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Abstract. In this paper, we investigate convex semigroups on Banach lattices with order continuous norm,
having L p-spaces in mind as a typical application. We show that the basic results from linearC0-semigroup
theory extend to the convex case. We prove that the generator of a convex C0-semigroup is closed and
uniquely determines the semigroup whenever the domain is dense. Moreover, the domain of the generator
is invariant under the semigroup, a result that leads to the well-posedness of the related Cauchy problem.
In a last step, we provide conditions for the existence and strong continuity of semigroup envelopes for
families of C0-semigroups. The results are discussed in several examples such as semilinear heat equations
and nonlinear integro-differential equations.

1. Introduction

Decision-making in a dynamic random environment naturally leads to so-called sto-
chastic optimal control problems. These types of problems arise in numerous applica-
tions in economics andmathematical finance, cf. Fleming and Soner [11] or Pham [25].
Examples include irreversible investments, endogenous growth models, such as the
AK-model, portfolio optimization, as well as superhedging and superreplication under
model uncertainty. In this context, the dynamic programming principle typically leads
to convex partial differential equations, so-called Hamilton–Jacobi–Bellman (HJB)
equations, where, intuitively speaking, the convexity comes from optimizing among
a certain class of Markov processes, each one linked to a linear PDE via its infinitesi-
mal generator. One classical approach to treat nonlinear partial differential equations
uses the theory of maximal monotone or m-accretive operators; see, e.g., Barbu [2],
Bénilan-Crandall [5], Brézis [6], Evans [10], Kato [14], and the references therein.
To show that an accretive operator is m-accretive, one has to prove that 1 + hA is
surjective for small h > 0. However, in many cases it is hard to verify this condition.
This was one of the reasons for the introduction of viscosity solutions, where exis-
tence and uniqueness hold due to the milestone papers by Crandall et al. [7,8] and
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Ishii [13]. Although Perron’s method (providing the existence) and Ishii’s lemma (in
order to obtain uniqueness) are applicable to a large class of HJB equations, solvabil-
ity in terms of viscosity solutions is a rather weak notion of well-posedness, in the
sense that viscosity solutions without any further results on regularity are a priori not
differentiable in any sense.
Inspired byNisio [23], in this paper, we approach convex differential equations with

a semigroup approach. We extend classical results from semigroup theory regarding
uniqueness of the semigroup in terms of the generator, space and time regularity of
solutions in terms of initial data, more precisely, invariance of the domain under the
semigroup, and classical well-posedness of related Cauchy problems to the convex
case.
Given a C0-semigroup S = (S(t))t∈[0,∞) of linear operators on a Banach space

X with generator A : D(A) ⊂ X → X , it is well known that the domain D(A) is
invariant under S, that is, S(t)x ∈ D(A) for all x ∈ D(A) and t ≥ 0. Moreover, it
holds

AS(t)x = S(t)Ax for all x ∈ D(A) and t ≥ 0. (1.1)

This relation is fundamental in order to prove the invariance of the domain under the
semigroup, that the semigroup S is uniquely determined through its generator, and
results in the classical well-posedness of the associated Cauchy problem.
In this work, we show that the aforementioned fundamental results from linear

semigroup theory extend to the convex case, if the underlying space X satisfies
some additional properties, and the right-hand side of (1.1) is replaced by a direc-
tional derivative. To that end, we assume that X is Dedekind σ -complete and that
limn→∞ ‖xn − infm∈N xm‖ = 0 for every decreasing sequence (xn)n∈N in X which is
bounded below, having X = L p(μ) for p ∈ [1,∞) and an arbitrarymeasureμ inmind
as a typical example. Then, a convex C0-semigroup S on X is a family (S(t))t∈[0,∞)

of bounded convex operators X → X , such that, for every x ∈ X , it holds S(0)x = x ,
S(t+s)x = S(t)S(s)x for all s, t ≥ 0, and S(t)x → x as t ↓ 0. Defining its generator
A : D(A) ⊂ X → X as in the linear case by

Ax := lim
h↓0

S(h)x − x

h
, where D(A) :=

{
x ∈ X : lim

h↓0
S(h)x − x

h
exists

}
,

we show that the convexC0-semigroup S leaves the domain D(A) invariant.Moreover,
the map [0,∞) → X , t 	→ S(t)x is continuously differentiable for all x ∈ D(A),
and the time derivative is given by

AS(t)x = S′(t, x)Ax := inf
h>0

S(t)(x + hAx) − S(t)x

h
.

The right-hand side of this equation is the directional derivative or Gâteaux derivative
of the convex operator S(t) at x in direction Ax . In particular, if S(t) is linear, the
Gâteaux derivative simplifies to S′(t, x)Ax = S(t)Ax , which is consistent with (1.1).
We further show that the generator A is always a closed operator which uniquely
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determines the semigroup S on dense subsets of the domain D(A). As a consequence,
y(t) := S(t)x , for x ∈ D(A), defines the unique classical solution to the abstract
Cauchy problem

(CP)

{
y′(t) = Ay(t), for all t ≥ 0,

y(0) = x .

Motivated by stochastic optimal control problems, we then specialize on a setup,
where, for an arbitrary index set�, we consider families (Sλ)λ∈� of convex monotone
semigroups Sλ = (Sλ(t))t≥0. We then address the question of the existence of a
smallest upper bound S of the family (Sλ)λ∈� within the class of semigroups. We
provide conditions that ensure the existence and strong continuity of the smallest
upper bound S, which we refer to as the (upper) semigroup envelope, making the
above-mentioned results on convex semigroups applicable to this setting. Formally,
the generator A of the semigroup envelope S corresponds of the operator supλ∈� Aλ,
defined on

⋂
λ∈� D(Aλ), where, for λ ∈ �, Aλ is the generator of Sλ. In this case,

at least formally, the Cauchy problem (CP) results in an abstract Hamilton–Jacobi–
Bellman-type equation of the form:

∂t u(t) = sup
λ∈�

Aλu(t) for t ≥ 0, u(0) = u0. (1.2)

Following Nisio [23], Denk et al. [9] and Nendel–Röckner [21], where the existence
of a semigroup envelope, under certain conditions, has been shown for families of
semigroups on BUC, we provide conditions for convolution semigroups on L p(μ)

that make the aforementioned relation rigorous. In general, the obtained domain D(A)

will be larger than the natural domain
⋂

λ∈� D(Aλ). However, our results imply the
existence and classical differentiability of the solution even for initial values in D(A).
We remark that for generators of Lévy processes in BUC under uncertainty, recent
results were obtained, e.g., in Denk et al. [9], Hollender [12], Kühn [18], Nendel–
Röckner [21], and Neufeld–Nutz [22]. Fully nonlinear equations in the strong L p-
setting were recently considered, e.g., by Krylov [15–17].
The structure of the paper is as follows. In Section 2, we introduce the setting and

state basic results on convex C0-semigroups, which can be derived from a uniform
boundedness principle for convex operators. Section 3 includes the main results on
convex C0-semigroups, their generators and related Cauchy problems. In particular,
we provide invariance of the domain, uniqueness of the semigroup in terms of the
generator and classical well-posedness of the related Cauchy problem. In Sect. 4,
we consider the smallest upper bound, called the (upper) semigroup envelope, of a
family of convex monotone semigroups. In Sect. 5, we provide conditions for the
existence and strong continuity of the semigroup envelope for families (Sλ)λ∈� of
linear convolution semigroups on L p(μ), and relate the generator of the semigroup
envelope to supλ∈� Aλ, i.e., the smallest upper bound of the generators (Aλ)λ∈� of
(Sλ)λ∈�. We illustrate the results with Examples 5.3 and 5.4. In the appendix, we
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collect some additional results on bounded convex operators on general Banach lattices
including a version of the uniform boundedness principle for convex operators.

2. Notation and preliminary results

In this section, we introduce our setup, define convex semigroups, which are the
central object of this manuscript, and discuss some technical properties of these semi-
groups, which will be fundamental for the analysis in the subsequent sections.
Let X be a Banach lattice. For an operator S : X → X , we define

‖S‖r := sup
x∈B(0,r)

‖Sx‖

for all r > 0, where B(x0, r) := {x ∈ X : ‖x − x0‖ ≤ r} for x0 ∈ X . We say
that an operator S : X → X is convex if S

(
λx + (1 − λ)y

) ≤ λSx + (1 − λ)Sy for
all λ ∈ [0, 1], positive homogeneous if S(λx) = λSx for all λ > 0, sublinear if S
is convex and positive homogeneous, monotone if x ≤ y implies Sx ≤ Sy for all
x, y ∈ X , and bounded if ‖S‖r < ∞ for all r > 0.

Definition 2.1. A family S = (S(t))t∈[0,∞) of bounded operators X → X is called a
semigroup on X if

(S1) S(0)x = x for all x ∈ X ,
(S2) S(t + s)x = S(t)S(s)x for all x ∈ X and s, t ∈ [0,∞).

In this case, we say that S is a C0-semigroup if, additionally,

(S3) S(t)x → x as t ↓ 0 for all x ∈ X .

We say that S is convex, sublinear ormonotone if S(t) is convex, sublinear ormonotone
for all t ≥ 0, respectively.

Throughout the rest of this section, let S be a convex C0-semigroup on X . For t ≥ 0
and x ∈ X , we define the convex operator Sx (t) : X → X by

Sx (t)y := S(t)(x + y) − S(t)x .

