in the Ap-
pendix. Here, δ̄ =

√
4ε̄2 + 2�2

S is the renormalized energy
splitting of the Andreev states due to the polaron shift, with

ε̄ = ε − ∑
α

λ2
α

2ωα
. The renormalized mixing angle reads θ̄ =

arctan[�S/(
√

2ε̄)]. Around the conditions stated in Eq. (6),
a rotating-wave approximation yields an effective interaction
of order p + q in the couplings λα . Hereafter, we discuss
in detail the resonances at δ̄ = ωL = ωR and δ̄ = ωL − ωR

corresponding to one- and two-photon processes, respectively.
They can be fully addressed by expanding X up to second
order in λα/ωα and subsequently performing a rotating-wave
approximation; see the Appendix.

III. SIMULTANEOUS COOLING AND HEATING

For δ̄ = ωL = ωR, one can achieve simultaneous cooling as
well as heating of both resonators, which is already described
by the first order terms in λα of Eq. (5). Here, we consider
two identical resonators and tune the dot levels ε around
the resonance condition δ̄ ≈ ωα , i.e., ε̄ = ±

√
ω2

α − 2�2
S /2.

The effective first-order interaction Hamiltonian reads after a
rotating-wave approximation

Hloc =
∑

α

1

2
λα sin θ̄ (bατ+ + b†

ατ−), (7)

as we show in the Appendix. The operators τ+ = |+〉〈−|
and τ− = |−〉〈+| describe the hopping between the two-level
system formed by the states |+〉 and |−〉, coupled to the modes
through a transverse Jaynes-Cummings-like interaction. The
effective coupling is proportional to sin θ̄ = √

2�S/δ̄, and,
thus, a direct consequence of the nonlocal Andreev reflection.
The effective interaction in Eq. (7) coherently mixes the three
states |+, nL, nR〉, |−, nL + 1, nR〉, and |−, nL, nR + 1〉 which
are degenerate for Hloc = 0. When |ε| � �S , the hybridization
between the charge states is weak. The sign of ε changes the
bare dots’ level structure: For ε < 0, |+〉 ≈ |0〉 and |−〉 ≈ |S〉,
whereas for ε > 0, |+〉 ≈ |S〉 and |−〉 ≈ |0〉. In the latter
case, the chain of transitions |+〉 → |ασ 〉 → |−〉 is faster

FIG. 2. (a) Current Iα for two identical oscillators as a function
of the onsite energies ε, at zero (dashed line) and finite (solid line)
temperature. (b) Average photon occupation n̄α in the α-resonator for
kBT = 5ωα . The horizontal dotted line corresponds to the thermal oc-
cupation. Inset: Photon occupation at ε = εc as a function of �S , for
two different values of �. The curves are rescaled to the thermal oc-
cupation value. Other parameters are � = 2×10−4ωα, λα = 0.02ωα,

Qα = 105, �S = 0.2ωα .

than the opposite process, see Fig. 1(c). For ε < 0, energy is
pumped into the modes. Conversely, for ε > 0, we can achieve
simultaneous cooling of the resonators. In Fig. 2, we show
the stationary electron current Iα [calculated using the full
Hamiltonian Eq. (1)], together with the average photon num-
ber n̄α = 〈b†

αbα〉 of the corresponding resonator, as a function
of ε. The broad central resonance of width �S corresponds to
the elastic current contribution mediated by the cross-Andreev
reflection. The additional inelastic peak at negative ε is related
to the emission of photons in both resonators at δ̄ ≈ ωα . At
finite temperature, a second sideband peak emerges at positive
ε, where the resonators are simultaneously cooled down. The
cavities are efficiently cooled into their ground state for a wide
range of values of �S , as can be appreciated in the inset of
Fig. 2(b). The optimal cooling region is due to the interplay
between the effective interaction with the resonator—which
vanishes for small �S—and the hybridization of the empty
and singlet state, which increases as ε approaches the Fermi
level of the superconductor and reduces the asymmetry of the
transitions |±〉 ↔ |ασ 〉.

