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Abstract

Background: Multiple methods have been developed to infer behavioral states from animal movement data, but
rarely has their accuracy been assessed from independent evidence, especially for location data sampled with high
temporal resolution. Here we evaluate the performance of behavioral segmentation methods using acoustic recordings
that monitor prey capture attempts.

Methods: We recorded GPS locations and ultrasonic audio during the foraging trips of 11 Mexican fish-eating bats,
Myotis vivesi, using miniature bio-loggers. We then applied five different segmentation algorithms (k-means clustering,
expectation-maximization and binary clustering, first-passage time, hidden Markov models, and correlated velocity
change point analysis) to infer two behavioral states, foraging and commuting, from the GPS data. To evaluate the
inference, we independently identified characteristic patterns of biosonar calls (“feeding buzzes”) that occur during
foraging in the audio recordings. We then compared segmentation methods on how well they correctly identified the
two behaviors and if their estimates of foraging movement parameters matched those for locations with buzzes.

Results: While the five methods differed in the median percentage of buzzes occurring during predicted foraging
events, or true positive rate (44–75%), a two-state hidden Markov model had the highest median balanced accuracy
(67%). Hidden Markov models and first-passage time predicted foraging flight speeds and turn angles similar to those
measured at locations with feeding buzzes and did not differ in the number or duration of predicted foraging events.

Conclusion: The hidden Markov model method performed best at identifying fish-eating bat foraging segments;
however, first-passage time was not significantly different and gave similar parameter estimates. This is the first attempt
to evaluate segmentation methodologies in echolocating bats and provides an evaluation framework that can be used
on other species.

Keywords: Behavioral change point analysis, Correlated velocity movement, Expectation maximization and binary
clustering, First-passage time, Foraging, GPS telemetry, Hidden Markov models, K-means, Path segmentation

Background
Animal movement data are becoming increasingly abun-
dant for marine and terrestrial vertebrate species at ever
finer spatial and temporal resolutions, allowing re-
searchers to address a variety of ecological questions
from the point of view of the individual [1–3]. However,

inferring what an animal is doing from complex move-
ments can be challenging given that different behaviors
may exhibit similar movement features. For example,
multiple GPS locations concentrated in a small area
might indicate short tortuous movements, occurring
when an animal searches for prey, or simply a resting
animal with poor signal quality causing random fluctua-
tions [4]. Distinguishing between these alternatives is
sometimes possible based on an analysis of multiple
movement features. For example, an animal foraging on
a productive patch often moves more slowly while turning
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frequently. Such area-restricted search (ARS) behavior has
been predicted from optimal foraging theory and observed
in several animals that exploit patchy resources [5, 6].
This example illustrates the basic approach underlying

path segmentation methods, which detect patterns in
movement to provide insight into underlying behavioral
states and partition tracks into segments of distinct be-
havioral states [7, 8]. These methods typically fall into
three categories: pattern description, process identifica-
tion, or change point detection [7]. Pattern description
methods involve estimation of primary movement pa-
rameters, such as speed and turn angle, or secondary pa-
rameters derived from windows of many steps [7].
Parsing locations into distinct behaviors can be accom-
plished through simple thresholding schemes that manu-
ally separate short- and long-range movements or
through unsupervised clustering, such as k-means clus-
tering (kmC) [9, 10]. First-passage time (FPT), a com-
monly used secondary parameter, calculates the time to
enter and leave a virtual circle for every location on an
animal track, and is often used for revealing locations of
intensive search [11]. Alternatively, process identification
methods infer behaviors that shape the movement data
[12, 13]. These methods model the change in speed and
turn angle through time and space to annotate the ani-
mal’s movement with behavioral states. For example,
Hidden Markov models (HMM) estimate a sequence of
predefined states as well as the switching probabilities
between states [12, 13]. Expectation-maximization and
binary clustering (EMbC) is a simple alternative state-
space model that sequentially groups locations into clus-
ters of high and low velocity and turn angle [14]. Finally,
change point detection methods use a moving window to
examine portions of the path to determine where local
means differ from global averages of movement parame-
ters under the assumption that these locations indicate
switches in behavioral states [7, 8, 15]. Correlated vel-
ocity movement (CVM) models use continuous time to
allow for irregularly sampled data and can be combined
with change point detection (CVCP) [16].
Despite growing interest in making inferences about be-