Proposition 2.2. Let T > 0 and x0 ∈ X. Then, there exist L ≥ 0 and r > 0 such
that

sup
t∈[0,T ]

‖Sx (t)y‖ ≤ L‖y‖

for all x ∈ B(x0, r) and y ∈ B(0, r).

Proof. It suffices to show that

sup
0≤t≤T

‖S(t)x‖ < ∞ (2.1)
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for all x ∈ X . Indeed, under (2.1), it follows from Theorem A.9 b) that there exists
some r > 0 such that b := supx∈B(x0,r) sup0≤t≤T ‖Sx (t)‖r < ∞. Since Sx (t) is
convex and Sx (t)0 = 0, we obtain from Lemma A.1 that

‖Sx (t)y‖ ≤ 2b
r ‖y‖

for all t ∈ [0, T ], x ∈ B(x0, r) and y ∈ B(0, r).
In order to prove (2.1), let x ∈ X . Since S(t)x → x as t ↓ 0, there exists some

n ∈ N such that

R := sup
h∈[0,δ)

‖S(h)x‖ < ∞,

where δ := T
n . Since S(t) is bounded for all t ≥ 0, it holds

c := max
0≤k≤n

‖S(kδ)‖R < ∞.

Now, let t ∈ [0, T ]. Then, there exist k ∈ {0, . . . , n} andh ∈ [0, δ) such that t = kδ+h.
Since ‖S(h)x‖ ≤ R, it follows that ‖S(t)x‖ = ‖S(kδ)S(h)x‖ ≤ c. This proves (2.1)
and thus completes the proof. �

Remark 2.3. If S is sublinear, then there exist ω ∈ R and M ≥ 1 such that

‖S(t)x‖ ≤ Meωt‖x‖ (2.2)

for all x ∈ X and t ∈ [0,∞). Indeed, by Proposition 2.2 and sublinearity of the
semigroup S, one has

M := sup
t∈[0,1]

sup
x∈X

‖S(t)x‖
‖x‖ < ∞.

Setω := logM . Then, for all t ∈ [0,∞), there exists somem ∈ Nwith t < m ≤ t+1.
By the semigroup property, it follows that

‖S(t)x‖ = ∥∥S( t
m

)m
x
∥∥ ≤ Mm‖x‖ ≤ Mt+1‖x‖ = Meωt‖x‖

for all x ∈ X .

Corollary 2.4. Let T > 0 and x0 ∈ X. Then, there exist L ≥ 0 and r > 0 such that

sup
t∈[0,T ]

‖S(t)y − S(t)z‖ ≤ L‖y − z‖

for all y, z ∈ B(x0, r).

Proof. By Proposition 2.2, there exist L ≥ 0 and r > 0 such that

sup
t∈[0,T ]

‖Sx (t)y‖ ≤ L‖y‖
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for all x ∈ B(x0, 2r) and y ∈ B(0, 2r). Now, let y, z ∈ B(x0, r). Then, y − z ∈
B(0, 2r), and we thus obtain that

sup
t∈[0,T ]

‖S(t)y − S(t)z‖ = sup
t∈[0,T ]

‖Sz(t)(y − z)‖ ≤ L‖y − z‖,

which shows the desired Lipschitz continuity. �

Corollary 2.5. The map [0,∞) → X, t 	→ S(t)x is continuous for all x ∈ X.

Proof. Let t ≥ 0 and x ∈ X . Then, by Corollary 2.4, there exist L ≥ 0 and r > 0
such that

sup
s∈[0,t+1]

‖S(s)y − S(s)x‖ ≤ L‖y − x‖

for all y ∈ B(x, r). Moreover, there exists some δ ∈ (0, 1] such that ‖S(h)x − x‖ ≤ r
for all h ∈ [0, δ]. For s ≥ 0 with |s − t | ≤ δ, it follows that

‖S(t)x − S(s)x‖ = ‖S(s ∧ t)S(|t − s|)x − S(s ∧ t)x‖ ≤ L‖S(|t − s|)x − x‖ → 0

as s → t . �

Corollary 2.6. Let (xn)n∈N and (yn)n∈N be two sequences in X with xn → x ∈ X and
yn → y ∈ X, and (hn)n∈N bea sequence in (0,∞)with hn ↓ 0. Then, Sxn (hn)yn → y.

Proof. We first show that S(hn)xn → x . By Corollary 2.4, there exist L ≥ 0 and
r > 0 such that

sup
t∈[0,1]

‖S(t)z − S(t)x‖ ≤ L‖z − x‖.

for all z ∈ B(x, r). Hence, for n ∈ N sufficiently large, we obtain that

‖S(hn)xn − x‖ ≤ ‖S(hn)xn − S(hn)x‖ + ‖S(hn)x − x‖
≤ L‖xn − x‖ + ‖S(hn)x − x‖.

This shows that S(hn)xn → x as n → ∞. As a consequence,

Syn (hn)xn = S(hn)(xn + yn) − S(hn)yn → (x + y) − y = x

as n → ∞. The proof is complete. �

Proposition 2.7. Let x ∈ X with

sup
h∈(0,h0]

∥∥∥∥ S(h)x − x

h

∥∥∥∥ < ∞ for some h0 > 0.

Then, the map [0,∞) → X, t 	→ S(t)x is locally Lipschitz continuous, i.e., for every
T > 0, there exists some LT ≥ 0 such that ‖S(t)x − S(s)x‖ ≤ LT |t − s| for all
s, t ∈ [0, T ].



Vol. 21 (2021) Convex semigroups on L p-like spaces 2497

Proof. Since the map [0,∞) → X, t 	→ S(t)x is continuous by Corollary 2.5, there
exists some constant CT ≥ 0 such that

sup
t∈(0,T ]

‖S(t)x − x‖
t

≤ CT .

By Corollary 2.4, there exist L ≥ 0 and r > 0 such that

sup
t∈[0,T ]

‖S(t)y − S(t)z‖ ≤ L‖y − z‖ for all y, z ∈ B(x, r).

Further, there exists some n ∈ N such that suph∈[0,δ] ‖S(h)x − x‖ ≤ r , where δ := T
n .

Now, let LT := LCT and s, t ∈ [0, T ] with s ≤ t . If t − s ∈ [0, δ], we have that
‖S(t)x − S(s)x‖ ≤ L‖S(t − s)x − x‖ ≤ LT (t − s).

In general, there exist k ∈ {0, . . . , n − 1} and h ∈ [0, δ] such that t − s = kδ + h.
Then,

‖S(t)x−S(s)x‖ ≤ ‖S(t)x − S(s + kδ)x‖ +
k∑
j=1

∥∥S(s + jδ)x − S
(
s + ( j − 1)δ

)
x
∥∥

≤ LT
(
t − (s + kδ)

) + LT kδ = LT (t − s).

The proof is complete. �

3. Generators of convex semigroups and related Cauchy problems

In this section, we assume that X is a Banach lattice with order continuous norm,
i.e., for every net (xα)α with xα ↓ 0, we have ‖xα‖ → 0. Note that this is equivalent to
the condition that X is Dedekind σ -complete, i.e., any countable non-empty subset of
X , which is bounded above, has a supremum, with σ -order continuous norm ‖ ·‖, i.e.,
for every decreasing sequence (xn)n∈N with infn∈N xn = 0, it holds limn→∞ ‖xn‖ = 0
(see [20, Theorem 2.4.2] or [28, Theorem 1.1]). Recall that order continuity of the
norm ‖ · ‖ also implies the Dedekind super completeness of X , i.e., every non-empty
subset which is bounded above has a countable subset with identical supremum, see,
for instance, [27, Corollary 1 to Theorem II.5.10] or [28, Theorem 1.1]. Moreover, we
would like to point out that separability together with Dedekind σ -completeness of
X implies order continuity of the norm, cf. [20, Exercise 2.4.1] or [27, Corollary to
Theorem II.5.14]. Typical examples for X are given by X = L p(μ) for p ∈ [1,∞)

and somemeasureμ, Orlicz spaces, and the space X = c0 of all sequences converging
to 0. For more details on these spaces, we refer to [20, Section 2.4] or [28]. Again, let
S be a convex C0-semigroup on X .

Definition 3.1. We define the generator A : D(A) ⊂ X → X of S by

Ax := lim
h↓0

S(h)x−x
h , where D(A) :=

{
x ∈ X : S(h)x − x

h
is convergent for h ↓ 0

}
.
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In this subsection, we investigate properties of the generator A and its domain
D(A). A fundamental ingredient for the analysis is the directional derivative of a
convex operator. Fix t ≥ 0. Since S(t) : X → X is a convex operator, the function

R \ {0} → X, h 	→ S(t)(x + hy) − S(t)x

h

is increasing for all x, y ∈ X . In particular,

−Sx (t)(−y) ≤ S(t)(x − hy) − S(t)x

−h
≤ S(t)(x + hy) − S(t)x

h
≤ Sx (t)y

for x, y ∈ X and h ∈ (0, 1]. Since for all x, y ∈ X and every sequence (hn)n∈N in
(0,∞) with hn → 0, it holds

inf
n∈N

S(t)(x + hn y) − S(t)x

hn
∈ X and sup

n∈N
S(t)x − S(t)(x − hn y)

hn
∈ X,

the operators

S′+(t, x)y := inf
h>0

S(t)(x+hy)−S(t)x

h
and S′−(t, x)y :=sup

h<0

S(t)(x+hy)−S(t)x

h
(3.1)

are well defined with values in X . Due to the σ -order completeness of the norm, one
has ∥∥∥∥S′±(t, x)y ∓ S(t)(x ± hy) − S(t)x

h

∥∥∥∥ → 0 as h ↓ 0. (3.2)

If the left and right directional derivatives coincide, then the directional derivative is
continuous in time. More precisely, the following holds.