IV. NONLOCAL PHOTON TRANSFER

By keeping terms up to second order in λα in Eq. (5),
we can describe the resonances around δ̄ = ωL − ωR and
δ̄ = ωL + ωR. Assuming without loss of generality ωL > ωR,
a rotating-wave approximation yields the effective interac-
tion terms H (−)

NL = λNL(b†
LbRτ− + H.c.) for δ̄ ≈ ωL − ωR, and

H (+)
NL = λNL(bLbRτ+ + H.c.) for δ̄ ≈ ωL + ωR; see the Ap-

pendix. These terms show that the two resonators become
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FIG. 3. (a) Current Iα through lead α as a function of the onsite
energies ε, for two different values of λ ≡ λL = λR. The arrows indi-
cate resonances according to Eq. (6). (b) Local cooling efficiency for
the left mode, around δ̄ ≈ ωL . (c) Photon transfer efficiency around
δ̄ ≈ ωL − ωR. Inset: Average cavity photon number, normalized to
the thermal occupation. Parameters are � = 10−4�S, ωL = 5�S,

ωR = 3�S, QL = QR = 105, T = 5�S .

indirectly coupled through the charge states, with the strength

λNL = �SλLλR√
2ωLωR

cos θ̄ . (8)

We remark that this interaction is, as well, purely nonlocal.
H (+)

NL describes the hybridization of the states in the subspace
|+, nL − 1, nR − 1〉 with |−, nL, nR〉, through which photons
at different frequencies are simultaneously absorbed (emitted)
from (into) both cavities. Conversely, the term H (−)

NL describes
processes by which the superconductor mediates a coherent
transfer of photons between the resonators, by coupling the
subspaces |+, nL − 1, nR + 1〉 and |−, nL, nR〉; see Fig. 1(d).
Notice that this effect vanishes if the two resonators are of the
same frequency, as it would require δ̄ = 0 and, thus, �S = 0.
In Fig. 3(a), we report the electronic current, again calculated
with the full interaction, assuming two different resonator
frequencies. In addition to the sideband peaks close to δ̄ =
ωL and δ̄ = ωR, we can identify higher-order multiphoton
resonances (e.g., δ̄ = 2ωR, where the cooling cycle involves
the absorption of two photons from the same cavity) which
can be described in a similar way with a rotating-wave approx-
imation; see the Appendix. Moreover, we observe the second-
order peaks described by H (±)

NL which are responsible for pro-
cesses involving both resonators. The inset of Fig. 3(c) reports
the average occupation of the resonators in the vicinity of the
resonance δ̄ = ωL − ωR, where the right mode is heated and
the left one is cooled. The shape of these resonances differs
from the first-order peaks (which are well approximated by
Lorentzians): We show in the Appendix how the second-order
Hamiltonian contains indeed an additional term proportional
to sin(θ̄ )(2nα + 1)τz, which causes both a small frequency
shift for each resonator (yielding a double-peak structure) and

a small renormalization of the splitting δ̄ between the Andreev
bound states. Nevertheless, this corrections do not alter the
main physics captured by H (−)

NL .

V. HEAT TRANSFER AND EFFICIENCY

To quantify the performance of both cooling and nonlo-
cal photon transfer, we calculate the stationary heat current
[66,67,87]

Ėph
α =

∑
i, j,s

Ei jw
α,s
ph, j←iP

st
i , (9)

flowing from the bosonic reservoir α to the corresponding
resonator. It is negative (positive) when the resonator is cooled
(heated), and vanishes for an oscillator in thermal equilibrium.
As a figure of merit for local cooling, we can estimate the
number of bosonic quanta subtracted from the resonator on
average per unit time, and we can compare it to the rate at
which Cooper pairs are injected into the system. The latter rate
is given by |IS|/2e with IS = −(IL + IR) being the Andreev
current through the superconductor found from current con-
servation. Consequently, the local cooling efficiency around
δ̄ = ωα can be defined as η

(α)
loc = 2e|Ėα |

|IS |ωα
. Similarly, around δ̄ =

ωL − ωR, we define the heat transfer efficiency

ηNL = 2e|ĖL − ĖR|
|IS|(ωL − ωR)

. (10)

Figures 3(b) and 3(c) show η
(L)
loc and ηNL, respectively, as a

function of ε close to the corresponding resonances. In both
cases, we obtain high efficiencies close to 90%: Approxi-
mately one photon is absorbed from each cavity (local cool-
ing) or transferred from the left to the right cavity (nonlocal
transfer) per Cooper pair. The efficiency is essentially limited
by two factors: (i) an elastic contribution to the current [the
broad resonance of linewidth ∝�S in Figs. 2(a) and 3(a)]
where electrons flow without exchanging energy with the
cavities; (ii) a finite fraction of the injected electrons acting
against the dominant process (cooling or photon transfer),
as illustrated by the dashed blue arrows in Fig. 1(d). Both
processes augment with increasing �S and are a byproduct of
the finite hybridization between the empty and the singlet state
which, however, is crucial for achieving a nonzero efficiency.

