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Abstract

Non-Market Wealth, Background Risk and Portfolio Choice

We examine the effects of non-portfolio risks on optimal portfolio choice. Ex-
amples of non-portfolio risks include, among others, uncertain labor income,
uncertainty about the terminal value of fixed assets such as housing and
uncertainty about future tax liabilities . In particular, while some of these
risks are added to portfolio value and have been amply studied, others are
multiplicative in nature and have received far less attention. Moreover, the
combined effects of multiple risks lead to some seemingly paradoxical choice
behavior. We rationalize such behavior and we show how non-portfolio risks
might lead to seemingly U-shaped relative risk aversion for a representative
investor, as found empirically by Ait-Sahilia and Lo (2000) and Jackwerth
(2000).

JEL classification: G 11

Keywords: Portfolio choice, Derived relative risk aversion, Additive back-
ground risk, Multiplicative background risk
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1 Introduction

It is well known that non-portfolio assets play a non-trivial role in deciding
upon an investment strategy. For example, labor income and its inherent
risks can play a substantial role in portfolio choice.1 Or consider an employee
saving for retirement, who is expecting to receive a large inheritance from
her rich uncle sometime before she retires. A promised $100,000 inheritance
at some point in the future is no different than owning a zero-coupon bond
today. That is of course as long as the promise is kept. But what if the
uncle is not quite so rich; or what if the uncle does not die prior to his niece’s
retirement; or what if the uncle never really liked his niece anyway; or what
if the uncle actually had twice as much money as everyone thought?

In general, the expected inheritance (or expected future salary) tends to
make one’s observed behavior seem less risk averse, since the individual buys
fewer bonds for her investment portfolio. On the other hand, as shown
by Eeckhoudt and Kimball (1992), Gollier and Pratt (1996) and by Viceira
(2001), the riskiness of this future source of wealth can lead to observed
behavior that seems more risk averse, ceteris paribus.

As we show below, the interaction of these two effects alone is enough to
make an individual whose underlying preferences exhibit constant relative
risk aversion (CRRA) behave in financial markets as if her risk aversion was
U-shaped, exhibiting decreasing relative risk aversion (DRRA) at low wealth
levels followed by increasing relative risk aversion (IRRA) at higher wealth
levels. Such an observation is not innocuous. Indeed in a very well crafted
empirical study, Ait-Sahalia and Lo (2000) back out the risk aversion of a
representative agent in an equilibrium setting using market data and they
show that observed relative risk aversion exhibits such U-shaped behavior.
A similar result was found independently by Jackwerth (2000).

In addition to such non-portfolio types of assets, other types of outside risks
might also affect portfolio choice. For example, an individual saving for a
particular purpose will be concerned with the purchasing power of her future
portfolio wealth. Someone saving for a future college education for her son,

1See, for example Bodie et al (1992), Viceira (2001), Campbell and Viceira (2002) and
Coco et al (2005).
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for example, will be concerned with future tuition costs and other educa-
tion related expenses. Although some inflation hedging may be possible,
there will be some residual risk that is not. This is especially true for a
long-horizon investor. Moreover, unlike the additive nature of non-portfolio
assets, such risks are often multiplicative in nature: the purchasing power of
the whole investment portfolio might be one percent higher than expected,
or two percent lower.

One current direction of research looks towards the design of investment
instruments for such types of purposes. For example, papers by Bodie (2003)
and Merton (2003), as well as the book by Shiller (2003), suggest that future
research along these lines needs to be a primary focus in finance. However,
little has been done to examine the effects of such risks on simple portfolio-
investment strategies. For convenience, we label these risks, which affect
portfolio behavior but are not attached to the riskiness of the market assets
within a portfolio, as ”background risks.” In this paper we examine asset
allocation strategies for investors who face such types of ”background risks.”
We examine both additive and multiplicative types of background risks and
demonstrate some peculiar effects that might occur when both types of risks
exist concurrently.

We simplify the generic problem above by assuming that the background
risks are all independent of each other as well as independent of the market
risks associated with the stock portfolio. This is not done for the sake
of realism. Surely real-world examples of such background risks might be
correlated with other risks. However, such correlations lead to well-known
cross hedging strategies, which are not a part of our focus here. Instead we
are interested in the pure risk effects: How do such background risks, when
viewed as ”noise,” affect individual portfolio choice?

In line with a long tradition in portfolio theory, starting with Merton (1969,
1971), we assume that the investor is constant relative risk averse and that
the market portfolio follows a geometric random walk. Merton (1971) showed
that such an investor follows a portfolio allocation strategy that would invest
a constant proportion of wealth in stocks, in the absence of any background
risks. In a dynamic setting, such an investor would always rebalance her
portfolio back to this constant proportion, following any change in asset
valuation. This is our benchmark case. Our purpose in this paper is to
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show how observed behavior differs from this benchmark in the presence of
background risks.2

A good analogy might be as follows. Suppose that you can observe a repre-
sentative investor on the trading floor, but you are not able to observe these
background risks. What is it that you are likely to observe? Take the
simplest case of a fixed non-market wealth that the investor will receive at
the end of the trading period, say $100,000. Since the $100,000 is a perfect
substitute for market-purchased bonds, the first likely observation is that the
individual does not seem very risk averse, since she invests most if not all of
her wealth in stocks. However, suppose that stock prices rise dramatically.
Since the $100,000 fixed non-market wealth has not changed, our CRRA in-
vestor needs to buy proportionately more bonds in order to rebalance her
portfolio. Observing this behavior, our investor appears to become more
risk averse as she gets wealthier. Thus, our likely observation is of someone
with a lower level of risk aversion than the CRRA preferences would indicate,
and of someone not with CRRA preferences at all, but rather with relative
risk aversion that is increasing in wealth.3

If the inheritance is risky, we show how this added risk on its own leads
to more cautious investment behavior, i.e. investing in a higher proportion
of risk-free bonds. If we also add a multiplicative risk, such as uncertain
future tax rates on investment gains, the overall effect can become quite
unusual. For example, under CRRA, it follows trivially that an independent
multiplicative risk on the terminal portfolio value, in the absence of any
non-portfolio wealth, would have no effect on the proportion of stocks and
bonds held in the optimal portfolio. However, this does not imply that the
multiplicative risk does not affect the investor. The extra risk makes the
investor worse off. It is just that there is no change in the optimal portfolio

2We use the assumption of CRRA with geometric Brownina motion due to their historic
place in the finance literature. However, our main purpose is to demonstrate how any
”base case” scenario can be altered by the existence of these ”background risks.”

3In a very thought-provoking paper, Meyer and Meyer (2005) look at empirical research
about the level of risk aversion in CRRA models over the years and they explain much of
the difference in the empirical estimates by the use of different measures of ”total wealth”
for an individual. If total wealth is only portfolio wealth, for example, the estimates are
much different that when total wealth includes items such as pension wealth and/or the
value of owned real estate. See also Coco (2005).
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of stocks and bonds. Moreover, as we illustrate in the paper, in the presence
of risky non-portfolio assets, this multiplicative risk affects the investor’s
reaction to other background risks and, hence, her portfolio choice.

In the next section, we outline the basic portfolio model that we will use
throughout. We set up a somewhat common stylized model that includes
CRRA preferences as a base model. The main point we wish to make
is that various background risks can affect the behavior that one observes
in the financial marketplace. One can also start with other ”base cases”
with similar types of results. Also, we stress at the outset that we look
only at observed behavior for one individual and not at any type of general
equilibrium. The focus is on how background risks alter portfolio choice for
a given set of asset prices.

The outline of this paper is as follows. In the following section, we set up
the base model for portfolio choice absent any consideration of non-market
wealth or background risks. In section 3, we show how the presence of non-
market wealth affects portfolio decisions. Section 4 considers the inclusion
of a multiplicative background risk, which would not alter portfolio decisions
in the absence of non-market wealth, but does alter these decisions in the
presence of non-market wealth. In section 5, we illustrate our results by con-
sidering a numerical simulation of investment behavior in a state-contingent
claims framework. We then decompose this demand for contingent claims
into dynamic stock/bond allocation decisions in section 6, prior to conclud-
ing the paper.

2 Basic Portfolio Model

In this section, we set up the base model that we use throughout the rest
of the paper. Consider a risk-inverse investor who maximizes the expected
utility of wealth over a fixed investment horizon. We consider a pure in-
vestment problem and ignore intermediate consumption. We assume that
preferences are derived over the terminal value of wealth. For the sake of
concreteness, we assume that these preferences exhibit constant relative risk
aversion, with marginal utility of wealth w given by u′(w) = w−γ, where
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γ > 0 denotes the degree of relative risk aversion.4

Let R̃ denote the gross return on the market. The optimal investment
policy can be described by a demand function x(R) derived from a static
one-period model. Letting φ(R) denote the pricing kernel, i.e. the price per
unit of probability for a contingent claim with a payout of 1 in ”state” R,
the investor’s objective can be written as

max
x(R)

E[u(x(R̃))], s.t. E[φ(R̃)x(R̃)] = x0, (1)

where x0 denotes the investor’s market wealth at date t = 0.