Proposition 3.2. Suppose that S′+(t, x)y = S′−(t, x)y for some x, y ∈ X and some
t ≥ 0. Then, the maps [0,∞) → X, s 	→ S′±(s, x)y are continuous at t . In particular,
lims↓0 S′±(s, x)y = y.

Proof. Since S′−(s, x)y = −S′+(s, x)(−y) for all s ≥ 0, it suffices to prove the
continuity of the map [0,∞) → X , s 	→ S′+(s, x)y at t . For all s ≥ 0 and h > 0, let

Dh,±(s, x)y := S(s)(x ± hy) − S(s)x

±h
.

By Corollary 2.5, the mapping [0,∞) → X, s 	→ Dh,±(s, x)y is continuous for all
h > 0. Let ε > 0. By (3.2), there exists some hε > 0 with

∥∥Dhε,+(t, x)y − S′+(t, x)y
∥∥ <

ε

4
and

∥∥Dhε,−(t, x)y − S′−(t, x)y
∥∥ <

ε

4
.

Since the mapping [0,∞) → X, s 	→ Dhε,±(s, x)y is continuous, there exists some
δ > 0 such that
∥∥Dhε,+(s, x)y − Dhε,+(t, x)y

∥∥ <
ε

4
and

∥∥Dhε,−(s, x)y − Dhε,−(t, x)y
∥∥ <

ε

4
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for all s ≥ 0 with |s − t | < δ. Hence,

∥∥Dhε,+(s, x)y − S′+(t, x)y
∥∥ <

ε

2
and

∥∥Dhε,−(s, x)y − S′−(t, x)y
∥∥ <

ε

2
(3.3)

for all s ≥ 0 with |s − t | < δ. Since S′−(s, x)y ≤ S′+(s, x)y, we obtain that

S′+(s, x)y − S′−(t, x)y ≥ S′−(s, x)y − S′−(t, x)y ≥ Dhε,−(s, x)y − S′−(t, x)y

for all s ≥ 0. On the other hand,

S′+(s, x)y − S′+(t, x)y ≤ Dhε,+(s, x)y − S′+(t, x)y

for all s ≥ 0. Now, since S′+(t, x)y = S′−(t, x)y, we obtain that
∣∣S′+(s, x)y − S′+(t, x)y

∣∣≤ ∣∣Dhε,+(s, x)y − S′+(t, x)y
∣∣ + ∣∣Dhε,−(s, x)y−S′−(t, x)y

∣∣
for all s ≥ 0 and therefore, by (3.3),

∥∥S′+(t, x)y − S′+(s, x)y
∥∥ < ε

for all s ≥ 0 with |s − t | < δ. Since S(0) = idX is linear, it follows that

S′+(0, x) = S′−(0, x) = idX

and therefore, limt↓0 S′±(t, x)y = S′±(0, x)y = y. �

It is a straightforward application of Proposition 2.7 that [0,∞) → X, t 	→ S(t)x
is locally Lipschitz continuous for all x ∈ D(A). The following first main result states
that it is even continuously differentiable on the domain.

Theorem 3.3. Let x ∈ D(A) and t ≥ 0.

(i) It holds S(t)x ∈ D(A) with

AS(t)x = S′+(t, x)Ax .

If S(t) is linear, this results in the well-known relation AS(t)x = S(t)Ax.
(ii) For t > 0, it holds

lim
h↓0

S(t)x − S(t − h)x

h
= S′−(t, x)Ax .

(iii) It holds S′+(t, x)Ax = S′−(t, x)Ax. The mapping [0,∞) → X, s 	→ S(s)x is
continuously differentiable and the derivative is given by

d
ds S(s)x = AS(s)x = S′±(s, x)Ax for s ≥ 0.

(iv) It holds

S(t)x − x =
∫ t

0
AS(s)x ds =

∫ t

0
S′+(s, x)Ax ds =

∫ t

0
S′−(s, x)Ax ds.
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Proof. (i) Let t ≥ 0 and (hn)n in (0,∞) with hn ↓ 0. Then,

S(t + hn)x − S(t)x

hn
− S(t)(x + hn Ax) − S(t)x

hn
= S(t)S(hn)x − S(t)(x + hn Ax)

hn
.

By Corollary 2.4, there exist L ≥ 0 and r > 0 such that

‖S(t)y − S(t)z‖ ≤ L‖y − z‖
for all y, z ∈ B(x, r). For n ∈ N sufficiently large, we thus obtain that

∥∥∥∥ S(t)S(hn)x − S(t)(x + hn Ax)

hn

∥∥∥∥ ≤ L

∥∥∥∥ S(hn)x − x

hn
− Ax

∥∥∥∥ → 0.

Since, by (3.2),

S(t)(x + hn Ax) − S(t)x

hn
→ S′+(t, x)Ax,

we obtain the assertion.
(ii) Let t > 0 and (hn)n∈N in (0, t] with hn ↓ 0. Then,

S(t)x − S(t − hn)x

hn
− S(t)x − S(t)(x − hn Ax)

hn
= S(t)(x − hn Ax) − S(t − hn)x

hn
.

Again, by Corollary 2.4, there exist L ≥ 0 and r > 0 such that

sup
s∈[0,t]

‖S(s)y − S(s)z‖ ≤ L‖y − z‖

for all y, z ∈ B(x, r). By Corollary 2.6, we have S(hn)(x − hn Ax) → x . Hence, for
n ∈ N sufficiently large, it follows that

∥∥∥∥ S(t − hn)S(hn)(x − hn Ax) − S(t − hn)x

hn

∥∥∥∥ ≤ L

∥∥∥∥ S(hn)(x − hn Ax) − x

hn

∥∥∥∥.

Using Corollary 2.6 and the convexity of Sx and Sx−hn Ax , we find that, for sufficiently
large n ∈ N,

S(hn)(x − hn Ax) − x

hn
= Sx (hn)(−hn Ax)

hn
+ S(hn)x − x

hn

≤ Sx (hn)(−Ax) + S(hn)x − x

hn
→ 0

and

x − S(hn)(x − hn Ax)

hn
= Sx−hn Ax (hn)(hn Ax)

hn
− S(hn)x − x

hn

≤ Sx−hn Ax (hn)(Ax) − S(hn)x − x

hn
→ 0.
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This shows that
∥∥ S(hn)(x−hn Ax)−x

hn

∥∥ → 0, which implies that
∥∥∥∥ S(t)x − S(t − hn)x

hn
− S(t)x − S(t)(x − hn Ax)

hn

∥∥∥∥ → 0.

Since, by (3.2),

S(t)x − S(t)(x − hn Ax)

hn
→ S′−(t, x)Ax,

we obtain the assertion.
(iii) By definition, it holds S′+(t, x)Ax ≥ S′−(t, x)Ax , and, for t = 0,

S′+(0, x)Ax = S′−(0, x)Ax = Ax .

Therefore, let t > 0 and 0 < h ≤ t . Then, by convexity of SS(t−h)x , for h sufficiently
small, it holds

S(t + h)x − S(t)x

h
= S(h)S(t)x − S(h)S(t − h)x

h

= SS(t−h)x (h)
(
S(t)x − S(t − h)x

)
h

≤ SS(t−h)x (h)

(
S(t)x − S(t − h)x

h

)
,

which implies that

S′+(t, x)Ax = AS(t)x = lim
h↓0

S(t + h)x − S(t)x

h

≤ lim
h↓0 SS(t−h)x (h)

(
S(t)x − S(t − h)x

h

)

= S′−(t, x)Ax,

where we used Corollary 2.6 and (ii) in the last step. Now, Proposition 3.2 yields that
the mapping [0,∞) → X , s 	→ S′+(s, x)Ax is continuous.
(iv) This follows directly from (iii) using the fundamental theorem of calculus. �
As in the linear case, the generator of a convex C0-semigroup is closed.

Proposition 3.4. The generator A is closed, i.e., for every sequence (xn)n∈N in D(A)

with xn → x ∈ X and Axn → y ∈ X, it holds x ∈ D(A) and Ax = y.

Proof. First, notice that

−Sxn (s)(−Axn) ≤ S′+(s, xn)Axn ≤ Sxn (s)Axn,

where we have used S′+(s, xn)Axn = S′−(s, xn)Axn from Theorem 3.3 (iii), for all
s ≥ 0 and n ∈ N. By Corollary 2.4, there exist L ≥ 0 and r > 0 such that

sup
s∈[0,1]

‖S(s)w − S(s)z‖ ≤ L‖w − z‖
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for all w, z ∈ B(x ± y, r). Hence, for n ∈ N sufficiently large,

‖Sxn (s)Axn − Sxn (s)y‖ ≤ L‖Axn − y‖ and

‖Sxn (s)(−Axn) − Sxn (s)(−y)‖ ≤ L‖Axn − y‖,
so that

‖S′+(s, xn)Axn − y‖ ≤ 2L‖Axn − y‖ + ‖Sxn (s)y − y‖ + ‖Sxn (s)(−y) + y‖
for all s ∈ [0, 1]. By Theorem 3.3,

S(h)xn − xn
h

− y = 1

h

∫ h

0

(
S′+(s, xn)Axn − y

)
ds

for all h > 0. Hence, for fixed h ∈ (0, 1], we find that∥∥∥∥ S(h)x − x

h
− y

∥∥∥∥ = lim
n→∞

∥∥∥∥ S(h)xn − xn
h

− y

∥∥∥∥
≤ lim sup

n→∞
1

h

∫ h

0

∥∥S′+(s, xn)Axn − y
∥∥ ds

≤ lim sup
n→∞

2L‖Axn − y‖
+ sup

0≤s≤h

(‖Sxn (s)y − y‖ + ‖Sxn (s)(−y) + y‖)

= sup
0≤s≤h

(‖Sx (s)y − y‖ + ‖Sx (s)(−y) + y‖),
where we used Corollary 2.4 in the last step. This shows that∥∥∥∥ S(h)x − x

h
− y

∥∥∥∥ ≤ sup
0≤s≤h

(‖Sx (s)y − y‖ + ‖Sx (s)(−y) + y‖) → 0 as h ↓ 0.