havioral states from movement patterns [17], methods are
rarely validated in wild animals that are difficult to directly
observe [10, 18]. Exceptions include records of foraging
events captured by sensors on-board large animals, such
as cameras on gannets [19, 20], time-depth recorders on
elephant seals [21], stomach temperature loggers in tuna
[22], or accelerometers on monk seals [23], all of which
provide independent validation of behavioral states.
Recent miniaturization of biologgers allows integration

of ultrasonic microphones with GPS tracking to record
movement and vocalizations of bats [24–28]. Many bat
species use echoes from ultrasonic vocalizations to de-
tect obstacles and prey while foraging [29, 30]. These

biosonar calls dynamically change in inter-pulse interval
(IPI), frequency, and duration depending on the environ-
ment and behavioral context [31–33]. Echolocating bats
that capture prey while flying emit a feeding buzz - a
characteristic sequence of calls that decrease in IPI, fre-
quency, and duration - when approaching and attempt-
ing to capture a prey item [29, 34]. Feeding buzzes
provide a reliable cue that indicates foraging behavior.
We used acoustic and GPS biologgers to investigate

the foraging behavior of the Mexican fish-eating bat
(Myotis vivesi, Menegaux, 1901; henceforth “fish-eating
bat”), which is endemic to the islands and coasts of the
Gulf of California, Mexico [35]. M. vivesi eat predomin-
antly small marine crustaceans and larval fish captured
from the surface of the ocean (L.G. Herrera M., and E.
Claire, personal communication; Fig. 1) [36]. Piscivorous
bats independently evolved in two bat genera, Noctilio and
Myotis [37]. Piscivorous bats in the genus Myotis, like our
study species, use biosonar to detect prey that break the
water surface and use feeding buzzes when capturing prey
with targeted dips of their hindfeet [37–40] (Fig. 1). GPS
tracking revealed that these bats often travel over 20 km
to forage each night as they search for unpredictable
patches of prey [26]. These foraging trips often contain
over a dozen short foraging bouts (9min average) [26].
In this study, we apply and compare five segmentation

methods (Table 1) that include pattern description (k-
means clustering and first-passage time), process identi-
fication (hidden Markov models and expectation-
maximization and binary clustering), and change-point
detection with behavioral partitioning (correlated vel-
ocity change point analysis) to predict foraging behavior
in fish-eating bat foraging trips. We use feeding buzzes
in audio recordings on-board free-flying bats to confirm
foraging, and then evaluate the performance of each of
the methods mentioned above using true positive rate
(buzzes in predicted foraging locations), true negative
rate (absence of buzzes in predicted commute locations),
and balanced accuracy (the average of true positive and
true negative rates). To distinguish methods with similar
balanced accuracy, we also compare speed and turn
angles predicted for foraging by each method against
speed and turn angles at locations containing feeding
buzzes.
While it remains unclear how fish-eating bats decide

where to initiate hunting, a high density of fish at the
water surface can trigger trawling in other fishing bats
[39]. Direct observations and preliminary movement
analyses suggest that M. vivesi, like many other marine
predators searching for unpredictable patches of prey
[41, 42], use ARS when foraging and fast straight move-
ment when commuting [26]. Therefore, we expected
more feeding buzzes in areas of the trip indicative of
ARS than when the animal was traveling between
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patches or returning to the roost. Our goals were to de-
termine the best performing methods for this data set
and provide a framework for researchers to use with in-
dependent behavioral data to evaluate segmentation
methods.

Methods
Data collection
We conducted the study on Isla Partida Norte (28° 53′
16″ N, 113 ° 02′ 30″ W), a 1.4-km2 island located in the
midriff region of the Gulf of California, Mexico [43].