The first-order conditions for optimizing (1) are the budget constraint to-
gether with the conditions

u′(x(R)) = λφ(R), ∀R, (2)

where λ is the Lagrange multiplier for (1).5 Differentiating (2) with respect
to R and then using (2) to replace λ in the result, we obtain

x′(R) =
φ′(R)/φ(R)

u′′(x(R))/u′(x(R))
. (3)

Letting A(x) ≡ −xu′′(x)/u′(x) denote the Arrow-Pratt measure of relative
risk aversion, it follows from (3) that the optimal contingent claim x(R)
satisfies

[A(x)]−1 = −
x′(R)φ(R)

x(R)φ′(R)
= −

d ln x(R)

d lnφ(R)
. (4)

Using (4), it follows that

d ln x

d lnR
=

[
−
d ln x

d lnφ

]
·

[
−
d lnφ

d lnR

]
= [A(x)]−1 ·

[
−
d lnφ

d lnR

]
. (5)

4As is well known in this case, utility takes the form u(w) = lnw for γ = 1. Otherwise,
u(w) = (1 − γ)−1w1−γ .

5The value λ equals the marginal utility of the initial market wealth. Note that for a
CRRA investor her marginal utility covers the whole set of positive numbers. Therefore,
given the usual integrability conditions, the optimal solution is interior (see Back and
Dybvig (1993)).
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The first term on the right-hand side above is a positive constant (equal to
1/γ) due to our assumption of CRRA utility for total wealth. Given that we

also assume a geometric Brownian motion for the evolution of R̃, the second
term (i.e. the elasticity of the pricing kernel) is also a positive constant.6

Then, ln x(R) is an increasing and linear function of lnR. That is, the
investor has a log-linear demand function for contingent claims. Moreover,
this linear function is flatter, ceteris paribus, for a higher level of relative risk
aversion.

3 Derived Risk Aversion Given Non-market

Wealth

In this section we consider the effects of non-market wealth on the derived
risk aversion of an agent. Both the expected level of non-market wealth
available as well as its risk play important roles in the analysis.

Let z denote the net value of non-stochastic non-market wealth available at
the horizon date. A positive z is equivalent to the payoff on a zero-coupon
bond. As a result, there is less discretionary investment in bonds, making the
investor seem ”as if” she is less risk averse. Similarly, if the market portfolio
return is higher than the risk-free return, the investor with CRRA preferences
wishes to re-balance her portfolio, but this would require a disproportionately
higher investment in bonds than CRRA would indicate, making the investor
seem ”as if” her preferences exhibit increasing relative risk aversion.

If z is negative, the investor behaves ”as if” she was endowed with a short
position in bonds. This investor would purchase more bonds on her discre-
tionary account than would be the case if z were zero, her behavior thus
appearing more risk averse than CRRA would indicate. Moreover, it fol-
lows easily that this investor’s behavior seems ”as if” her preferences exhibit
decreasing relative risk aversion.

We now assume that non-market wealth takes the form z + ε̃, where ε̃ has
a mean of zero and is statistically independent of the market risk r̃m. Since

6As it is in the Black-Scholes economy, for example.
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z 6= 0 makes the investor behave like an investor with HARA preferences7, we
know from the backgound risk literature that the investor will behave more
cautiously in the presence of background risk and purchase a higher propor-
tion of bonds. This follows since HARA preferences satisfy the property of
”standard risk aversion” as defined by Kimball (1993).8

We now define the derived utility function as v(x) ≡ Eu(x+ z+ ε̃). Letting
Az,ε(x) denote the degree of relative risk aversion for the derived utility when
ε̃ is nondegenerate, we have

Az,ε(x) ≡ −
xv′′(x)

v′(x)
= −

xEu′′(x+ z + ε̃)

Eu′(x+ z + ε̃)
> −

xu′′(x+ z)

u′(x+ z)
≡ Az(x).

Comparing Az,ε(x) to the relative risk aversion for the true utility CRRA
function u, we see that Az,ε(x) > γ, since Az(x) ≥ γ if z ≤ 0. In this case,
it also follows that Az,ε(x) is decreasing in x, as we show in the appendix
(Claim 1).

However, for the case where z > 0, we have Az(x) < γ, and thus we cannot
compare Az,ε(x) and γ without more information. If z is positive but small,
while the ε̃ risk is substantial, then the ”ε̃ effect” will dominate and we will
have Az,ε(x) > γ. On the other hand, if z is large and var(ε̃) is small, we
will obtain just the opposite result. To be more precise, given x > 0, the
essential question is wether z + ε is positive or negative. ε is the minimal
value of ε with positive probability.
First, consider the case z + ε ≥ 0. Rewriting the previous equation yields

Az,ε̃(x) = E

[
u′(x+ z + ε̃)

Eu′(x+ z + ε̃)

−u′′(x+ z + ε̃)

u′(x+ z + ε̃)
x

]
= EQ

(
γx

x+ z + ε̃

)

Hence the relative risk aversion of the derived utility function equals the
expectation of −u′′(x+ z+ ε̃)x/u′(x+ z+ ε̃) = γx/(x+ z+ ε̃) under the risk-
adjusted probability measure. This is defined by the true probability times

7”HARA” refers to ”hyperbolic absolute risk aversion,” which is fairly common within
the finance literature. See, for example, Ingersoll (1987).

8See Kimball and Eeckhoudt (1992) for a formal proof. A good survey of this literature
can be found in Gollier (2000). One case in which the background risk is not independent
of r̃m is discussed by Bodie, et al (1992), who assume that the ε̃ risk is akin to the risk in
some mixture of stocks and bonds.
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u′(x+ z + ε)/Eu′(x+ z + ε̃).
If z + ε ≥ 0 and x > 0, then γx/(x+ z + ε) ≤ γ so that Az,ε(x) < γ, ∀x > 0.
For x→ ∞, Az,ε(x) → γ. But this need not imply that Az,ε(x) monotonically
increases in x. This is illustrated in Fig. 8a).
Second consider the case z + ε < 0. Then the previous equation shows that
Az,ε(x) → ∞ for x → x = −z − ε. Thus, the ”ε- effect” strongly dominates
the ”z- effect”. The ”ε- effect” declines quite rapidly with increasing x so
that Az,ε(x) falls bellow A(x) = γ and the ”z- effect” dominates. For high
values of x, Az,ε(x) approaches γ so that Az,ε(x) is increasing and concave.
This is illustrated in Fig. 8b). These results are summarized in Lemma 1
wich is proved in the appendix.

Lemma 1 Suppose z > 0 and z + ε < 0, then:

1. Az,ε(x) → ∞ for x → x = −z − ε, and is declining and convex in the
range (x, xo).

2. Az,ε(x) attains a minimum at xoo > xo with Az,ε(x
oo) < γ and increases

thereafter.

3. Az,ε(x) is concave for xooo > xoo.

The lemma shows that the only requirement for the derived relative risk
aversion, Az,ε(x), to start at a high level, decline to some level below γ and
gradually approach γ for high levels of x is that z + ε can go negative. This
is a rather weak requirement which says that non-market wealth has some
chance of turning out negative, given a positive z. Moreover, initially Az,ε(x)
is convex and later concave so that it starts out declining and convex and
eventually becomes increasing and concave.
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4 The Effect of a Multiplicative Background

Risk on Portfolio Demand

We now consider a multiplicative risk that affects the value of the investor’s
financial market investment. For example, future tax liabilities might be
uncertain; or perhaps money saved for a particular purpose has an unknown
future purchasing power. Or consider a case in which the investor wishes
to convert her portfolio wealth into a life annuity at date t = n and where
the annuity factor is not fully hedgeable. In this case, we consider only the
unhedgeable part of the background risk. The investor must now make her
portfolio decisions prior to knowing the annuity factor that she will face at
date t = n.

As is well known under CRRA, if total wealth equals the portfolio of stocks
and bonds, multiplying the level of initial wealth by any positive scalar will
not change the optimal stock and bond proportions in the portfolio. Suppose
that final portfolio wealth is given as x(R̃)ỹ, where ỹ is a random variable

with mean one, which is assumed to be statistically independent from R̃.9

Thus, if y = 1.05, the final portfolio value is 5 percent higher than expected;
or if y = 0.90 the portfolio value is ten percent lower. Absent any non-
market wealth, it follows trivially under our assumption of independence that
the optimal portfolio choice is not affected by the presence of the random
multiplicative background risk ỹ.10 Again, we assume that the investor does
not learn about the distribution of ỹ between dates t = 0 and t = n.