That is, x ∈ D(A) with Ax = y. �
The following theorem is the second main result of this section and shows unique-

ness of the solution.

Theorem 3.5. Let y : [0,∞) → X be a continuous function such that y(t) ∈ D(A)

for all t ≥ 0, and

lim
h↓0

y(t + h) − y(t)

h
= Ay(t) for all t ≥ 0.

Then, y(t) = S(t)x for all t ≥ 0, where x := y(0).

Proof. Let t > 0 and g(s) := S(t − s)y(s) for all s ∈ [0, t]. Fix s ∈ [0, t). For every
h > 0 with h ≤ t − s, it holds

g(s + h) − g(s)

h
= S(t − s − h)y(s + h) − S(t − s)y(s)

h

= SS(h)y(s)(t − s − h)
(
y(s + h) − S(h)y(s)

)
h

.
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By Proposition 2.2, there exist L ≥ 0 and r > 0 such that

sup
τ∈[0,t]

‖Sx (τ )z‖ ≤ L‖z‖ (3.4)

for all x ∈ B(y(s), r) and z ∈ B(0, r). Hence, for h sufficiently small, it follows that∥∥∥∥ SS(h)y(s)(t − s − h)
(
y(s + h) − S(h)y(s)

)
h

∥∥∥∥ ≤ L

∥∥∥∥ y(s + h) − S(h)y(s)

h

∥∥∥∥,

where we used that limh↓0 y(s + h) = y(s) = limh↓0 S(h)y(s). Since y(s) ∈ D(A),

y(s + h)−S(h)y(s)

h
= y(s + h) − y(s)

h
− S(h)y(s)−y(s)

h
→ Ay(s)−Ay(s) = 0

as h ↓ 0. This shows that g(s+h)−g(s)
h → 0 as h ↓ 0.

We next show that the map g : [0, t] → X is continuous. Since its right derivative
exists, it follows that limh↓0 g(s + h) = g(s) for s ∈ [0, t). Now, let s ∈ (0, t] and
h > 0 sufficiently small. Then,

g(s − h) − g(s) = S(t − s)S(h)y(s − h) − S(t − s)y(s)

= Sy(s)(t − s)
(
S(h)y(s − h) − y(s)

)
.

Since y(s−h) → y(s) as h ↓ 0, by Corollary 2.6, it follows that S(h)y(s−h) → y(s)
as h ↓ 0. Together with (3.4), we obtain that limh↓0 g(s − h) = g(s).
Finally, fix μ in the dual space X ′. Since μg : [0, t] → R is continuous and its right

derivative vanishes on [0, t), it follows from [24, Lemma 1.1, Chapter 2] that [0, t] →
X, s 	→ μg(s) is constant. In particular, μy(t) = μg(t) = μg(0) = μS(t)x . This
shows that y(t) = S(t)x , as X ′ separates the points of X . �
Remark 3.6. With similar arguments as in the proof the previous theorem, one can
show the following statement: Let y : [0,∞) → X be a continuous function with
y(t) ∈ D(A) for all t ≥ 0 and limh↓0 y(t)−y(t−h)

h = Ay(t) for all t > 0. Then,
y(t) = S(t)x for all t ≥ 0 with x := y(0).

Theorem 3.5 implies that convex semigroups are determined by their generators
whenever the domain is dense.

Corollary 3.7. Let T be a convex C0-semigroup with generator B ⊂ A, i.e., D(B) ⊂
D(A) and A|D(B) = B. If D(B) = X, then S(t) = T (t) for all t ≥ 0.

Proof. For every x ∈ D(B), the mapping [0,∞) → X , t 	→ T (t)x satisfies the
assumptions of Theorem 3.5. Indeed, [0,∞) → X, t 	→ T (t)x is continuous by
Corollary 2.5, and, by Theorem 3.3, T (t)x ∈ D(B) ⊂ D(A) for all t ≥ 0 with

lim
h↓0

T (t + h)x − T (t)x

h
= lim

h↓0
T (h)T (t)x − T (t)x

h
= BT (t)x = AT (t)x .

By Theorem 3.5, it follows that T (t)x = S(t)x for all t ≥ 0. Finally, since, by Corol-
lary A.4, the bounded convex functions T (t) and S(t) are continuous and D(B) = X ,
it follows that S(t) = T (t) for all t ≥ 0. �
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Corollary 3.8. The abstract Cauchy problem

(CP)

{
y′(t) = Ay(t), for all t ≥ 0,

y(0) = x

is (classically) well posed in the following sense:

(i) For all x ∈ D(A), (CP) has a unique classical solution y ∈ C1([0,∞); X) with
y(t) ∈ D(A) for all t ≥ 0 and Ay ∈ C([0,∞); X).

(ii) For all x0 ∈ D(A) and T > 0, there exist L ≥ 0 and r > 0 such that

sup
t∈[0,T ]

‖y(t, x) − y(t, z)‖ < L‖x − z‖ for all x, z ∈ D(A) ∩ B(x0, r),

where y( · , x) denotes the unique solution to (CP) with initial value x ∈ D(A).
(iii) For all t > 0 and r > 0, there exists some constant C ≥ 0 such that

‖y(t, x)‖ ≤ C for all x ∈ D(A) with ‖x‖ ≤ r.

Proof. By Theorems 3.3 and 3.5, it follows that for every x ∈ D(A), the Cauchy
problem (CP) has a unique classical solution y ∈ C1([0,∞); X) such that y(t) ∈
D(A) for all t ≥ 0 and Ay ∈ C([0,∞); X), and which is given by y(t) = S(t)x . By
Corollary 2.4, we obtain (ii), and (iii) is the boundedness of the operator S(t). �

Remark 3.9. Assume that for some operator A0 : D(A0) ⊂ X → X , the abstract
Cauchy problem is well posed in the sense of Corollary 3.8. Let the domain D(A0)

be a dense linear subspace of X , and assume that the map D(A0) → X, x 	→
y(t, x) is convex for all t ≥ 0. Then, there exists a unique convex C0-semigroup
S = (S(t))t∈[0,∞) with S(t)x = y(t, x) for all x ∈ D(A0). Moreover, A0 ⊂ A, where
A is the generator of S, and D(A0) is S(t)-invariant for all t ≥ 0, i.e., S(t)x ∈ D(A0)

for all t ≥ 0 and x ∈ D(A0).
In fact, we can define the operator S(t)x := y(t, x) for all t ≥ 0 and x ∈ D(A0).

As S(t) is bounded by (iii) and convex, it is Lipschitz on bounded subsets of D(A0) by
Corollary A.4. Therefore, there exists a unique continuous extension S(t) : X → X ,
which again is bounded and convex. By the uniqueness in (i), the semigroup property
for the family S = (S(t))t∈[0,∞) holds for all x ∈ D(A0), and therefore for all x ∈ X .
Similarly, the strong continuity follows by y(·, x) ∈ C([0,∞); X) for x ∈ D(A0)

and (ii). Finally, as, for every x ∈ D(A0), the function y(·, x) is differentiable at zero
with derivative Ax , we obtain D(A0) ⊂ D(A) with A|D(A0) = A0 as well as, by (i),
the invariance of D(A0) under S(t).
In thisway,we can construct a convexC0-semigroup by solving theCauchy problem

only for initial values x ∈ D(A0). In applications, one might have D(A0) being much
smaller than D(A).

Remark 3.10. We would like to point out that very little can be said about structural
properties of the domain D(A) when S is nonlinear. If S is sublinear, the generator
and the domain scale with positive multiples, i.e., λx ∈ D(A) with A(λx) = λAx for
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all x ∈ D(A) and λ ≥ 0, which is a direct consequence of positive homogeneity of
the semigroup. Although in typical situations, when X = L p, the domain contains a
dense subspace, which, in most applications, is the space C∞

c of all smooth functions
with compact support, the density of the domain, in a general setting, remains an open
question. Considering the semigroup envelope for two linear semigroups for which
the intersection of the domains consists of only 0, suggests that the domain should
fail to be dense in general. A less pathological case which is not covered by the setup
in this section is given by the semigroup envelope for a family of heat semigroups
with varying covariance operator on the space of all bounded uniformly continuous
functions on a separableHilbert space H as in [9,21], and also suggests that the domain
is typically not dense.

4. Semigroup envelopes

As in the previous section, we assume that X has an order continuous norm implying
that X is Dedekind super complete (see beginning of Sect. 3). For two semigroups S
and T on X , we write S ≤ T if

S(t)x ≤ T (t)x for all t ≥ 0 and x ∈ X.