Fig. 1 a Photo of a Mexican fish-eating bat (Myotis vivesi) trawling for prey and (b) a satellite map (“Esri.WorldImagery”) of the study area with
GPS tracks of each foraging trip overlaid. These bats use biosonar to sense their environment, such as the ocean surface, and cue into small prey
that might break the surface. Prey capture attempts, or feeding buzzes, recorded from an on-board ultrasonic microphone are overlaid on each
trip. (Photo credit: Glenn Thompson)

Table 1 Tuned parameters and settings for each of the five segmentation methodologies

Category Method Parameter Setting

Pattern Description k-Means clustering – –

First-passage time Radius 250 m

Threshold 142 s

State-space modeling Expectation Maximization and binary clustering – –

Hidden Markov model Regularization 15 s

Initial step length (mean/SD) State 1: 70.2/ 27.6 m

State 2: 160.8/ 23.0
m

Initial turn angle (mean/
concentration)

State 1: 0/0.1

State 2: 0/0.1

Behavioral Change Point
Analysis

Correlated velocity movement behavioral
partitioning

Window size 2 (2.5)a min

Window step 1.25 min

Minimum changepoint distance 0.5 min
aOne bat flight did not converge with a 2 min window size and was adjusted to 2.5 min
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The island holds the largest known colony of M. vivesi
(~ 8000 individuals) [44]. Our study was conducted be-
tween May 27 and June 19, 2015, at which time females
are nursing pups (permits #7668–15 and 2492–17 from
Dirección General de Vida Silvestre, and permits #17–16
and 21–17 from Secretaría de Gobernación, and the
University of Maryland Institutional Animal Care and
Use Committee protocol FR-15-10).
Bats were captured by hand in the morning from

under rocks on tallus slopes along the south-east region
of the island. Lactating females weighing 32.5 ± 2.8 g
(mean ± SD) were selected for tagging to facilitate recap-
ture when the bats returned to feed their pups during
the day. We glued biologger tags (Robin GPS Loggers,
CellGuide Ltd., Israel) with 8 GB of memory and VHF
radiotransmitters (Holohil BD-2X) weighing on average
4.6 ± 0.1 g (mean ± SD) to the back of each bat using
non-toxic glue (Perma-Type Surgical Cement, Plainville,
Connecticut) [24]. We released bats at their capture lo-
cations during midday. After 1 or 2 days, we used the
transmitters to locate and recapture tagged bats. Because
our tags exceed conventional recommended weight al-
lowances for tags (see [45] for review), we conducted a
series of trials to determine the effect of the tags on the
bats (see also [26]). First, we confirmed that bats with a
tag could fly and forage normally in a flight tent with a
pool [26]. We then compared trips for bats with GPS
tags against bats carrying 0.5 g telemetry tags and found
no difference in duration of trips (telemetry: 4.3 ± 2.1 h,
GPS: 3.8 ± 1.8 h; p = 0.4, permutation t-test N = 20 GPS,
N = 15 telemetry) and no difference in weight loss be-
tween telemetry and GPS-tagged bats after controlling
for number of days tagged (ANCOVA: F1,63 = 1.55, p =
0.22, N = 47 GPS, N = 20 telemetry). We also found no
difference in condition (weight to forearm ratio) of pups
whose mothers were GPS or telemetry-tagged
(ANCOVA: F1,5 = 2.31, p = 0.20, N = 5 GPS, N = 3 telem-
etry). Finally, we confirmed that conspecific vocaliza-
tions were present throughout GPS-tagged bat trips
[26], indicating that bats with GPS tags traveled to the
same foraging areas as bats without GPS tags.
During the night, tags recorded GPS locations every

15 s and 0.5 s of audio every 5 s (10% duty cycle at 184
kHz sampling rate). While searching for prey, on-board
audio reveals that bats typically emit calls with a dur-
ation of 6 ms and with intervals of 200 ms between calls,
consistent with prior call measurements [46]. When ap-
proaching prey, the echolocation calls and intervals be-
come progressively shorter and terminate in a feeding
buzz. A feeding buzz lasts 0.2–0.25 s (Fig. 2); thus, a 0.5
s recording is sufficient to distinguish search phase calls
from a buzz. Foraging bouts typically last 6 min (see Re-
sults) with dozens of attacks performed during each
bout. Therefore, a 10% duty cycle with a recording every

5 s almost always captures attacks in a foraging bout. To
validate this assertion, in 2017 we tagged three bats with
new tags (Vesper, ASC. Inc.; Additional file 1: Table S2),
which allow continuous audio recordings (one 50% and
two 100% duty cycle) for an entire night. We then sub-
sampled those recordings to mimic the 10% duty cycle
data to determine how often a 10% sampling rate re-
sulted in missing foraging bouts (we performed all pos-
sible shifts of 0.5 s out of 5 s). The analysis showed that
a 10% sample rate detected 77 ± 16% of foraging bouts
(mean ± SD, Additional file 1: Figure S2).