We should caution, however, that this does not imply that the investor is
unaffected by the presence of this multiplicative background risk. Indeed,
it is trivial to see that x(R̃)ỹ is riskier than x(R̃) in the sense of Rothschild
and Stiglitz (1970), i.e. in the sense of second-degree stochastic dominance.
Hence, a risk-averse investor will necessarily be worse off when the ỹ risk is
present. It is just that this investor will not alter her portfolio decision.

9The assumption of Eỹ = 1 implies that we can interpret (ỹ − 1) as a type of unex-
pected deviation of this multiplicative background risk from its expected value. When this
background risk is insignificant, we simply set ỹ ≡ 1.

10In a recent paper, Franke, Schlesinger and Stapleton (2006) examine the effect of such
multiplicative background risk when we do not have CRRA preferences.
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We now examine a portfolio decision in which we have both non-market
wealth, z+ ε̃ as well as a multiplicative background risk on the wealth in the
investment portfolio. In particular, we consider two different scenarios con-
cerning how the multiplicative risk affects terminal wealth. First, consider
the case where the entire wealth is affected by the independent background
risk ỹ. In this case, terminal wealth is given as [x(R̃) + z + ε̃]ỹ. Here we
assume that ỹ and ε̃ are mutually independent, in addition to being statis-
tically independent from R̃. Under our assumption of CRRA, this implies
that the investor’s objective can be written as either

max
x(R)

1

1 − γ
E[(x(R̃) + z + ε̃)1−γ ] · E(ỹ1−γ), for γ > 0, γ 6= 1 ,

or
max
x(R)

E ln(x(R̃) + z + ε̃) + E ln ỹ, for γ = 1,

where in either case we are subject to the same budget constraint as in (1).
In either of these two cases, the term involving ỹ is a separable constant and
therefore has no effect on the optimal portfolio choice.

The other scenario we consider is for the ỹ risk to affect only market wealth
(i.e. only the assets in the investment portfolio) and not the non-market

wealth: w̃ = x(R̃)ỹ + z + ε̃. The case where we have both z = 0 and a
degenerate ε̃ (i.e. var(ε̃) = 0) corresponds to the above case with only the
multiplicative background risk ỹ.

In the case where z 6= 0, but where non-market wealth is not risky (var(ε̃) =
0), portfolio choice is affected by the presence of ỹ. In particular, the derived
utility in the presence of z alone, v(x) ≡ u(x + z), belongs to the HARA
class with relative risk aversion Az(x) = γx(x + z)−1. If we now include a
nondegenerate multiplicative risk ỹ, the derived utility v(x) ≡ Eu(xỹ + z)
can be either more risk averse or less risk averse than u(x). For example,
letting Az,y(x) denote relative risk aversion in this case11, if we restrict the
wealth level x, such that Az(xy) ≥ 1, i.e. γ ≥ 1 + z

xy
∀x and ∀y, it follows

from Franke, et al (2006, Corollary 3), that v(x) will be more risk averse
than u(x) for z < 0, i.e. Az,y(x) > Az(x) > A(x) = γ. Moreover, for z < 0
relative risk aversion Az,y(x) will be decreasing in x, same as Az(x). On

11Az,y(x) = E[−u′′(xỹ + z)ỹ2]x/E[u′(xỹ + z)ỹ].
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the other hand, for z > 0, v(x) will be less risk averse than u(x) for z > 0,
with Az,y(x) < Az(x) < A(x) = γ. Hence, in the more realistic case with
positive fixed non-market wealth, this wealth lowers risk aversion, and the
multiplicative background risk also lowers it. However, although Az(x) is
increasing in x, Az,y(x) need not also be increasing in x.12

The intuition for this result can be obtained from the derived utility function
ν(x) = E[u(xỹ + z)]. The relative risk aversion of this function is

Az,y(x) =
−ν ′′(x)

ν ′(x)
x

=
E[−u

′′

(xỹ + z)ỹ2]

E[u′(xỹ + z)ỹ]
x.

Expanding this, we find

Az,y(x) = E

[
u′(xỹ + z)ỹ

E[u′(xỹ + z)ỹ]
Az(xỹ)

]

= E[Az(xỹ)] + cov

[
u′(xỹ + z)ỹ

E[u′(xỹ + z)ỹ]
, Az(xỹ)

]
.

If z < 0, then relative risk aversion Az(xy) is declining and convex so that
E[Az(xỹ)] > Az(x). If z > 0, then Az(xy) is increasing and concave so that
E[Az(xỹ)] < Az(x). The assumption that Az(xy) ≥ 1 assures that u′(xỹ+z)ỹ
is declining in y. Hence, the covariance term is positive [negative] for z < [>
]0. Intuitively, if the relative risk aversion Az(xy) is convex [concave], then
the derived relative risk aversion Az,y(x) is higher [lower] than Az(x).

Consider the above effects in terms of their effect on observed portfolio-choice
decisions. If we examine this CRRA investor’s portfolio choice, she might
appear to be either more or less risk averse than her true level of relative risk
aversion γ. Moreover, her observed behavior might appear to exhibit either
increasing or decreasing relative risk aversion.

12This can be inferred from the Appendix result in Franke et al (2006). It is similar to
the observation that increasing absolute risk aversion of the original utility function does
not imply increasing absolute risk aversion of the utility function derived over an additive
background risk.



Background Risk and Portfolio Choice 12

If we now allow for a risk ε̃ inherent in the non-market wealth, things get
more interesting. Given our assumptions, adding the ε̃ risk alone always
makes the investor behave in a more risk averse manner. We always have
Az,ε(x) > Az(x), for every x and for any level of expected non-market wealth
z. Of course, with z > 0, we cannot compare Az,ε(x) with A(x), since
Az(x) < A(x). But the isolated effect of including the riskiness of the non-
market wealth always makes the individual invest more in bonds. On the
other hand, the isolated effect of including the multiplicative background risk
ỹ alone, with a fixed level of non-market wealth depends on the sign of the
fixed non-market wealth.

One might think that the combined effect of including both of these inde-
pendent risks, ỹ and ε̃, simultaneously yields some type of weighted aver-
age of these two separate effects – somewhat akin to analyzing income ef-
fects together with substitution effects in many comparative-static economic
models13. However, this is not always the case. The reason for this is
somewhat subtle.

Consider first the case where z ≤ 0. If there is non-market wealth risk, then
Az,ε(x) > A(x) and Az,ε(x) is declining and convex as shown in the appendix
(Claim 2). Hence Az,ε(x) has a similar pattern as Az(x) in case of z < 0 and
var(ε̃) = 0. For the latter case, we have seen in the previous section that the
multiplicative risk raises risk aversion. The same is true in case of z ≤ 0 and
var(ε̃) > 0, provided that Aε(x) ≥ 1. This follows again from Franke et al
(2006, Corollary 1(i)). Hence both background risks reinforce each other14 :
Aε,y(x) > Aε(x) > A(x) = γ.

In the absence of the multiplicative risk, Aε(x) is declining. This property
still holds in the presence of both risks: Aε,y(x) is declining (see the appendix
in Franke et al (2006)).

13It is important to note that even though the additive and the multiplicative risk are,
by assumption, independent, it is not feasible to use a derived utility function, derived
only over different outcomes of the multiplicative risk y. More precisely, given wealth
xỹ + z + ε, defining E[u(xỹ + z + ε)|x, ε] ≡ v(x + z + ε) is wrong because v(x + z + ε)
suggests that the agent is indifferent to a change in x and (z + ε) which preserves the sum
x + z + ε. This is wrong because x is subject to the y-risk, in contrast to (z + ε).

14Az,ε,y(x) = E[−u′′(xỹ + z + ε̃)ỹ2]x/E[u′(xỹ + z + ε̃)ỹ].
Aε,y(x) = Az,ε,y(x) for z = 0.



Background Risk and Portfolio Choice 13

The intuition for these results is that the non-market wealth risk makes the
agent feel ”poorer”. This is seen by considering Kimball’s precautionary
premium for the non-market wealth risk ε̃. This premium is positive and
declines in increasing x. Thus, its effect on risk aversion is similar to the effect
of a negative fixed non-market wealth. Hence, a multiplicative background
risk raises risk aversion in both cases.