We would like to point out that our definition of dominance for two semigroups is not
consistent with the notion of dominance for linear semigroups. If S and T are both
linear, S ≤ T implies that S = T . Our definition of ≤ is therefore only nontrivial, in
the sense that it is a strict inequality, if S or T are nonlinear.

Throughout this section, let (Sλ)λ∈� be a family of convex monotone semigroups
on X . We say that a semigroup S is an upper bound of (Sλ)λ∈� if S ≥ Sλ for all
λ ∈ �.

Definition 4.1. We call a semigroup S (if existent) the (upper) semigroup envelope
of (Sλ)λ∈� if it is the smallest upper bound of (Sλ)λ∈�, i.e., if S is an upper bound of
(Sλ)λ∈� and S ≤ T for any other upper bound T of (Sλ)λ∈�.

Notice that the definition of a semigroup envelope already implies its uniqueness.
However, the existence of a semigroup envelope is not given in general. In [9,21]
the existence of a semigroup envelope, under certain conditions, has been shown for
families of semigroups on spaces of uniformly continuous functions. This is done
following an idea of Nisio [23], who was, to the best of our knowledge, the first to
investigate the existence of semigroup envelopes. A related construction is the one
of a modulus for linear C0-semigroups by Becker and Greiner [4]. It was shown (cf.
[9,21,23]) that, for C0-semigroups, there is a relation between the semigroup enve-
lope, that is the supremum, of a family of semigroups and the pointwise supremum
of their generators. In this subsection, we now want to show that the construction of
Nisio, which is a pointwise optimization on a finer and finer time-grid, can be real-
ized on Dedekind super complete Banach lattices. Moreover, we show that the ansatz
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proposed by Nisio is in fact the only way to construct the supremum of a family of
semigroups. We further show that, under certain conditions, the semigroup envelope
is a convex monotone C0-semigroup, which makes the results from the previous sub-
section applicable. In view of the examples in [9,21], this could be the starting point
for L p-semigroup theory for a class of Hamilton–Jacobi–Bellman equations.
In the sequel, we consider finite partitions P := {π ⊂ [0,∞) : 0 ∈ π, π finite}.

For a partition π = {t0, t1, . . . , tm} ∈ P with 0 = t0 < t1 < . . . < tm , we define
|π |∞ := max j=1,...,m(t j − t j−1), and we set |{0}|∞ = 0. The set of partitions with
end-point t is denoted by Pt , i.e., Pt := {π ∈ P : maxπ = t}.

Assume that the set {Sλ(t)x : λ ∈ �} is bounded above for all x ∈ X and all t > 0.
Let x ∈ X . Then, we set

Jhx := sup
λ∈�

Sλ(h)x

for all h > 0 and

Jπ x := Jt1−t0 · · · Jtm−tm−1x

for any partition π = {t0, t1, . . . , tm} ∈ P with 0 = t0 < t1 < . . . < tm . Notice that
for x ∈ X and h1, h2 ≥ 0,

Sλ(h1 + h2)x = Sλ(h1)Sλ(h2)x ≤ Jh1 Jh2x

for all λ ∈ �, which implies that Jh1+h2x ≤ Jh1 Jh2x . In particular,

Jπ1x ≤ Jπ2x (4.1)

for all x ∈ X and π1, π2 ∈ P with π1 ⊂ π2.

Theorem 4.2. Assume that, for all t ≥ 0, there is a bounded operator C(t) : X → X
with Jπ x ≤ C(t)x for all π ∈ Pt and x ∈ X. Then, the semigroup envelope S =
(S(t))t∈[0,∞) of (Sλ)λ∈� exists, is a convex monotone semigroup, and is given by

S(t)x = sup
π∈Pt

Jπ x (4.2)

for all t ≥ 0 and x ∈ X. If C(t)x → x as t ↓ 0 for all x ∈ X and Sλ0 is a C0-
semigroup for some λ0 ∈ �, then S is a C0-semigroup. Moreover, if Sλ is sublinear
for all λ ∈ �, then the semigroup envelope S is sublinear.

Proof. Clearly, we have that Sλ(h)x ≤ Jhx for all λ ∈ �, h > 0 and all x ∈ X .
Moreover, since Sλ is monotone and convex for all λ ∈ �, it follows that Jh is
monotone and convex for all h ≥ 0. Consequently, Jπ is monotone and convex with
Sλ(t)x ≤ Jπ x ≤ C(t)x for all λ ∈ �, t ≥ 0, π ∈ Pt and x ∈ X , showing that
S = (S(t))t≥0, given by (4.2), is well defined, monotone, convex and an upper bound
of the family (Sλ)λ∈�. Moreover, one directly sees that S is sublinear as soon as all
Sλ are sublinear. From

Sλ0(t)x ≤ S(t)x ≤ C(t)x and Sλ0(t)x − x ≤ S(t)x − x ≤ C(t)x − x,
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it follows that

‖S(t)x‖ ≤ ‖Sλ0(t)x‖ + ‖C(t)x‖
and

‖S(t)x − x‖ ≤ ‖Sλ0(t)x − x‖ + ‖C(t)x − x‖
for all t ≥ 0, x ∈ X and some λ0 ∈ �. This implies that S(t) is bounded for all t ≥ 0,
and that limt↓0 S(t)x = x as soon as C(t)x → x as t ↓ 0 and Sλ0 is a C0-semigroup
for some λ0 ∈ �. Next, we show that S = (S(t))t≥0, defined by (4.2), is a semigroup.
Clearly, S(0)x = x for all x ∈ X . In order to show that S(t + s) = S(t)S(s) for all
s, t ≥ 0, let s, t ≥ 0 and x ∈ X . Then, it is easily seen that S(t + s)x ≤ S(t)S(s)x
since, by Eq. (4.1), for all π ∈ Pt+s ,

Jπ x ≤ Jπ0 Jπ1x,

where π0 := {u ∈ π : u ≤ t} ∪ {t} and π1 := {u − t : u ∈ π, u ≥ t} ∪ {0}. On the
other hand, there exists a sequence (πn)n in Ps with S(s)x = supn∈N Jπn x . Defining

π∗
n :=

n⋃
k=1

πk

for all n ∈ N, we obtain that Jπ∗
n
x → S(s)x , by the σ -order continuity of the norm.

Consequently,

Jπ S(s)x = lim
n→∞ Jπ Jπ∗

n
x ≤ S(t + s)x

for all π ∈ Pt , where, in the first equality, we used the fact that Jπ is continuous since,
by Lemma A.2, it is convex and bounded. Taking the supremum over all π ∈ Pt , we
obtain that S(t)S(s)x ≤ S(t + s)x .

Finally, let T be an upper bound of (Sλ)λ∈�. Then, Jhx ≤ T (h)x for all h > 0 and
all x ∈ X and consequently Jπ x ≤ T (t)x for all t ≥ 0, π ∈ Pt and x ∈ X , which
shows that S(t)x ≤ T (t)x for all t ≥ 0 and x ∈ X . �

Remark 4.3. The proof of Theorem 4.2 shows that under the additional assumption
that X is a KB-space (cf. [28, Chapter 7]), i.e., a Banach lattice in which every norm
bounded increasing net in X is norm convergent, the existence of the semigroup
envelope can be established under the slightly weaker condition

sup
π∈Pt

‖Jπ x‖ < ∞ (4.3)

for all x ∈ X and t ≥ 0, instead of Jπ x ≤ C(t)x for all π ∈ Pt and x ∈ X . A
condition ensuring the strong continuity in this case would be

sup
π∈Pt

‖Jπ x − x‖ → 0 as t → 0 (4.4)
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for all x ∈ X instead of C(t)x → x as t → 0. Although every L p-space, for
p ∈ [1,∞), is a KB-space (cf. [20, Corollary 2.4.13]), (4.4) is usually not a very handy
condition, and the pointwise estimate in terms of C(t) gives additional possibilities to
verify the strong continuity, see, for instance, Theorem 5.2 (ii).

Corollary 4.4. Let the semigroup T be an upper bound of the family (Sλ)λ∈�. Then,
the semigroup envelope of (Sλ)λ∈� exists and is given by (4.2). If T is a C0-semigroup
and Sλ0 is a C0-semigroup for some λ0 ∈ �, then S is a C0-semigroup.

Proof. As we saw in the proof of the previous theorem, Sλ(t)x ≤ Jπ x ≤ T (t)x for
all λ ∈ �, t ≥ 0, π ∈ Pt and x ∈ X . Therefore, the upper bound C(t) in the previous
theorem can be chosen to be T (t). �

Corollary 4.5. Let S be the semigroup envelope of the family (Sλ)λ∈�. Then,

S(t)x = sup
π∈Pt

Jπ x

for all t ≥ 0 and x ∈ X.