Analysis of on-board audio
On-board audio was analyzed using custom Matlab soft-
ware called “Batalef,” [25]. Calls were identified with a peak
detection algorithm and manually checked. Call start and
end points were determined using a 5 dB drop from the
peak amplitude. Inter-pulse interval (IPI) was measured as
the time between the end of one call and the start of the
next. We identified buzzes by searching for calls below an
IPI threshold [47] of 10ms that occurred in groups of at
least three consecutive calls (Fig. 2). This was detected
automatically and then validated by manual inspection.
We included sequences with a terminal buzz as well as in-
stances of aborted buzzes as both suggest that the bat was
engaged in foraging behavior and attempting to capture
prey [34]. Because the biologger sampling schedule creates
three audio recordings (before, during or after) for each
GPS location, we aggregated buzzes detected in the audio
files closest to a GPS fix to determine the location and
movement characteristics for each buzz (Fig. 1b).

Analysis of location data
GPS and audio tags were deployed on eleven bats over a
10-day period resulting in fifteen trips (Additional file 1:
Table S1). All locations were transformed to Cartesian
coordinates using a Universal Transverse Mercator
(UTM) 12 N projection. GPS accuracy is ca. 8 m in the
X-Y plane and ca. 11 m in the Z axis [25]. We excluded
all GPS locations within 250 m of the island and subse-
quent tracks with fewer than 100 locations to remove
readings while bats were in the roost or making short
movements around the island. Speed, distance, and ab-
solute value of turn angle (hereafter “turn angle”) be-
tween subsequent steps were then calculated for each
pair of successive locations along the path of each bat
trip. Paths were segmented into either foraging or com-
muting states using five segmentation methods [7].
Below we describe how we estimated parameters associ-
ated with each of the five methods.

K-means clustering
K-means clustering (kmC) takes a set of n data points to
be clustered into k clusters and finds a partition that
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minimizes the squared error between the mean of a clus-
ter and the points in that cluster [48]. We applied kmC to
speed and turn angles using the “kmeans” function in the
R package “stats” [49]. To determine the optimal number
of clusters, we investigated the percentage of variance ex-
plained by kmC over a range of cluster sizes to find an
“elbow,” or the location at which adding more clusters
only marginally increased variance explained [50]. The
elbow method showed that two clusters was the optimal
number of partitions. We labeled the cluster with the low-
est speed and highest turn angle as foraging [10]. After
overlaying behavioral states on the parameter values, clus-
tering produced a linear threshold at a turn angle of 75°
(Additional file 1: Figure S3).

First-passage time
First-passage time (FPT) is the time it takes for an indi-
vidual to enter and leave a virtual circle of fixed radius

drawn around each location [51]. High FPT values are
generally associated with slower and more tortuous
movements, such as area-restricted searching, while low
FPT values are generally associated with faster and more
straight-line movements such as commuting. We used
the R package “adeHabitatLT” to calculate FPT for all
tracks [11, 52]. To determine a common scale to com-
pare FPT values between individuals, we calculated FPT
for all trips over radii ranging from 100 to 5000m in 25-
m increments [53]. For each path, we calculated the
variance of log-transformed first-passage time values
(transformed to make variance independent of the mean)
for each radius (Additional file 1: Figure S4A). The result-
ing peak in variances indicates the scale at which the or-
ganism is concentrating its activities; however, this scale
may vary by individual. We found a common scale for
analysis by selecting the radius with highest mean variance
when averaged across all paths [53].