Given that, it is not surprising that these effects are even more pronounced
for negative fixed non-market wealth. Let Az,ε,y(x) denote the relative risk
aversion in the presence of both background risks and a fixed non-market
wealth. Then we obtain Proposition 1 which is proved in the appendix.

Proposition 1 Suppose that the investor has a utility function with constant
relative risk aversion γ ≥ 1. Then for nonpositive fixed non-market wealth,
z ≤ 0,

a) Az,ε,y(x) > Az,ε(x) > Az(x) > A(x) = γ

b) Az,ε,y(x) , Az,ε(x) , Az,y(x) and Az(x) are declining.

By Proposition 1, we can easily predict the effects of background risks,
given a nonpositive fixed non-market wealth. The reason is that all three
background-variables (z, ε, y) act in a similar manner. All three background-
variables make the investor act more cautiously. When her marketable wealth
x increases, she feels less threatened by these background-variables. There-
fore she acts in a less cautious manner. This appears very intuitive.

The situation is more complicated in the case of positive fixed non-market
wealth, z > 0. The non-market wealth risk still raises observed risk aversion
in the absence of the multiplicative risk, but it produces a U-shaped relative
risk aversion pattern if non-market wealth is negative with positive probabil-
ity (Figure 8b). The multiplicative risk, in contrast, lowers observed relative
risk aversion in the absence of the non-market wealth risk. Thus, we would
expect that both background risks together would mitigate each other so that
observed risk aversion is closer to A(x) = γ. This, however, is not generally
true. It may be that Az,ε,y(x) > Az,ε(x) > Az(x), but also Az,ε,y(x) < Az,ε(x)
is possible.
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Critical for the effect of the multiplicative risk on observed risk aversion is
how Az,ε(xy) behaves. Assume Az,ε(xy) ≥ 1. In the previous section we have
seen that the effect on relative risk aversion of the multiplicative risk depends
on whether relative risk aversion Az(xy) is convex or concave. Now, with non-
market wealth risk, the same reasoning applies to Az,ε(xy). Hence it is crucial
whether Az,ε(xy) is convex or concave. Assume that non-market wealth is
negative with positive probability. Then, as shown in Lemma 1, Az,ε(x)
is convex (and declining) for low values of x, but concave (and increasing)
for high values of x. Therefore, it is not surprising that for low values of
x the multiplicative risk raises relative risk aversion instead of lowering it,
as it does in the absence of the ε risk. The ε risk induces a switch from
an increasing, concave relative risk aversion, Az(x) to a declining, convex
relative risk aversion Az,ε(x). This reverses the direction of the effect of a
multiplicative risk from lowering to raising the derived relative risk aversion.
Hence both background risks aggravate each other, in a manner similar to
that in the case of a negative expected non-market wealth. For large values
of x, Az,ε(x) is increasing and concave, as in the absence of the ε risk. Then
the multiplicative risk lowers Az,ε,y(x) below Az,ε(x). But in between there
is also a range of x in which neither condition holds. Therefore we cannot
predict wether Az,ε,y(x) will be higher or smaller than Az,ε(x) in this range.

These results are formally stated in Proposition 2.

Proposition 2 Suppose that the investor has a CRRA utility function with
positive fixed non-market wealth z and relative risk aversion Az,ε(xy) ≥ 1.
Then

a) Az,ε,y(x) > Az,ε(x) if Az,ε(xy) is declining and convex,

b) Az,ε,y(x) < Az,ε(x) if Az,ε(xy) is increasing and concave15.

We illustrate all of the potential effects above with an example in the follow-
ing section.

15The proof of Proposition 2a) follows directly from Franke et al (2006, Corollary 1(i)),
while the proof of Proposition 2b) follows directly from their Corollary 2(i).



Background Risk and Portfolio Choice 15

5 Investment Simulations

Our simulations are based around twelve different scenarios, detailed in Table
1. As we have seen above, the derived risk aversion of an agent and the
resulting optimal portfolio demand depends upon three factors. The expected
level of non-market wealth, z, the additive background risk associated with
it, and the multiplicative background risk which attaches to market plus
non-market wealth. We assume in Table 1, that expected non-market wealth
can be zero (the base case), positive (the most likely case) or negative. The
additive background risk, measured by the standard deviation of non-market
wealth, σε, can be positive or zero. The multiplicative background risk,
measured by the standard deviation of the rollover rate, σy, can also be
positive or zero. Since all combinations are possible, there are a total of
twelve possible cases.

In order to illustrate the effects of non-market wealth on portfolio choice,
we now present numerical examples for each of the cases above. In Table 2
we summarize the data on which the numerical simulations are based. We
assume that there are seven years with portfolio purchases made at dates
, t = 0, 1, ..., 6 and terminal wealth realized at date t = 7. The random values
for ε̃ and ỹ are also only realized at date t = 7. We thus have a static decision
problem, with portfolio rules set at date t = 0. We use this multi-period
set-up because the presence of the ε̃ and ỹ risks not only affect the initial
portfolio choice, but they also affect the intertemporal strategy for portfolio
rebalancing.16

We approximate the geometric Brownian motion for the risky market return
using a binomial approximation, where the mean excess return over any year
is 5%. A risk-free one-year maturity bond pays 5% over each year. The
annualized volatility of the market return is 20%. The investor has an initial
wealth of 100, and has CRRA preferences with a coefficient of relative risk
aversion, γ = 1.5. In the various cases shown below, the expected value of
the non-market wealth, z takes on values of -20, 0 and 30.

16Of course, a truly dynamic model, with learning about ε̃ and ỹ would be more realistic,
but also more complex. Our point here is to show how these risks can affect observed
portfolio-choice behavior, even in this simple setting.
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The ε̃ risk in our simulation is calculated by ε̃ taking on a binomial distri-
bution with n = 4 and p = 0.5, and where each ”success” is modelled as an
increase in ε̃ by 15, whereas ”failure” is modelled as a decrease in ε̃ by 15.
Hence, in the presence of the ε̃ risk non-market wealth is always negative
with positive probability. The background risk ỹ also is binomial with n = 1
and p = 0.5, with the initial value of ỹ set at one, and with ”success” in-
dicating a 30 percent increase in ỹ, whereas ”failure” indicates a 30 percent
decrease in ỹ.

5.1 Fixed (Non-Stochastic) Non-Market Wealth

In Figure 1 we illustrate the optimal solution using the log-demand function
from equation (5). The optimal demand function is computed by solving
the first order condition for each state at date n, subject to the budget
constraint embedded in (1). In case 1.1, the expected non-market wealth is
z = 0. With z = 0, both the relative risk aversion A(x) is a constant and
the elasticity of the pricing kernel (− d lnφ

d lnR
) in (5) is also a constant given the

geometric Brownian motion generating the market return. Thus, the optimal
log-demand for state contingent claims is linear. This is an example of the
Merton case.

Case 1.2 shows the effect of a positive non-market wealth. Here we assume
that z = 30. The resulting optimal demand function is obtained by substi-
tuting Az(x) for A(x) in (5). The demand function is steeper, reflecting
the lower derived relative risk aversion. It is also concave reflecting the fact
that, in this case, relative derived risk aversion is increasing. Case 1.3, shows
the effect of a negative expected non-market wealth, where z = −20. In
this case, the demand curve is less steep and convex, reflecting greater risk
aversion as well as decreasing relative risk aversion for the derived utility.

Also, we should point out that it is not by chance that the demand functions
for contingent claims cross at one point in the diagram. In the state of the
world where the realized market return equalled the risk-free return in all
five periods, i.e. R = (1 + rf )

5 = [(1.05)5], every investment strategy will
yield the same terminal wealth .

Using these cases as a starting point, we next examine the effect of either
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adding risk to non-market wealth, or adding a multiplicative background
risk, or both.

5.2 Background Risks

In order to delineate the cases, we consider three alternative scenarios in
the presence of background risks: namely the cases where the expected net
non-market wealth is zero, negative or positive.

5.2.1 Zero expected non-market wealth

First consider the case where the expected non-market wealth is zero, z = 0.
As mentioned previously, adding the background risk ỹ in this case has no
effect on portfolio choice. This is seen in Figure 2 by noting that the base
case (with ε̃ ≡ 0) in case 2.1 yields identical results to case 2.2.