5. Convolution semigroups on L p

Let d ∈ N. In [9], the semigroup envelope, discussed in the previous section, has
been constructed for a wide class of Lévy processes. In [9, Example 3.2], the authors
consider families (Sλ)λ∈� of linear semigroups on the space BUC = BUC(Rd) of
bounded uniformly continuous functions, which are indexed by a Lévy triplet λ =
(b, �,μ). Recall that a Lévy triplet (b, �,μ) consists of a vector b ∈ R

d , a symmetric
positive semidefinite matrix � ∈ R

d×d and a Lévy measure μ on R
d . For each Lévy

triplet λ, the semigroup Sλ is the one generated by the transition kernels of a Lévy
process with Lévy triplet λ. More precisely,

(
Sλ(t) f

)
(x) := E

[
f (x + Lλ

t )
]

(5.1)

for t ≥ 0, f ∈ BUC and x ∈ R
d , where Lλ

t is a Lévy process on a probability
space (,F ,P) with Lévy triplet λ. In [9, Example 3.2], it was shown that, under the
condition

sup
(b,�,μ)∈�

|b| + |�| +
∫
Rd\{0}

1 ∧ |x |2 dμ(x) < ∞, (5.2)

the semigroup envelope SBUC for the family (Sλ)λ∈� exists and that in this case (cf.
[9, Lemma 5.10])

lim
h↓0

∥∥∥∥ SBUC(h) f − f

h
− sup

λ∈�

Aλ f

∥∥∥∥∞
= 0 for f ∈ BUC2. (5.3)

Here, BUC2 = BUC2(Rd) is the space of all twice differentiable functions with
bounded uniformly continuous derivatives up to order 2 and Aλ is the generator of
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the semigroup Sλ for each λ ∈ �. Notice that the setup in [9] is not contained in the
setup of the previous subsection since BUC is not Dedekind super complete and does
not possess a σ -order continuous norm. Recall that, for each Lévy triplet λ, (5.1) also
gives rise to a linear monotone C0-semigroup on L p = L p(Rd), which will again be
denoted by Sλ (cf. [1, Theorem 3.4.2]). Therefore, the question arises if under a similar
condition as (5.2), the semigroup envelope of the family (Sλ)λ∈� can be constructed
on L p. In general, the answer to this question is negative as the following example
shows.

Example 5.1. (Uncertain shift semigroup) Let d = 1 and (Sλ(t) f )(x) := f (x + tλ)

for λ ∈ � := [−1, 1], t ≥ 0, f ∈ L p(R) and x ∈ R. Then, for f ∈ L p(R) given by
f (x) = |x |−1/2p1[−1,1](x),

sup
λ∈�

(Sλ(t) f )(x) = ∞ for all t ≥ 0 and x ∈ [−t, t].

Therefore, the set {Sλ(t) f : λ ∈ �} does not have a least upper bound in L p for all
t > 0. In particular, the semigroup envelope of the family (Sλ)λ∈� does not exist
although the set � satisfies condition (5.2).

In view of the previous example, additional conditions are required in order to
guarantee the existence of the semigroup envelope on L p. In the sequel, letC∞

c denote
the space of all C∞-functions f : Rd → R with compact support supp f .

Theorem 5.2. Let � be a non-empty set of Lévy triplets that satisfies (5.2).

(i) Assume that, for each t > 0, there exists a bounded operator C(t) : L p → L p

with
Jπ f ≤ C(t) f for all t > 0, π ∈ Pt and f ∈ L p. (5.4)

Then, the semigroup envelope S of (Sλ)λ∈� exists, and is a monotone sublinear
semigroup.

(ii) In addition to (5.4), assume that

sup
λ∈�

Aλ f ∈ L p for all f ∈ C∞
c (5.5)

and that, for every f ∈ C∞
c and every ε > 0, there exists a compact set K ⊂ R

d

with supp f ⊂ K and

lim sup
h↓0

( ∫
Rd\K

∣∣(C(h) f
)
(x)

∣∣p
h

dx

)1/p

≤ ε. (5.6)

Then, the semigroup S is a C0-semigroup, C∞
c ⊂ D(A) and

A f = sup
λ∈�

Aλ f

for all f ∈ C∞
c , where A denotes the generator of S.
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Proof. (i) By Theorem 4.2, it is clear that (5.4) implies the existence of the semigroup
envelope S and that the latter is monotone and sublinear.

(ii) Let f ∈ C∞
c . We show that f ∈ D(A) with A f = supλ∈� Aλ f =: B f . Let

ε > 0. By (5.5) and (5.6), there exists some compact set K ⊂ R
d with supp f ⊂ K

and( ∫
Rd\K

∣∣(B f
)
(x)

∣∣pdx
)1/p

≤ ε

4
and

( ∫
Rd\K

∣∣(C(h)g
)
(x)

∣∣p
h

dx

)1/p

≤ ε

4

for g = f,− f and h > 0 sufficiently small. Since f ∈ C∞
c ⊂ BUC2 ∩ L p, it follows

that S(t) f = SBUC(t) f for all t ≥ 0. Hence, by (5.3),∥∥∥∥ S(h) f − f

h
− B f

∥∥∥∥
p

≤ vol(K )1/p
∥∥∥∥ S(h) f − f

h
− B f

∥∥∥∥∞

+
( ∫

Rd\K
∣∣(B f

)
(x)

∣∣pdx
)1/p

+
( ∫

Rd\K

∣∣(S(h) f
)
(x)

∣∣p
h

dx

)1/p

≤ ε

for h > 0 sufficiently small, where vol(K ) denotes the Lebesgue measure of K .
In particular, ‖S(h) f − f ‖p → 0 for all f ∈ C∞

c . Since C∞
c is dense in L p and

S(t) : L p → L p is continuous, this implies the strong continuity of S. �
Notice that the semigroup envelope from the previous theorem is exactly the ex-

tension of the semigroup envelope on BUC, constructed in [9], to the space L p. More
precisely, for each t ≥ 0, the operator S(t) is the unique bounded monotone sublinear
operator L p → L p with S(t) f = SBUC(t) f for all f ∈ BUC∩ L p. We will now give
two examples of Lévy semigroups (Sλ)λ∈�, where the semigroup envelope exists on
L p. The first one is a semilinear version of Example 5.1. The problem in Example 5.1
arises due to shifting sufficiently integrable poles. In order to treat this problem, one
first has to smoothen a given function f ∈ L p via a suitable normal distribution and
then shift the smooth version of f . This results in the following example.

Example 5.3. (g-expectation) Let d ∈ N, p ∈ [1,∞), and

ϕλ(t, x) := (2π t)−d/2e− |x+λt |2
2t for λ, x ∈ R

d and t > 0.

For λ ∈ R
d , we consider the linear C0-semigroup Sλ = (Sλ(t))t∈[0,∞) in L p =

L p(Rd) given by Sλ(0) f = f and

(
Sλ(t) f

)
(x) :=

∫
Rd

f (y)ϕλ(t, x − y) dy = (
f ∗ ϕλ(t, · ))(x) = E

[
f (x + Wt + λt)

]

for all t > 0, f ∈ L p and x ∈ R
d , where (Wt )t∈[0,∞) is a d-dimensional Brownian

motion on a probability space (,F ,P). For each λ ∈ �, the generator Aλ of Sλ is
given by D(Aλ) = W 2,p and

Aλ f = 1
2� f + λ · ∇ f for f ∈ W 2,p,
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where� denotes the Laplacian, ‘ · ’ is the scalar product inRd , andW 2,p = W 2,p(Rd)

stands for the L p-Sobolev space of order 2; see also [19, Theorem 3.1.3] for the
generationof aC0-semigroup in L p and [26,Theorem31.5] for the connectionbetween
generator and Lévy triplet. Now, let � ⊂ R

d be bounded and non-empty, and define

(
Jh f

)
(x) := sup

λ∈�

(
Sλ(h) f

)
(x) for h ≥ 0, f ∈ L p and x ∈ R

d . (5.7)

Notice that, for h > 0, Sλ(h) f ∈ BUC for all f ∈ L p, which is why the supremum
in (5.7) can be understood pointwise for h > 0.
We show that the conditions of Theorem 5.2 are satisfied. For the construction of

an upper bound, we use the relation

ϕλ(h, x − y) = e−λ·(x−y)−h|λ|2/2ϕ0(h, x − y)

for all λ ∈ R
d , h > 0 and x, y ∈ R

d . With this and Hölder’s inequality, it follows that

(
Jh f

)
(x) = sup

λ∈�

∫
Rd

f (y)e−λ·(x−y)−h|λ|2/2ϕ0(h, x − y) dy

= sup
λ∈�

E

[
f (x + Wh)e

−λ·Wh−h|λ|2/2]

≤
(
E

[| f (x + Wh)|p
])1/p

sup
λ∈�

(
e−qh|λ|2/2

E
[
e−qλ·Wh

])1/q

=
(
E

[| f (x + Wh)|p
])1/p

sup
λ∈�

e(q−1)h|λ|2/2

=
(
E

[| f (x + Wh)|p
])1/p

e(q−1)hλ
2
/2 =: (

C(h) f
)
(x),

where λ := supλ∈� |λ| and 1
p + 1

q = 1. As

[
(C(h) f )(x)

]p = eqhλ
2
/2[| f |p ∗ ϕ0(h, · )](x),

we obtain that C(h1)C(h2) = C(h1 + h2) for h1, h2 > 0. Therefore,

Jπ f ≤ C(t1 − t0) · · ·C(tm − tm−1) f = C(tm) f

for any partition π = {t0, t1, . . . , tm} ∈ P with 0 = t0 < t1 < . . . < tm . By Fubini’s
theorem,

‖C(h) f ‖p
p = eqhλ

2
/2

∫
Rd

∫
Rd

| f (x − y)|pϕ0(h, y) dy dx = eqhλ
2
/2‖ f ‖p

p

for all h > 0 and f ∈ L p, showing that C(h) : L p → L p is bounded.
Now, let f ∈ C∞

c . We consider

(B f )(x) := sup
λ∈�

(Aλ f )(x) = 1
2� f (x) + sup

λ∈�

λ · ∇ f (x) (5.8)
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for x ∈ R
d . As, for every λ ∈ � and x ∈ R

d ,

|λ · ∇ f (x)| ≤
d∑
j=1

|λ j | |∂ j f (x)| ≤ λ

d∑
j=1

|∂ j f (x)|,

we obtain

‖B f ‖L p ≤ C
(‖� f ‖L p + λ‖∇ f ‖L p(Rd ;Rd )

) ≤ C max{1, λ}‖ f ‖W 2,p , (5.9)

with a constant C independent of f and �, which shows, in particular, that B f ∈ L p

for all f ∈ C∞
c .