Fig. 2 Spectrogram (top) and waveform (bottom) of fish-eating bat echolocation calls. (a) Typical terminal buzz, (b) aborted buzz (ends at 0.2 s)
followed by search phase calls
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The mean variance of log FPT peaked at a radius of
250 m (Additional file 1: Figure S4A). This value was se-
lected as the FPT radius for all tracks. A total of 99 loca-
tions could not have FPT values calculated because they
occurred too close to the beginning or end of a given
trip. To determine a threshold FPT value for separating
foraging from commuting, we fit a bimodal Gaussian
mixture distribution with the function “normalmixEM”
from the R package “mixtools” to the distribution of
ln(FPT). We used the 95% upper confidence interval be-
tween bimodal peaks of ln(FPT), which occurred at 142
s (Additional file 1: Figure S4B), to set the threshold be-
tween foraging and commuting FPT values.

Hidden Markov model
A hidden Markov model (HMM) assumes an animal has
more than one hidden behavioral state with characteris-
tic speed and turn angles that can be modeled using sto-
chastic processes [12]. We used the R package
“momentuHMM” to fit HMMs to all tracks [54]. We
used linear interpolation at 15 s increments to fill in
missing GPS values caused by signal loss or device mal-
function to address the HMM assumption of constant
sampling rate. We used a two-state model to define be-
havioral states.
Initial step length, or distance between sampling loca-

tions, parameters for the two-state HMM were estimated
from a mixed normal distribution of the step length of all
individuals using the function “normalmixEM” (state 1:
mean 70.2m, SD 27.6m; state 2: mean 160.8 m, SD 23.0
m). The HMM estimated gamma distributions for step
length parameters (state 1: mean 46.7m, SD 26.9m; state
2: mean 83.6m, SD 21.1m) and von Mises distributions
for turn angles (state 1: mean 0, concentration 0.23; state
2: mean 0, concentration 11.01). State 1 has a shorter step
length and uniform turn angle distribution, while state 2
has longer step lengths and a turn angle concentrated
around 0. Previously, these states have been termed area
restricted search and exploratory movements, respectively
[12, 55], and were assigned as foraging and commuting
behaviors in this study. Transition probabilities from for-
aging to commuting and commuting to foraging were 3.9
and 7.2% respectively (Additional file 1: Table S3). A
Jarque-Bera test of normality for step length (X2 = 301.59,
df = 2, p < 0.001) and turn angle (X2 = 5.38, df = 2, p = 0.07)
indicated that the distribution for step length deviated from
normality (Additional file 1: Figure S5, Table S4). We also
fit a three-state HMM, which had a slightly higher median
but lower mean balanced accuracy (see Additional file 1:
Figure S6, Table S5). To investigate the impact of sampling
rate, we performed the same HMM analysis on sub-
sampled data from 15 s to 10 min intervals by 15 s in-
crements and found that median HMM performance
gradually decreased with subsampling (linear

regression: slope = − 5.2 × 10− 5, F(1,38) = 16.34, R2 =
0.3, p = 0.0002; Additional file 1: Figure S7).

Expectation-maximization and binary clustering
Expectation-maximization and binary clustering (EMbC)
is an unsupervised clustering algorithm that uses max-
imum likelihood estimation of a Gaussian mixture
model [14]. EMbC is a parameter-free method that
groups velocity and turn angle into low and high values,
creating four clusters of intuitive biological interpret-
ation: low velocity and low turn angle (LL - resting), low
velocity and high turn angle (LH – intensive search or
ARS), high velocity and low turn angle (HL – commute),
and high velocity and high turn angle (HH – extensive
search or possibly predator avoidance) [14]. We used the
R package “EMbC” to annotate all tracks into these clus-
ters (Additional file 1: Figure S8). We aggregated two
search clusters, LH and HH, into foraging locations and
grouped the two remaining clusters (LL and HL) into
commute locations. We chose these groupings of the
data because the HH category does not reach very high
speeds, suggesting it is still ARS movement, and this
particular grouping gave the highest performance
(Additional file 1: Figure S9, Table S6).