Now consider adding risk ε̃ to the non-market wealth. If the realized value
of ε̃ is zero, the individual’s net position in non-market wealth is zero: any
assets perfectly offset any liabilities. If ε̃ is positive, the individual has a
unexpected net positive value of non-market wealth, whereas a negative value
for ε̃ corresponds to a negative net position in non-market wealth. This allows
us to focus on pure risk effects. As is known in this case, the individual
behaves in a more risk-averse manner when the non-market wealth is risky.
This is seen in Figure 2 by comparing the base case (with ε̃ ≡ 0) in case 2.1
with the case of a positive ε̃ risk in case 2.3. In this case, the demand for state
claims is flatter, due to the more-risk-averse portfolio choice. Moreover, the
demand curve is no longer linear, but rather convex, due to the decreasing
relative risk aversion in this case.17

If we now consider both the ε̃ risk and ỹ risks as existing concurrently, it
follows from the appendix that behavior will be even more risk averse than
under the ε̃ risk alone in the case where relative risk aversion is one or higher,
γ ≥ 1 . Although the ỹ risk in isolation does not affect behavior, it makes the

17As lnR increases, the slope d ln x
d ln R

increases, due to the lower level of Az,ε in (5). See
the appendix for a proof.
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investor worse off and here we see how it causes the investor to behave as if
she were poorer and hence more sensitive to the additional ε̃ risk. Moreover,
it follows in this case that v(x) ≡ Eu(xỹ+ ε̃) exhibits decreasing relative risk
aversion.18 This is illustrated in case 2.4 of Figure 2.

5.2.2 Negative expected non-market wealth

When z < 0, behavior appears to be more risk averse than CRRA would indi-
cate as well as seeming to exhibit decreasing relative risk aversion. Adding
the background risk ỹ makes behavior seem even more risk averse. This
shows up only slightly in Figure 3 in cases 3.1 and 3.2.

It also follows in this case that adding the ε̃ risk to z, but in the absence of
the ỹ risk, makes behavior seem more risk averse and also seem to exhibit
decreasing relative aversion, as is seen by comparing cases 3.1 and 3.3 in
Figure 3.

If we include both the ε̃ risk and the ỹ risk simultaneously, we see that the
effects of more-risk-averse behavior and of decreasing relative risk aversion
are magnified. Case 3.4 in Figure 3 illustrates this situation.

5.2.3 Positive expected non-market wealth

This case is quite intriguing. When z > 0, but background risks are absent,
the individual appears to behave in a less risk-averse manner than CRRA
would indicate. In addition, behavior appears to exhibit increasing relative
risk aversion. This is the base case 4.1 in Figure 4, where the log-demand
curve for contingent clams is slightly concave. If we add the background mul-
tiplicative risk ỹ, behavior here becomes slightly less risk averse, as indicated
by the slightly steeper demand curve, as illustrated in case 4.2.19

18This follows by noting that v̂(x) ≡ Eu(x+ ε̃) satisfies decreasing relative risk aversion,
as shown in the appendix of this paper. Hence, from Franke, et al (2006, appendix), it
follows that adding the ỹ risk to obtain v(x) ≡ Eu(xỹ + ε̃) preserves this property.

19The property of increasing relative risk aversion need not always hold in this setting,
but it does in this example.
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If we omit the multiplicative ỹ risk, but add a risk ε̃ to the non-market wealth,
the addition of ε̃ increases the level of risk aversion. Since non-market wealth
is negative with positive probability, Lemma 1 applies. Hence, for low levels
of marketable wealth relative risk aversion is higher than γ, then it declines to
a level below γ and gradually approaches γ > 0 for high levels of marketable
wealth. Hard to see in the diagram for case 4.3, but for low values of lnR
the log-demand curve for contingent claims is convex, indicating decreasing
relative risk aversion. But at the same time, for high levels of lnR, the
demand curve is slightly concave, indicating that relative risk aversion is
increasing.

In case 4.4, we show the effects of including both the ε̃ risk and the ỹ risks
simultaneously. Although the effect of the ỹ risk in isolation is to cause
a decrease in observed risk aversion, the ỹ risk also makes the individual
more sensitive to the ε̃ risk. From Lemma 1 and Prop. 2 we know that
for low levels of marketable wealth both risks reinforce each other making
behavior appear more risk averse than in the presence of the ε̃ risk only.
This is evident in Fig. 4 from the small slope of the 4.4-curve in the range of
low market returns. For high levels of marketable wealth, the ỹ risk makes
behavior appear less risk averse than in the presence of the ε̃ risk only. Hence
in Fig. 4 the slope of the 4.4-curve is smaller than that of the 4.2-curve in
the range of high market returns.

6 Stock Proportions and Dynamic Allocation

Given our assumptions that the market follows a geometric Brownian motion
and that a riskless bond exists, the market is dynamically complete as in the
Black-Scholes world. It follows that any state-contingent claim demand x(R)
can be replicated with a period-by-period stock/bond strategy. In the case
where A(x) is a constant, we know from Merton (1971) that the replicating
strategy is to hold a constant proportion of wealth in stocks, throughout the
period from time 0 to time n. However, in the general case, with derived
utility v(x) = Eu(xỹ + z + ε̃), the measure of relative risk aversion for v,
Az,ε,y(x), is not constant. Hence, the dynamic strategy is more complex.
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In the following numerical simulations, we approximate the market return
with a log-binomial process. At time n, the state-contingent claim x(R) has
n + 1 outcomes, indexed by i = 0, 1, ..., n. Moving back to time n − 1, the
market return has i = 0, 1, ..., n−1 states. In state i at time n−1, the market
return can only move to state i or state i+ 1 at time n. It follows that there
is a unique stock/bond strategy for each state at time n − 1. The optimal
dynamic strategy can be found by moving back through the binomial tree
and solving for the stock/bond proportions at each point of time and in each
state. If rm,t is the market return in period t, and the risk-free rate is rf ,
then

x

x0

= Πn
t=1[1 + αi,t−1rm,t + (1 − αi,t−1)rf ]

is solved for the dynamic stock proportion, αi,t.

Table 3 shows the optimal stock proportion in year 0 and year 6, across dif-
ferent states, for the twelve different cases illustrated previously in Figures
1-4. The year-6 states are indexed by the number of down-ticks of the bi-
nomial process of the market return. Hence, state 0 is the highest market
state and state 6 is the lowest. From (5), the percentage of stocks in the
portfolio reflects the degree of relative risk aversion across the various states.
Hence, if the percentage is constant (declining) (increasing) across states,
this indicates constant (declining) (increasing) derived relative risk aversion
for market wealth. The results are shown for all the twelve different cases,
which allow us to analyze the effects of the expected value of non-market
wealth and its risk ε̃ and the the multiplicative ỹ risk, both separately and
jointly.

Cases 1-4 show the effect of the two risks in the case of a zero-mean non-
market wealth, z = 0. In the absence of both the non-market wealth risk and
the multiplicative background risk, the investor follows the Merton strategy,
investing 78% of her wealth in stocks in year 0 and also 78% in each state at
year 6. When multiplicative background risk ỹ risk alone is introduced (case
2), there is no effect on stock proportions. This is due to the fact that the
utility is CRRA and z = 0. The introduction of additive non-market wealth
risk (case 3), reduces stock proportions and causes the proportions in year
6 to be state dependent, reflecting the convexity of the log-return function.
The investor behaves towards the market risk like someone with declining
relative risk averse (DRRA) utility. This in turn implies that the further
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introduction of the background ỹ risk makes the investor choose even less
stocks (case 4).

Cases 5-8 show the effect of the two risks individually and jointly in the case
where the expected non-market wealth is negative, z < 0. In all four cases
the investors behavior is consistent with DRRA. This is illustrated by the
stock proportions in year 6, which are higher in the high market states. Also,
the effect of the non-market wealth and ỹ risks is straightforward in this set
of cases. Non-market wealth risk ε̃ alone reduces stock proportions, as does
ỹ risk. Also, the joint effect of the two risks together (case 8) is to reduce
stock proportions even more.

The more complex and perhaps more relevant scenarios are illustrated in
cases 9-12, where the expected value of non-market wealth is positive, z >
0. Here, in case 9, where both risks are zero, observed behavior exhibits
increasing relative risk aversion, IRRA. In case 10, where the multiplicative
background risk ỹ is introduced, the effect is to increase the investment in
stocks, both in year 0 and in year 6. In this example, IRRA behavior is
preserved under the ỹ risk. However, the effect of introducing the non-market
wealth risk ε̃ alone, in case 11, is to reduce the stock investment and, given
the chosen parameter values, to produce the U-shaped behavior for relative
risk aversion as mentioned in the previous section. This is because the effect
of the non-market wealth risk and the consequent precautionary premium
outweigh the effect of the positive expected non-market wealth on the utility
function.

This also explains why, in case 12, the compounding effect of the multiplica-
tive ỹ risk now reduces the stock proportion even further in the low states.
However, in the high states, the multiplicative risk now increases the in-
vestment in stocks. This is because in the high states the precautionary
premium for the ε̃ risk is very small. It is important to note however that
the effects on derived relative risk aversion exhibited here depend upon the
positive probability of a negative non-market wealth. If non-market wealth
is always positive, then the effects on derived relative risk aversion are quite
different.