It remains to verify (5.6). Let f ∈ C∞
c , and choose a compact set K ⊂ R

d with
{x + y : x ∈ supp f, |y| ≤ 1} ⊂ K . For x ∈ R

d \ K , we obtain f (x + Wh) = 0 if
|Wh | ≤ 1, and therefore,

(| f |p ∗ ϕ0(h, · ))(x) = E
(| f (x + Wh)|p

) = E
(
1{|Wh |>1}| f (x + Wh)|p

)
.

By Fubini’s theorem and Markov’s inequality, for any s > 2,

1

h

∫
Rd\K

E
(
1{|Wh |>1}| f (x + Wh)|p

)
dx = 1

h
E

[
1{|Wh |>1}

∫
Rd\K

| f (x + Wh)|p dx
]

≤ 1

h
‖ f ‖p

p P(|Wh | > 1) = 1

h
‖ f ‖p

p P
(|W1| > h−1/2) ≤ hs/2−1

E
[|W1|s

] → 0

as h ↓ 0. By definition of C(h), it follows that 1
h

∫
Rd\K

∣∣(C(h) f
)
(x)

∣∣p dx → 0 as
h ↓ 0. We have seen that all conditions of Theorem 5.2 are satisfied, and therefore,
the semigroup envelope S = (S(t))t∈[0,∞) of (Sλ)λ∈� exists and is a sublinear mono-
tone C0-semigroup. In particular, we obtain a unique classical solution to the Cauchy
problem

u′(t) = Au(t) for all t ≥ 0 u(0) = f (5.10)

in the sense of Corollary 3.8 for all initial values f ∈ D(A), where A is the generator
of S.
As the map R

d → R, x 	→ supλ∈� λ · x is Lipschitz (which follows, e.g., by
Lemma A.7), the same holds for the nonlinearity

F : W 1,p → L p, f 	→ sup
λ∈�

λ · ∇ f,

where W 1,p = W 1,p(Rd) denotes the L p-Sobolev space of order 1. In particular, the
operator B : W 2,p → L p, f 	→ supλ∈� Aλ f , is well defined and Lipschitz. Now
let f ∈ W 2,p, and let ( fn)n∈N be a sequence in C∞

c with ‖ f − fn‖W 2,p → 0. By
the Lipschitz continuity of B, it follows that (B fn)n∈N is a Cauchy sequence in L p

and therefore convergent. By Theorem 5.2, we have A fn = B fn for all n ∈ N, and
as the generator A of S is closed due to Proposition 3.4, we obtain f ∈ D(A) with
A f = B f . Therefore, we see that B ⊂ A (see Theorem 3.5). As the nonlinearity F is
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Lipschitz continuous as a map from W 1,p to L p, it can be shown that all assumptions
of [19, Prop. 7.1.10 (iii)] are satisfied. Therefore, for every f ∈ W 2,p there exists a
solution u ∈ C1([0,∞); L p) with u(t) ∈ W 2,p for all t ≥ 0 that solves the Cauchy
problem

u′(t) = Bu(t) for all t > 0, u(0) = f.

ByTheorem 3.5, it follows that u(t) = S(t) f for all t ≥ 0 and f ∈ W 2,p. In particular,
W 2,p is S(t)-invariant for all t ≥ 0. Therefore, S is the unique continuous extension
of the solution operator f 	→ u(·, f ), which is defined onW 2,p. Moreover, we obtain
the existence of a classical solution to u′ = Au for initial data in D(A), which is
a superset of W 2,p. Notice that we did not use results from PDE theory in order to
obtain the well-posedness (in particular the existence and uniqueness of a solution) of
the above Cauchy problem (5.10).

Example 5.4. (Compound Poisson processes) Let μ : B(Rd) → [0, 1] be a fixed
probability measure. For λ ≥ 0, t ≥ 0, f ∈ L p and x ∈ R

d , let

(
Sλ(t) f

)
(x) := e−λt

∞∑
n=0

(λt)n

n!
∫
Rd

· · ·
∫
Rd

f (x + y1 + . . . + yn) dμ(y1) · · · dμ(yn).

Then, Sλ is the semigroup corresponding to a compound Poisson processwith intensity
λ ≥ 0 and jump distribution μ. Now, let � ⊂ [0,∞) be bounded, λ := inf � and
λ := sup�. Let

Jh f := sup
λ∈�

Sλ(h) f for h ≥ 0 and f ∈ L p.

Then, by Jensen’s inequality,

(
Jh f

)
(x) ≤

(
sup
λ∈�

e−λh
∞∑
n=0

(λh)n

n!
∫
Rd

· · ·
∫
Rd

| f (x + y1 + · · · + yn)|p dμ(y1) · · · dμ(yn)

)1/p

≤ e
(
λ−λ

)
h((Sλ(h)| f |p)(x))1/p =: (

C(h) f
)
(x)

for all h ≥ 0, f ∈ L p and x ∈ R
d . As before, we see that C(h1)C(h2) = C(h1 + h2)

for all h1, h2 > 0 and

Jπ f ≤ C(t1 − t0) · · ·C(tm − tm−1) f = C(tm) f

for any partition π = {t0, t1, . . . , tm} ∈ P with 0 = t0 < t1 < . . . < tm . Again, by
Fubini’s theorem,

‖C(h) f ‖p = e
(
λ−λ

)
h‖ f ‖p
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for all h ≥ 0 and f ∈ L p, showing that C(h) : L p → L p is bounded. Let f ∈ C∞
c .

It remains to show that 1
h

∫
Rd\K

∣∣(C(h) f
)
(x)

∣∣p dx < ε for h > 0 sufficiently small.
However, this follows from the fact that

∫
Rd

∣∣∣∣
(
Sλ(h)| f |p)(x) − | f (x)|p

h

−λ

∫
Rd

| f (x + y)|p − | f (x)|p dμ(y)

∣∣∣∣ dx → 0 as h ↓ 0.

By Theorem 5.2, the semigroup envelope S = (S(t))t∈[0,∞) of (Sλ)λ∈� exists, and is
a monotone, bounded and sublinear C0-semigroup. Let B : L p → L p be given by

(B f )(x) := sup
λ∈�

λ

∫
Rd

(
f (x + y) − f (y)

)
dμ(y) for f ∈ L p and x ∈ R

d .

Then, we have A = B on C∞
c by Theorem 5.2. Since B is bounded and sublinear, and

thus globally Lipschitz (see Lemma A.7), A is closed by Proposition 3.4 and C∞
c is

dense in L p, it follows that D(A) = L p and therefore A = B. In particular, we obtain
a classical solution in the sense of Corollary 3.8 to the initial value problem

u′(t) = Au(t) = Bu(t) for all t ≥ 0, u(0) = f,

for all initial values f ∈ L p.
Finally, we remark that due to the global Lipschitz continuity of B, we can also

apply the theorem of Picard–Lindelöf to obtain a unique solution u = u(·, f ) to the
abstract initial value problem

u′(t) = Bu(t) for all t ≥ 0, u(0) = f,

for all f ∈ L p. By Theorem 3.5, it follows that u(t, f ) = S(t) f for all t ≥ 0 and
f ∈ L p.
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Appendix A. Bounded convex operators

Let X and Y be Banach lattices. For an operator S : X → Y , we define Sx : X → Y
by Sx y := S(x + y) − Sx for all x, y ∈ X . Recall that S : X → Y is bounded if
‖S‖r < ∞ for all r > 0, where

‖S‖r := sup
x∈B(0,r)

‖Sx‖.

Here, B(x0, r) := {x ∈ X : ‖x − x0‖ ≤ r} for x0 ∈ X and r > 0.

Lemma A.1. Let S : X → Y be convex with S0 = 0 and r > 0 with b := ‖S‖r < ∞.
Then,

‖Sx‖ ≤ 2b
r ‖x‖

for all x ∈ B(0, r).

Proof. Let x ∈ B(0, r). For x = 0, the statement holds by assumption. For x �= 0,
the convexity of S implies that

Sx ≤ ‖x‖
r S

(
r

‖x‖ x
)

and Sx ≥ −S(−x) ≥ −‖x‖
r S

(
− r

‖x‖ x
)
,

so that

‖Sx‖ ≤ ‖x‖
r

(∥∥S( r
‖x‖ x

)∥∥ + ∥∥S( − r
‖x‖ x

)∥∥)
≤ 2b

r ‖x‖.

�

The following two lemmas aim to clarify the difference between convex continuous
and convex bounded operators.

Lemma A.2. Let S : X → Y be convex. Then, the following statements are equiva-
lent:

(i) S is continuous.
(ii) For all x ∈ X, there exists some r > 0 such that ‖Sx‖r < ∞.

Proof. Let x ∈ X and r > 0 with b := ‖Sx‖r < ∞. Then, since Sx is convex with
Sx (0) = 0, we obtain from Lemma A.1 that

‖Sx y‖ ≤ 2b
r ‖y‖ for all y ∈ B(0, r).

This shows that Sx is continuous at 0, i.e., S is continuous at x .
Now, assume that there exists some x ∈ X such that ‖Sx‖r = ∞ for all r > 0.