Change point analysis of correlated velocity movements
Correlated velocity movement (CVM) refers to a family
of continuous-time movement models where velocities
follow Ornstein-Uhlenbeck processes. We used the R
package “smoove” (github.com/EliGurarie/smoove) to
estimate CVM and conduct likelihood-based change
point analyses [15, 16]. We used the random movement
or unbiased CVM (UCVM) model to partition each trip
into behaviorally consistent segments and estimate speed
and autocorrelation for each segment. To estimate
speed, autocorrelation, and potential change points, we
used a 2min window (8 location points), as increased
window length would be less sensitive to detecting short
foraging bouts and did not improve performance
(Additional file 1: Figure S10). After each estimate, the
window was shifted down the track 1.25 min (5 location
points) and the first step was repeated. For one trip
(Viv19 on 2015-06-02 UTC-7) a 2 min window length
would not converge, and a window length of 2.5 min
was used. The resulting peaks in log likelihood values
were then used as candidate change points. Change
points could not be less than 30 s apart, limiting the
minimum duration of each segment. Change points were
further thinned by recursively fitting CVM models to
each segment with and without a final change point and
then selecting the model with the lowest Bayesian Infor-
mation Criterion (BIC) score.
Correlated velocity change point (CVCP) analysis de-

termines behavioral states by refitting each segment to
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an advective CVM (ACVM) and choosing the model
with the lower BIC score. UCVM uses a Gaussian distri-
bution for position and velocity, with the long-term
mean position equal to the initial position, whereas
ACVM has a mean non-zero advective velocity. We la-
beled UCVM segments as foraging because they resem-
bled ARS movement, and we labeled ACVM segments
as commuting because they tend to be straight and fast.
For each CVCP segment, we record the model fit as ei-
ther unbiased or advective CVM, corresponding to for-
aging or commuting for all locations within that
segment and parameter estimates of root mean squared
speed and tau, a measure of time over which data are
autocorrelated (Additional file 1: Table S7).

Evaluation of segmentation methods
We assessed performance of each movement segmenta-
tion method using presence and absence of buzzes
which were detected in the on-board audio recordings
and assigned to the nearest GPS location. We expected
that a good segmentation method would accurately pre-
dict the presence of buzzes during predicted foraging
and absence of buzzes during predicted commuting. We
scored buzz occurrences during foraging segments as
true positives and absence of buzzes in commute seg-
ments as true negatives. True positive rate (TPR), or
sensitivity, is the rate of choosing the correct value when
the underlying condition is true. Here, TPR is the num-
ber of matches between buzzes and predicted foraging
over the total number of buzzes. True negative rate
(TNR), or specificity, measures the proportion of nega-
tives that are correctly labeled.
Since buzzes are relatively rare in our recordings, we

did not use accuracy, which assumes a balanced dataset
of true positives and true negatives. For example, if a
method determines that all locations are “foraging” or all
locations are “commuting”, this would yield a 100% TPR
or 100% TNR, respectively. Therefore, we used the aver-
age of TPR and TNR, referred to as “balanced accuracy”,
which punishes methods for selecting too many events
from the same class (i.e. foraging or commuting). A bal-
anced accuracy of 50% corresponds with a random
guess, while a perfect true positive and true negative rate
would yield a balanced accuracy of 100%. Furthermore,
balanced accuracy is more appropriate for unbalanced
data because it weights TPR and TNR equally even if
the number of observations in each is different [56].
After computing the balanced accuracy for each

method per individual, we then tested whether there
were significant differences in TPR, TNR and balanced
accuracy between the methods using a Friedman’s test
[57]. If there were statistically significant differences be-
tween methods, we then performed Wilcoxon paired-
sample tests with Bonferroni correction to determine

which models differ from the model with highest bal-
anced accuracy.
We then compared the mean speed and turn angle as-

sociated with buzzes on each bat trip to mean speed and
turn angle identified for foraging by each of the five seg-
mentation methods, as explained below, using Wilcoxon
paired-sample tests with a Bonferroni correction. Finally,
we compared segmentation parameters (percentage of
track foraging, mean foraging segment duration, and
mean number of foraging segments) between the top
performing method and all other methods, to determine
if methods were segmenting trips similarly to the top
performing method.
All analyses were conducted using R version 3.4.3 (R

Core Team 2017).