VI. CONCLUSIONS

We have analyzed a CPS in a double-quantum-dot setup,
with local charge couplings to two resonators. We have
demonstrated that Cooper-pair splitting can generate a non-
local transfer of photons and heat from one oscillator to
the other, resulting in a stationary energy flow. Such energy
flows can also be channeled to cool or heat locally a single
cavity. Hence, our system constitutes a versatile tool to fully
inspect heat exchange mechanisms in hybrid systems, and is a
testbed for quantum thermodynamics investigations involving
both electronic and bosonic degrees of freedom. Due to the
single-photon nature of the coherent interactions, this can also
be extended to achieve few-phonon control and manipulation
[94,95], e.g., by implementing time-dependent protocols for
the dots’ gate voltages to tune dynamically the strength of
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the nonlocal features. Further practical applications include
high-efficiency nanoscale heat pumps and cooling devices for
nanoresonators.

A discussion on the experimental feasibility of our setup
is in order. For single quantum dots coupled to microwave
resonators, λα/(2π ) can reach 100 MHz, with resonators of
quality factors Q ∼ 104 and frequencies ωα/(2π ) ∼ 7 GHz
[49,51]. For mechanical resonators, coupling strengths of
λα/(2π ) ∼ 100 kHz for frequencies of order ωα/(2π ) ∼
1 MHz and larger quality factors up to 105−106 have been
reported [76]. In a double-quantum-dot Cooper-pair splitter
setup, the cross-Andreev reflection rate is approximately �S �√

�SL�SR, when the distance between the dots is much shorter
than the coherence length in the superconducting contact [36].
Here, �Sα is the local Andreev reflection rate which can reach
several tens of μeV, becoming comparable to the typical
microwave resonator frequencies (thus allowing �S � ωα)
while being order of magnitudes lower than the supercon-
ducting gap � [96]. Therefore, the regime of parameters we
considered lies within the range of state-of-the-art technologi-
cal capabilities. Moreover, experiments involving Cooper-pair
splitters [7–17] or mesoscopic cQED devices with microwave
cavities [40,42,46,51,54,72–74] and mechanical resonators
[43,75,76,78] are of appealing and growing interest, and
therefore promising candidates for the implementation of the
system described here.
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APPENDIX A: POLARON-TRANSFORMED
HAMILTONIAN AND EFFECTIVE

NONLOCAL INTERACTION

We report here the derivation of the effective interactions
that explain the local cooling or heating, and the nonlocal
photon transfer mechanisms. The starting point is the polaron-
transformed Hamiltonian given in Eq. (5) of the main text.

For small coupling strengths λα � ωα , we expand the
operators X and X † up to second order in λα . The dots-cavities
interaction term is

Hint = − �S√
2

[
iσy
 + σx

(
1 + 
2

2

)]
+ O(
3), (A1)

with i
 = ∑
α i
α the generalized total momentum, σx =

|0〉〈S| + H.c. and σy = −i|0〉〈S| + H.c. The σx term describes
tunneling between the empty and the singlet state due to the
superconductor, and is already present in Hamiltonian Eq. (1)
of the main text. Diagonalizing the bare electronic part leads
to the hybridized charge states

|+〉 = cos

(
θ̄

2

)
|0〉 + sin

(
θ̄

2

)
|S〉, (A2)

|−〉 = − sin

(
θ̄

2

)
|0〉 + cos

(
θ̄

2

)
|S〉, (A3)

with the mixing angle θ̄ and the energy splitting δ̄ defined in
the main text. By introducing the Pauli matrices τx = τ+ + τ−,
τy = −i(τ+ − τ−), τz = [τ+, τ−] with τ+ = |+〉〈−| and τ− =
|−〉〈+|, we can express the Hamiltonian Eq. (5) of the main
text to second order by

H̄ =
∑
ασ

ε̄αNασ + δ̄

2
τz +

∑
α

ωαb†
αbα

− �S

2
√

2
[2iτy
 + (sin θ̄ τz + cos θ̄ τx )
2] + O(
3).