The examples shown in Table 4 emphasize this point using sensitivity analysis
on the parameter values. Cases 11a and 11b and 12a and 12b show the effect
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of varying the size of the additive risk, σε. 11a and 12a show the effect on
example 11 of lower and higher σε respectively. Note that the lower risk in
11a induces IRRA derived utility. The higher risk in 11b induces DRRA
derived utility. These cases are in contrast to case 11, where derived relative
risk aversion is U-shaped. The corresponding response to the multiplicative
risk is shown in case 12a, where all stock proportions are higher than in the
absence of the multiplicative risk (case 11a) and in case 12b, where all stock
proportions are lower than in the absence of the multiplicative risk (case
11b).

A further sensitivity analysis is carried out with respect to the coefficient of
relative risk aversion (γ). 11c and 12c show that the effects are preserved,
but dampened in the case of higher risk aversion. 11d and 12d show that the
effects are preserved, but enhanced in the case of lower risk aversion.

In the figures 5-7, we graphically illustrate the optimal asset allocation strat-
egy for a few of these cases over a five-year time interval. In Figure 5, we
assume that expected non-market wealth is z = 30, non-market wealth risk
ε̃ = 0 and the multiplicative risk ỹ is distributed as discussed in the preceding
section. This is case 10, in Table 3. The effect of the positive-mean non-
market wealth is to produce less risk averse behavior that exhibits IRRA and
this is reflected in the dynamic asset allocation strategy shown. The investor
starts with 96% invested in stocks at year 0. Then at year 1, this falls to 92%
if the market moves up (0 down moves) and increases to 99% if the market
moves down (1 down move). At year 2, the investor puts either 90%, 95%
or 103% in stocks depending on the market state. Since there is an inverse
relationship between the number of down-moves and the level of the market,
the strategy reflects IRRA utility (more is invested in stocks as the market
declines).

In Figure 6, we assume that expected non-market wealth is positive, z = 0,
the non-market wealth is risky (ε̃ = 0) and the multiplicative background
risk ỹ is as defined in the previous section. This is case 4, in Table 3. The
effect is to produce IRRA behavior and this is reflected in the dynamic asset
allocation strategy shown. The investor starts with 55% invested in stocks at
year 0. Then at year 1, this increases to 61% if the market moves up (0 down
moves) and declines to 50% if the market moves down (1 down move). At
year 2, the investor puts either 65%, 55% or 44% in stocks depending on the
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market state. Since there is an inverse relationship between the number of
down-moves and the level of the market, the strategy reflects DRRA utility
(less is invested in stocks as the market declines).

In Figures 7 and 8, we illustrate the optimal dynamic strategy for cases
11 and 12 in Table 3. Here, the positive z is balanced by a positive non-
market wealth risk. In Figure 7 there is no multiplicative risk. In Figure
8 the binomial distribution of ỹ is assumed. Figure 7 reveals an interesting
pattern of stock proportions. The 0d curve shows that as the market rises,
the investor first invests more in stocks (DRRA) but then reduces it in later
years (IRRA). Similar patterns are reflected in Figure 8.

The resulting outcome shows an inverted U-shape allocation strategy. As the
market starts to fall, the investor invests more in stocks at first. But if the
market continues falling, she starts to decrease her investment in stocks. This
phenomenon follows by examining relative risk aversion at the appropriate
wealth levels. Relative risk aversion is U-shaped here, and we are initially on
the upward sloping part of the ”U.” If the market rises, observed behavior
seems to exhibit increasing relative risk aversion (a lower percent in stock
as wealth increases). However for downward movement in the market, risk
aversion initially falls but then rises, as we pass the trough on the U-shape
relative risk aversion.

7 Conclusions

Portfolio selection is complicated by personal circumstances which can rad-
ically affect the asset allocation strategy of the investor. Here, we have an-
alyzed the optimal strategy of a CRRA investor in a market where a single
risky asset follows a geometric Brownian motion. The investor has stochas-
tic non-market wealth and also a multiplicative background risk and chooses
investment strategies. If we only observe the portfolio choice of the investor,
it might be difficult to observe anything that looks similar to her underlying
CRRA preferences. The existence of non-market wealth may cause the in-
vestor to act as if her utility had increasing or declining relative risk aversion,
depending on the size and risk of the non-market wealth. The response to
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a multiplicative background risk crucially depends upon the nature of any
non-market wealth and its riskiness .

Consideration of the additive non-market wealth risk and the multiplicative
background risk together in one model is important, since the combined effect
can be quite different from the effect of one of these risks alone. Consider
the case in which non-market wealth has positive expectation. Then the
effect of the multiplicative ỹ risk alone is to increase investment in stocks,
whereas the effect of this same ỹ risk may be to reduce investment in stocks
when non-market wealth risk ε̃ already exists and non-market wealth can
turn out negative. Ignoring the interaction effects between the risks can
lead to incorrect predictions.

In our model, resolution of the uncertainty surrounding the non-market
wealth risk and multiplicative background risks only takes place at the hori-
zon date. We solve what is essentially a single-period model for the optimal
demand function for state-contingent claims. However, since the market for
the risky asset is dynamically complete, this function can be represented
by a dynamic asset-allocation strategy involving stocks and bonds. We find
that this strategy is both time and state dependent. It follows that simple
prescriptions for asset-allocation such as “lifestyle”, which suggests a shift
of assets from stocks to bonds as retirement approaches, is unlikely to be
optimal.
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Appendix

Proof of Lemma 1

By definition,

Az,ε(x) =
E − u

′′

(x+ z + ε)

Eu′(x+ z + ε)
x

= E

[
u

′

(x+ z + ε)

Eu′(x+ z + ε)

−u
′′

(x+ z + ε)

u′(x+ z + ε)

]
x

= γ

[
u

′

(x+ z + ε)

Eu′(x+ z + ε)

x

x+ z + ε

]
.

Hence, Az,ε(x) → ∞ for x → x = −ε − z. ε is the minimal value of ε
with positive probability (density). Also, A

′

z,ε(x) → −∞ for x → x. Since

Az,ε(x) > 0 for x > x, A
′′

z,ε(x) > 0 is implied for some range x ∈ (x, x◦) with
x◦ > x.

Next, we show that Az,ε(x) is increasing for large values of x. This implies
that there exists a finite x◦◦ at which Az,ε(x) attains a minimum.
Given a CRRA-utility function,

Az,ε(x) = γ
E(x+ z + ε)−γ−1

E(x+ z + ε)−γ
x

= γ
[x+ z − ϕ(ε|x)]−γ−1

[x+ z − ϕ(ε|x)]−γ

(
1 −

∂ϕ

∂x

)
x

with ϕ(ε|x) being Kimball’s (1990) precautionary premium of ε given x.
Since we now consider large values of x, we may regard ε as a small risk in
the sense of Pratt (1964). Technically, divide x + z + ε by a large positive
constant c so that σ(ε/c) is a small risk. Then, dropping c for notational
simplicity, for a large x the precautionary premium is given by [see Pratt
(1964)]

ϕ(ε|x) =
γ + 1

x+ z

σ2(ε)

2
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so that
∂ϕ

∂x
= −

ϕ(ε|x)

x+ z

Hence,

Az,ε(x) = γ
1 + ϕ(ε|z)/(x+ z)

x+ z − ϕ(ε|x)
x

= γ
x

x+ z

x+ z + ϕ(ε|x)

x+ z − ϕ(ε|x)

= γ
x

x+ z

1 + γ+1
2
σ2(ε)(x+ z)−2

1 − γ+1
2
σ2(ε)(x+ z)−2

For large values of x, the second fraction converges much faster to 1 than the
first fraction because the second fraction depends on (x + z)−2. Therefore,
Az,ε(x) → γ x

x+z
< γ and finally to γ. Hence, Az,ε(x) is increasing for large

values of x.
Finally, in the last equation the first fraction is concave in x while the second
is convex. Again, for high values of x, the first fraction ”dominates” the
second, which moves much faster to 1. Therefore, there exists some x◦◦◦ > x◦◦

so that Az,ε(x) is concave in x for x > x◦◦◦ . 2
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Claim 1: Let z ≤ 0 and v(x) = Eu(x+ z + ε̃), where u is CRRA. Then v
exhibits decreasing relative risk aversion.

Proof: Define v̂(x) ≡ u(x + z). Then v̂(x) exhibits standard risk aversion
and either constant or decreasing relative risk aversion. We let Az(x) denote
the relative risk aversion for v̂. Now

v′(x) = Ev̂′(x+ ε̃) ≡ v̂′(x− ψ(x)), (6)

where ψ(x) denotes Kimball’s (1990) precautionary premium for ε̃.