Then, there exists a sequence (yn)n in X with yn → 0 and ‖Sx yn‖ ≥ n. Therefore,
the sequence (Sx yn)n in Y is unbounded, and thus not convergent. This shows that Sx
is not continuous at 0, i.e., S is not continuous at x . �

Lemma A.3. Let S : X → Y . Then, the following statements are equivalent:
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(i) S is bounded.
(ii) For all x ∈ X and all r > 0, it holds ‖Sx‖r < ∞.

Proof. Clearly, (ii) implies (i) by considering x = 0 in (ii). Therefore, assume that S
is bounded. Then, for every x ∈ X and r > 0, one has ‖Sx‖r ≤ 2‖S‖‖x‖+r < ∞. �

Corollary A.4. Let S : X → Y be bounded and convex. Then, S is Lipschitz on
bounded subsets, i.e., for every r > 0, there exists some L > 0 such that ‖Sx − Sy‖ ≤
L‖x − y‖ for all x, y ∈ B(0, r).

Proof. Let x, y ∈ B(0, r), so that x − y ∈ B(0, 2r). As in the proof of Lemma A.3,
it follows that

‖Sx‖2r ≤ 2‖S‖‖x‖+2r ≤ 2‖S‖3r =: b.

Hence, it follows from Lemma A.1 that ‖Sy − Sx‖ = ‖Sx (y − x)‖ ≤ b
r ‖y − x‖. �

In the previous two lemmas, we have seen that, for a convex operator S : X → Y ,
boundedness implies continuity. The following example shows that a convex and
continuous operator S : X → Y is not necessarily bounded.

Example A.5. Let X = c0 := {
(xn) in R : xn → 0 as n → ∞}

be endowed with the
supremum norm ‖ · ‖∞ and Y = R. Then, X and Y are two Banach lattices. We define
S : X → Y by

Sx := sup
n∈N

|xn|n .

Notice that S is well defined, since for every x ∈ X , there exists some n0 ∈ N such
that |xn| ≤ 1 for all n ∈ N with n ≥ n0. We first show that S : X → Y is convex. For
λ ∈ [0, 1] and x, y ∈ X , one has

∣∣λxn + (1 − λ)yn
∣∣n ≤ λ|xn|n + (1 − λ)|yn|n

for all n ∈ N, which implies that

S
(
λx + (1 − λ)y

) = sup
n∈N

∣∣λxn + (1 − λ)yn
∣∣n ≤ λSx + (1 − λ)Sy.

Next,we show that S is continuous. Let x ∈ X and ε ∈ (0, 1]. Then, there exists n0 ∈ N

such that |xn| ≤ ε
3 for all n ∈ N with n ≥ n0. Now, let y ∈ X with ‖x − y‖∞ ≤ ε

3
and ‖x − y‖∞ is sufficiently small such that

∣∣|xn|n − |yn|n
∣∣ ≤ ε for all n ∈ N with n < n0.

For n ∈ N with n ≥ n0, one has

|xn| + |yn| ≤ 2|xn| + ‖x − y‖∞ ≤ ε.
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Hence, for all n ∈ N with n ≥ n0,

∣∣|xn|n − |yn|n
∣∣ ≤ |xn|n + |yn|n ≤ |xn| + |yn| ≤ ε.

Altogether,

|Sx − Sy| ≤ sup
n∈N

∣∣|xn|n − |yn|n
∣∣ ≤ ε.

So far, we have shown that S : X → Y is convex and continuous. However, S is not
bounded. To that end, let ek denote the k-th unit vector. Then, 2ek ∈ B(0, 2) for all
k ∈ N, but S(2ek) = 2k → ∞.

In the sublinear case, the notions of continuity and boundedness are equivalent.

Lemma A.6. Let S : X → Y be sublinear. Then, S is bounded, if and only if it is
continuous, if and only if it is continuous at 0.

Proof. We have already seen that boundedness implies continuity. Therefore, assume
that S is continuous at 0. Then, there exists some r > 0 such that ‖S‖r < ∞. Since S
is positive homogeneous, it follows that ‖S‖r < ∞ for all r > 0. �

Lemma A.7. Let S : X → Y be sublinear and continuous. Then, S is Lipschitz, i.e.,
there exists some L > 0 such that ‖Sx − Sy‖ ≤ L‖x − y‖ for all x, y ∈ X.

Proof. Let L := 2‖S‖1 which is finite by Lemma A.6. Fix x, y ∈ X . By sublinearity,
it holds

Sx − Sy ≤ S(x − y) ≤ |S(x − y)| + |S(y − x)|.

By a symmetry argument, it follows that

|Sx − Sy| ≤ |S(x − y)| + |S(y − x)|.

Hence,

‖Sx − Sy‖ ≤ ‖S(x − y)‖ + ‖S(y − x)‖ ≤ L‖x − y‖.

�

Recall that convex monotone operators are continuous. For the sake of a self-
contained exposition, we provide a short proof. We refer, e.g., to Bátkai et al. [3]
for a similar proof in the linear case.

Lemma A.8. Let S : X → Y . Then, the following properties hold:

(a) If S is convex and monotone, then it is continuous.
(b) If S is positive homogeneous and monotone, then it is bounded.
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Proof. a) Let X+ := {x ∈ X : x ≥ 0}. Suppose by way of contradiction that S is not
continuous at x ∈ X . Then, there exists a sequence (xn) in X with xn → 0 such that

‖Sx (xn)‖ = ‖S(xn + x) − S(x)‖ ≥ δ

for all n and some δ > 0. Since Sx is monotone it holds ‖Sx xn‖ ≤ ‖Sx |xn|‖. Hence,
we may assume that xn ∈ X+ and ‖xn‖ ≤ 1

n2n for all n ∈ N by possibly passing to a
subsequence. Define y := ∑

n∈N nxn ∈ X+. Then, for every λ ∈ (0, 1] one has

λy =
∑
n

λnxn ≥ xn ≥ 0

for all n ∈ N with λn ≥ 1. By monotonicity of S, it follows that ‖Sx (λy)‖ ≥
‖Sx (xn)‖ ≥ δ for all n ∈ N large enough. Since y ∈ X+, the function [0, 1] → R,
λ 	→ ‖Sx (λy)‖ is convex and monotone and therefore continuous at 0. This shows
that

0 = ‖Sx (0)‖ = lim
λ↓0 ‖Sx (λy)‖ ≥ δ > 0,

which is a contradiction.
(b) Assume that ‖S‖r = ∞ for some r > 0. Then, there exists a sequence (xn)

in B(0, r) with ‖Sxn‖ ≥ n2n . As in part a), due to the monotonicity of S, we may
assume that xn ≥ 0. Define x := ∑

n∈N 2−nxn ∈ B(0, r). By monotonicity, we obtain
that 0 ≤ S(2−nxn) ≤ S(x) for all n ∈ N, so that

‖Sx‖ ≥ ‖S(2−nxn)‖ = 2−n‖S(xn)‖ ≥ n

for all n ∈ N. Letting n → ∞, this leads to a contradiction. �

The results in Sect. 2 strongly rely on the following uniform boundedness principle
for convex continuous operators.

Theorem A.9. Let S be a family of convex continuous operators X → Y . Assume
that supS∈S ‖Sx‖ < ∞ for all x ∈ X.

(i) There exists some r > 0 such that

sup
S∈S

‖S‖r < ∞.

(ii) For every x0 ∈ X, there exists some r > 0 such that

sup
x∈B(x0,r)

sup
S∈S

‖Sx‖r < ∞.

Proof. (i) By Baire’s category theorem, there exist c > 0, x1 ∈ X and r > 0 such
that

‖Sx‖ ≤ 2c
3
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for all S ∈ S and x ∈ B(x1, 4r). If x1 = 0, the proof is finished. Hence, assume that
x1 �= 0 and define

x0 :=
(
1 − 2r

‖x1‖
)
x1.

Since ‖x0 − x1‖ ≤ 2r , it follows that B(x0, 2r) ⊂ B(x1, 4r). By assumption,

d := sup
S∈S

1
2‖S(−x0)‖ + 2

∥∥S( x0
2

)∥∥ < ∞.

Now, let x ∈ B(0, r) and S ∈ S. Then,

Sx = S
( x0+2x

2 − x0
2

) ≤ 1
2

(
S(x0 + 2x) + S(−x0)

)

and

2S
( x0
2

) − S(x0 − x) = 2S
( x+(x0−x)

2

) − S(x0 − x) ≤ Sx .

We thus obtain that

‖Sx‖ ≤ 1
2

∥∥S(x0 + 2x) + S(−x0)
∥∥ + ∥∥2S( x0

2

) − S(x0 − x)
∥∥

≤ 1
2‖S(x0 + 2x)‖ + ‖S(x0 − x)‖ + 1

2‖S(−x0)‖ + 2
∥∥S( x0

2

)∥∥
≤ c + d.

(ii) Let x0 ∈ X . Then, supS∈S ‖Sx0x‖ < ∞ for all x ∈ X . By part a), there exist
b ≥ 0 and r > 0 such that

sup
S∈S

‖Sx0‖2r ≤ b
2 .

Now, let S ∈ S, x ∈ B(x0, r) and y ∈ B(0, r). Then, x + y ∈ B(x0, 2r) and

Sx y = Sx0(x + y − x0) − Sx0(x − x0).

Therefore, ‖Sx y‖ ≤ ‖Sx0(x + y − x0)‖ + ‖Sx0(x − x0)‖ ≤ b. �
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