(A4)

We now move to the interaction picture with respect to
the noninteracting Hamiltonian H0 = ∑

ασ ε̄αNασ + δ̄
2τz +∑

α ωαb†
αbα . By recalling the definition of 
, we obtain in

the interaction picture the Hamiltonian

Hint(t )

= −
∑

α

λα�S

ωα

√
2

(eiωαt b†
α − e−iωαt bα )(eiδ̄tτ+ − e−iδ̄tτ−)

− �SλLλR√
2ωLωR

[ei�t b†
Lb†

R + e−i�t bLbR − ei(�ω)t b†
LbR

− e−i(�ω)t bLb†
R][sin(θ̄ )τz + cos(θ̄ )(eiδ̄tτ+ + e−iδ̄tτ−)]

−
∑

α

�Sλ
2
α

2
√

2ω2
α

[
e2iωαt (b†

α )2 + e−2iωαt b2
α − 2b†

αbα − 1
]

× [sin(θ̄ )τz + cos(θ̄ )(eiδ̄tτ+ + e−iδ̄tτ−)] + O
(
λ3

α

/
ω3

α

)
.

(A5)

Here, we have introduced � = ωL + ωR and �ω = ωL −
ωR. Hamiltonian Eq. (A5) contains all the terms that lead to
cooling, heating, and nonlocal photon transfer. To isolate these
features, we will focus on the relevant resonances δ̄ ≈ ωα , δ̄ ≈
�, and δ̄ ≈ �ω.

First, let us consider two identical resonators of frequency
ωα = ω and tune ε such that δ̄ = ω. Notice that this can be
fulfilled by two values of ε, of opposite sign. In the following,
we restrict Eq. (A5) to first order in λα , and then discard the
fast-oscillating terms by performing a standard rotating-wave
approximation (RWA). Thus, we obtain the time-independent
interaction Hamiltonian given by Eq. (7) in the main text,

H δ̄=ω
RWA =

∑
α

1

2
λα sin(θ̄ ) (bατ+ + b†

ατ−). (A6)

We have used here the resonance condition ω = δ̄ and the
relation sin θ̄ = √

2�S/δ̄.
Let us now consider the nonlocal resonance, δ̄ = �ω. A

peculiarity is here, that we have to go to second order in λα ,
since the first-order terms become in the RWA fast rotating
and, thus, average to zero. The corresponding effective Hamil-
tonian reads

H δ̄=�ω
RWA =

∑
α

�Sλ
2
α

2
√

2ω2
α

(2nα + 1) sin θ̄ τz

+ λNL(b†
LbRτ− + H.c.), (A7)
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with nα = b†
αbα the photon number operator, and λNL stated

in Eq. (8) of the main text. The second term corresponds to
the interaction H (−)

NL (main text), and is responsible for the
coherent transfer of photons between the cavities, leading to
a stationary energy flow. The first term in Eq. (A7) propor-
tional to nατz can be seen as a dispersive shift of the cavity
frequencies, which depends on the Andreev bound state. As
the quantities reported in Fig. 3 of the main text are averages
calculated from the density matrix, this translates into a fine
double-peak structure of the nonlocal resonance, see Fig. 3(c)
of the main text. Further, the additional term proportional to τz

renormalizes the level splitting δ̄ and, therewith, the resonance
condition, δ̄ = �ω.

Considering the condition δ̄ = �, we obtain the effective
RWA Hamiltonian

H δ̄=�
RWA =

∑
α

�Sλ
2
α

2
√

2ω2
α

(2nα + 1) sin θ̄ τz + λNL(b†
Lb†

Rτ− + H.c.).

(A8)

Here, the relevant interaction (H (+)
NL of main text) describes

absorption (and emission) from both cavities simultaneously
while flipping the Andreev state. So, this second-order effect

may entail simultaneous cooling, ε > 0, and heating, ε < 0,
of both cavities.

From the last line of Eq. (A5), one can infer an effective
RWA Hamiltonian governing the resonance condition δ̄ ≈
2ωα . It is similar to Eq. (A6), but involves absorption and
emission of two photons from the same cavity. Indeed, this
two-photon resonance is also observable in Fig. 3(a) of the
main text and yields cavity cooling for ε > 0 and heating for
ε < 0, respectively.

By including terms up to nth order in 
 in Eq. (A4), one
obtains terms (bα )n and (b†

α )n, which, after moving to the
interaction picture and performing a suitable RWA, will yield
n-photon local absorption/emission processes. The expansion
contains also terms of the form (b†

α )p(bᾱ )q and (b†
α )p(b†

ᾱ )q

together with their Hermitian conjugates, with p + q = n
(ᾱ = R if α = L and vice versa). The former terms describe
the coherent transfer of |p − q| photons between the cavities,
while the latter describes coherent emission and re-absorption
of p and q photons from the α and ᾱ cavity, respectively.
The general (approximate) resonance condition thus reads δ̄ ≈
|pωL ± qωR|, stated in Eq. (6) in the main text. If either p or q
is zero, the resonance corresponds to local cooling/heating of
the cavities.
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