Relative risk aversion for v(x) is then easily calculated as

Az,ε(x) = −
xv̂′′(x− ψ(x))(1 − ψ′(x))

v̂′(x− ψ(x))
= Az(x− ψ) ·

(1 − ψ′(x))

1 − ψ

x

.
(7)

Since v̂ exhibits standard risk aversion, we know from Kimball (1991) that
ψ′(x) is negative. Hence (7) implies 1 − ψ

x
> 0.

Straightforward calculation from (7) shows that

A′

z,ε(x) = A′

z(x− ψ) ·
(1 − ψ′)2

1 − ψ

x

+Az(x− ψ) ·
(−ψ′′)(1 − ψ

x
) + (1 − ψ′)(xψ

′
−ψ

x2 )

(1 − ψ

x
)2

. (8)

The first term on the right-hand side in (8) is non-positive by the assump-
tions. The second term is negative since ψ′′ > 0, which follows from Franke
et al (1998, Lemma 2). Hence, A′

z,ε(x) < 0 2
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Claim 2: Let z ≤ 0 and v(x) = Eu(x+ z + ε̃), where u is CRRA. Then v
exhibits convex relative risk aversion.

First, we prove

Lemma 2 If u is a HARA-utility function with γ > 0, then ϕ′(x) < 0 , ϕ′′(x) >
0 and ϕ′′′(x) < 0.

Proof: Franke et al (1998) have shown ϕ′(x) < 0 and ϕ′′(x) > 0. Therefore
ϕ′′′(x) < 0 remains to be shown. For notational convenience, let ν = x + z
and ε̃ = ση̃, where η̃ is a random variable with mean zero and unit variance.
We have

(ν − ψ)−γ = E[(ν + ε̃)−γ]

or (
1 −

ψ

ν

)
−γ

= E

[(
1 +

ση̃

ν

)
−γ

]
.

For a given η-distribution, it follows that

ψ

ν
= f

(σ
ν

)

or
ψ = νf

(σ
ν

)
.

Differentiating w.r.t. ν

ψν = f
(σ
ν

)
+ νf ′

(σ
ν

) −σ

ν2

= f
(σ
ν

)
− f ′

(σ
ν

) σ
ν

and differentiating w.r.t. σ

ψσ = νf ′

(σ
ν

) 1

ν
= f ′

(σ
ν

)

Hence
ψν = f

(σ
ν

)
− ψσ

σ

ν
.
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Differentiating again w.r.t. ν

ψνν =
∂ψν
∂ σ
ν

∂ σ
ν

∂ν
=
∂ψν
∂ σ
ν

(
−
σ

ν2

)

and differentiating again w.r.t. σ

ψνσ =
∂ψν
∂ σ
ν

∂ σ
ν

∂σ
=
∂ψν
∂ σ
ν

(
1

ν

)
.

It follows that
ψνν = ψνσ

(
−
σ

ν

)

which is a function of σ/ν. Hence,

ψννν =
∂ψνν
∂ σ
ν

∂ σ
ν

∂ν
=
∂ψνν
∂ σ
ν

−σ

ν2

and

ψννσ =
∂ψνν
∂ σ
ν

∂ σ
ν

∂σ
=
∂ψνν
∂ σ
ν

1

ν
> 0.

Positivity of ψννσ is shown in Franke et al (1998, Lemma 3), and hence

ψννν = ψννσ

(
−
σ

ν

)
< 0.

This proves the Lemma 2

Proof of Claim 2:

Rewrite equation (7) as

Az,ε(x) = γ
1 − ψ′(x)

x+ z − ψ(x)
x

Differentiating w.r.t. x we have

A′

z,ε(x) = −γ
ψ′′(x)x

x+ z − ψ(x)
+
Az,ε(x)

γx
[γ − Az,ε(x)]. (9)
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Differentiating the first term on the right hand side of (9) w.r.t. x yields

−γ
ψ′′′(x)x

x+ z − ψ(x)
+

ψ′′(x)

x+ z − ψ(x)
[Az,ε(x) − γ],

which is positive, since ψ′′′(x) < 0, by Lemma 1. Also, the second term in
(9) clearly increases with x, since A′

z,ε(x) < 0. Hence, A′′

z,ε(x) > 0.2

Proof of Proposition 1:

First, γ ≥ 1 and z ≤ 0 imply that Az(x) ≥ γ ≥ 1, A′

z(x) < 0, and A′′

z(x) > 0.
From Corollary 1(i) in Franke et al (2006), Az,y(x) ≥ Az(x). Also, since
u(x + z) is standard risk averse, Az,ε(x) > Az(x). Second, from Claim 2,
Az,ε(x) is declining and convex, and hence from Franke et al (2006, Corollary
1(i)), Az,ε,y(x) > Az,ε(x). This proves statement a) in Proposition 1.

Statement b) follows since, for z ≤ 0, Az(x) is declining. Hence, by Claim 1,
Az,ε(x) is declining. From the appendix in Franke et al (2006) it then follows
that Az,y(x) and Az,ε,y(x) are declining 2
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Table 1: Twelve Cases of Expected Non-Market Wealth,
Additive Background Risk and Multiplicative Background Risk

1. Zero ENMW, 2. Zero ENMW, 3. Zero ENMW, 4. Zero ENMW,
Non-Stochastic Non-Stochastic Stochastic Stochastic
No Rollover Risk Rollover Risk No Rollover Risk Rollover Risk
z = 0, σε = 0 z = 0, σε = 0 z = 0, σε = 30, z = 0, σε = 30,
σy = 0 σy = 0.3 σy = 0 σy = 0.3

5. Negative ENMW, 6. Negative ENMW, 7. Negative ENMW, 8. Negative ENMW,
Non-Stochastic Non-Stochastic Stochastic Stochastic
No Rollover Risk Rollover Risk No Rollover Risk Rollover Risk
z = −20, σε = 0 z = −20, σε = 0 z = −20, σε = 30, z = −20, σε = 30,
σy = 0 σy = 0.3 σy = 0 σy = 0.3

9. Positive ENMW, 10. Positive ENMW, 11. Positive ENMW, 12. Positive ENMW,
Non-Stochastic Non-Stochastic Stochastic Stochastic
No Rollover Risk Rollover Risk No Rollover Risk Rollover Risk
z = 30, σε = 0 z = 30, σε = 0 z = 30, σε = 30, z = 30, σε = 30,
σy = 0 σy = 0.3 σy = 0 σy = 0.3

1. ENMW stands for the expected value of non-market wealth.

2. Rollover risk is the zero-mean multiplicative background risk which applies

to total wealth.

3. σε, is the standard deviation of the non-market wealth, at year 7

4. σy, is the standard deviation of the rollover risk, at year 7
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Table 2: Portfolio Optimisation Example: Data

Expected Return Horizon, n 7 years
on Market 10% Coefficient of
Risk-free Rate 5% Relative Risk aversion, γ 1, 1.5, 2

Expected Non-market
Volatility of Wealth, z -20, 0, 30
Market Return, σm 20% Investible wealth, x0 100

Volatility of
Non-market wealth σε 0, 20, 30, 40
Standard deviation of
Rollover Rate σy 0, 0.3

1. We assume that the market return follows a discrete binomial process, with

a mean return of 10 % over each year. The volatility of the underlying

continuous process is 20%.

2. The risk-free rate of interest is 5% on a discrete, annual basis.

3. In the right hand columns we show the investor characteristics. The horizon,

when non-market wealth is realised is 7 years. The coefficient of relative risk

aversion is γ = 1.5.
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Table 3: Multiplicative and Non-Market Wealth Risk Effects
on Stock Proportions

Year 6: state

Case z σε σy Year 0 0 1 2 3 4 5 6 Derived Utility

1 (1.1, 2.1) 0 0 0 78 78 78 78 78 78 78 78 CRRA
2 (2.2) 0 0 0.3 78 78 78 78 78 78 78 78 CRRA
3 (2.3) 0 30 0 66 77 76 74 70 64 53 37 DRRA
4 (2.4) 0 30 0.3 55 76 74 71 64 51 31 15 DRRA

5 (1.2, 3.1) -20 0 0 67 74 72 70 68 65 61 57 DRRA
6 (3.2) -20 0 0.3 65 73 71 69 66 63 58 53 DRRA
7 (3.3) -20 30 0 53 72 69 65 58 49 35 22 DRRA
8 (3.4) -20 30 0.3 29 67 62 53 37 20 9 5 DRRA

9 (1.3, 4.1) 30 0 0 94 83 85 87 92 98 109 127 IRRA
10 (4.2) 30 0 0.3 96 83 86 89 93 100 111 131 IRRA
11 (4.3) 30 30 0 85 82 84 85 86 87 84 73 ? (U-shape here)
12 (4.4) 30 30 0.3 83 83 84 85 86 85 77 57 ?(U-shape here)

1. All data is as shown in Table 2. In column 1 the cases are numbered 1-12.

In brackets we indicate the corresponding cases in Figures 1-4.

2. The state is indexed by the number of down-moves in the binomial process

after 6 years.

3. z is the expected non-market wealth of the investor at time 0. σy is the

standard deviation of the rollover rate. σε is the standard deviation of the

non-market wealth process.

4. Column 3 shows the percentage of stocks in the optimal portfolio in year 0.

5. Columns 4-8 show the percentage of stocks in the optimal portfolio in year

6 in the various states.

6. The derived utility is the utility for market wealth, x. It is of the type CRRA

(constant relative risk aversion), DRRA (declining relative risk aversion), or

IRRA (increasing relative risk aversion). RA stands for risk aversion.

7. In Cases 11 and 12, ”?” indicates that, although in these examples the

investor acts like an agent with increasing or drcreasing or U-Shaped relative
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risk aversion, this will not always be the case. Whether the agent acts as if

DRRA or IRRA depends upon the size of σε.
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Table 4: Multiplicative and Non-Market Wealth Effects on
Stock Proportions: Sensitivity Analysis

Year 6: state

Case γ z σε σy Year 0 0 1 2 3 4 5 6 Derived Utility

11 1.5 30 30 0 85 82 84 85 86 87 84 73 U-shape
11a 1.5 30 20 0 90 82 84 86 89 93 98 102 IRRA
11b 1.5 30 40 0 77 82 82 82 81 76 64 44 DRRA
11c 2 30 20 0 63 63 62 63 63 63 61 57 U-shape
11d 1 30 30 0 129 122 124 128 132 134 121 69 U-shape

12 1.5 30 30 0.3 83 83 84 85 86 85 77 57 U-shape
12a 1.5 30 20 0.3 91 83 85 87 90 94 98 100 IRRA
12b 1.5 30 40 0.3 69 82 82 81 77 65 43 22 DRRA
12c 2 30 30 0.3 61 63 64 63 63 61 57 49 U-shape
12d 1 30 30 0.3 125 122 125 128 132 131 99 32 U-shape

1. All data is as shown in Table 2.

2. The state is indexed by the number of down-moves in the binomial process

after 6 years.

3. z is the expected non-market wealth of the investor at time 0. σy is the (non-

annualised) standard deviation of the rollover rate. σε is the (annualised)

volatility of the non-market wealth process.

4. Column 3 shows the percentage of stocks in the optimal portfolio in year 0.

5. Columns 4-8 show the percentage of stocks in the optimal portfolio in year

6 in the various states.

6. The derived utility is the utility for market wealth, x. It is of the type CRRA

(constant relative risk aversion), DRRA (declining relative risk aversion), or

IRRA (increasing relative risk aversion). RA stands for risk aversion.

7. In Cases 11 and 12, ”?” indicates that, although in these examples the

investor acts like an agent with increasing or drcreasing or U-Shaped relative

risk aversion, this will not always be the case. Whether the agent acts as if

DRRA or IRRA depends upon the size of σε.
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Notes for Figures

In Figures 1-5, the trio (z, σε, σy) signifies the levels of expected non-market wealth,

the risk of non-market wealth and the ỹ risk.

1. Figure 8b) depicts the observed RRA Az(x) for γ = 1.5 and positive fixed

non-market wealth z = 30 and the observed RRA Az,ε(x) for risky non-

market wealth with expectation 30. The probability distribution of ε is :

ε = ±60 with probability 1/16, ε = ±30 with probability 4/16, and ε = 0

with probability 6/16.

2. In Figure 1, we plot the logarithm of the total portfolio gross return over the

7 years against the logarithm of the market gross return, for the case where

there is no non-market wealth risk and no ỹ risk. The expected return on

the market is 10% and the volatility of the market is 20%. The coefficient of

relative risk aversion is γ = 1.5. The expected non-market wealth is z = 0

in case 1.1, z = 30 in case 1.2, and z = −20 in case 1.3.

3. In Figure 2, we compare four different scenarios. In each case, the expected

value of the non-market wealth is z = 0, while the market data and the

cofficient of relative risk aversion is the same as in the example in Figure 1.

In case 2.1 we assume that there is no risk, i.e. neither non-market wealth

risk nor ỹ risk. In case 2.2, the risk of the non-market wealth is σε = 0 and

the ỹ risk σy = 0.3. In case 2.3, the risk of the non-market wealth is σε = 30

and the ỹ risk σy = 0. In case 2.4, the risk of the non-market wealth is

σε = 30 and the ỹ risk is σy = 0.3.

4. In Figure 3, we compare four different scenarios. In each case, the expected

value of the non-market wealth is z = −20, while the market data and the

cofficient of relative risk aversion is the same as in the example in Figure 1.

In case 3.1 we assume that there is no risk, i.e. neither non-market wealth

risk nor ỹ risk. In case 3.2, the risk of the non-market wealth is σε = 0 and

the ỹ risk σy = 0.3. In case 3.3, the risk of the non-market wealth is σε = 30

and the ỹ risk σy = 0. In case 3.4, the risk of the non-market wealth is

σε = 30 and the ỹ risk is σy = 0.3.

5. In Figure 4, we compare four different scenarios. In each case, the expected

value of the non-market wealth is z = 30, while the market data and the



Background Risk and Portfolio Choice 39

cofficient of relative risk aversion is the same as in the example in Figure 1.

In case 4.1 we assume that there is no risk, i.e. neither non-market wealth

risk nor ỹ risk. In case 4.2, the risk of the non-market wealth is σε = 0 and

the ỹ risk σy = 0.3. In case 4.3, the risk of the non-market wealth is σε = 30

and the ỹ risk σy = 0. In case 4.4, the risk of the non-market wealth is

σε = 30 and the ỹ risk is σy = 0.3.

6. In Figure 5, we illustrate the dynamic asset allocation strategy in the case

where expected non-market wealth is z = 30, σε = 0 and the ỹ risk is

σy = 0.3. This is the same as case 8 in Table 3. The line marked 0d shows

the stock proportion in the state where there have been no down moves in

the market return process by year t. The line marked 1d shows the stock

proportion in the state where there has been one down move in the market

return process by year t, and so on.

7. In Figure 6, we illustrate the dynamic asset allocation strategy in the case

where expected non-market wealth is z = 0, σε = 30 and the ỹ risk is

σy = 0.3. This is the same as case 4 in Table 3. The line marked 0d shows

the stock proportion in the state where there have been no down moves in

the market return process by year t. The line marked 1d shows the stock

proportion in the state where there has been one down move in the market

return process by year t, and so on.

8. In Figure 7, we illustrate the dynamic asset allocation strategy in the case

where expected non-market wealth is z = 30, σε = 30 and the ỹ risk is

σy = 0. This is the same as case 11 in Table 3. The line marked 0d shows

the stock proportion in the state where there have been no down moves in

the market return process by year t. The line marked 1d shows the stock

proportion in the state where there has been one down move in the market

return process by year t, and so on.

9. In Figure 8, we illustrate the dynamic asset allocation strategy in the case

where expected non-market wealth is z = 0, σε = 30 and the ỹ risk is

σy = 0.3. This is the same as case 12 in Table 3. The line marked 0d shows

the stock proportion in the state where there have been no down moves in

the market return process by year t. The line marked 1d shows the stock

proportion in the state where there has been one down move in the market

return process by year t, and so on.



Figure1: Non-stochastic NMW
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Figure 2: Expected NMW = 0
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Figure 3: Expected NMW = -20

-0.5

0.0

0.5

1.0

1.5

2.0

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0

Log Market return

Lo
g 

Po
rt

fo
lio

 R
et

ur
n

3.1 (-20,0,0)
3.2 (-20,0,0.3)
3.3 (-20,30,0)
3.4 (-20,30,0.3)



Figure 4: Expected NMW = 30
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Figure 5: Asset Allocation: Given Positive NMW and Rollover 
Risk (30, 0, 0.3)
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Figure 6: Asset Allocation: Given  NMW Risk and a Rollover 
Risk (0, 30, 0.3)
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Figure 7: Asset Allocation: Given Positive, Stochastic NMW
 (30, 30, 0)
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Figure 8: Asset Allocation: Given Positive Stochastic NMW and 
Rollover Risk (30, 30, 0.3) 
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