Results
Trip summary
Trip duration and number of buzzes recorded varied
among individuals. After removing locations within 100
m of each bat’s initial position on the island, there were
12,038 GPS locations, and 688 buzzes. The duration of
trips was 3.4 ± 1.8 h (mean ± SD, range 0.9–6.4, N = 15),
with total distance per trip of 42.6 ± 25.8 km (range
6.79–89.80 km, N = 15), and number of feeding buzz
events per trip of 45.9 ± 32.8 (range 5–138, N = 15)
(Additional file 1: Figure S1, Table S1). Given the 10%
audio duty cycle, the actual number of feeding buzzes emit-
ted is about ten-times greater (as we confirmed by tagging
bats with 50–100% duty-cycle tags, Additional file 1:
Figure S2). The distribution of times between buzzes
has a long right-tail towards higher time intervals,
which has an exponentially decreasing shape, indicat-
ing that most buzzes occur in clusters, i.e., in for-
aging bouts (Additional file 1: Figure S11).

Model performance
The performance of behavioral classification methods
was assessed for each bat flight using the true positive
and true negative rates (Additional file 1: Table S8).
Some methods over-predicted commuting behavior (e.g.
EMbC and kmC), suggesting that they failed to detect or
fully capture many foraging bouts. While kmC had the
highest median TNR, followed by EMbC, HMM had the
highest TPR and was moderately higher than FPT and
CVCP (Fig. 4a). Balanced accuracy showed significant
differences among methods (Friedman χ2 = 20.69, df = 4,
p < 0.001). HMM had the highest median balanced ac-
curacy (67.3%), followed by CVCP (64.1%), EMbC
(63.2%), kmC (62.7%), and FPT (61.5%), though post-hoc
tests indicated that FPT and CVCP did not significantly
differ from HMM (Wilcoxon paired test with Bonferroni
correction: FPT vs. HMM p = 1; CVCP vs. HMM, p =
0.15; Fig. 4b). Variation in balanced accuracy within
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methods could not be explained by distance traveled
(ANCOVA: F4,65 = 0.37, p = 0.83) or number of buzzes
during a trip (ANCOVA: F4,65 = 0.38, p = 0.82).

Movement parameters associated with buzz locations
All five segmentation methods identified two states: for-
aging with low speed and high turn angle and commut-
ing (Table 2). Foraging speeds and turn angles at
locations where buzzes were detected agreed with most
segmentation estimates of foraging speed and turn angle;
however, speed associated with buzzes (mean ± SD:
3.4 ± 0.5 m/s) differed from foraging speed estimated by
kmC (Wilcoxon paired test with Bonferroni correction:
p = 0.004) and turn angle associated with buzzes (mean ±
SD: 72.5 ± 16.7°, N = 15) differed from turn angles esti-
mated for foraging by kmC and EMbC (p < 0.001 and p <
0.001 respectively; Table 2).

Predicted foraging events
The segmentation methods also varied in how much for-
aging each predicted for each trip (Fig. 3). Percent of trip
foraging, mean foraging segment duration, and number
of foraging segments showed significant differences
among methods (Friedman’s test for percent foraging:
χ2 = 47.41, df = 4, p < 0.001; segment duration: χ2 =
53.17, df = 4, p < 0.001; number of segments: χ2 = 54.03,
df = 4, p < 0.001). Post-hoc tests indicated that propor-
tion of time spent foraging in a trip predicted by FPT
and CVCP did not significantly differ from that pre-
dicted by HMM (Wilcoxon paired test with Bonferroni
correction: FPT vs. HMM p = 0.8; CVCP vs. HMM, p =
1; Fig. 4b). FPT, HMM, and CVCP identified foraging
during about 40% of each trip; whereas, EMbC predicted
about 25% and kmC predicted about 20% (Fig. 3a). The
duration and number of segments, i.e. changes in behav-
ioral state between foraging and commuting, per trip dif-
fered substantially between most methods (Fig. 3b, c)
with the exception of FPT and HMM which predicted
very similar foraging segment duration (4–6 min) and
number (35–40).

Discussion
We present the first evaluation of segmentation method-
ology performance in a free flying bat. Individual for-
aging trips varied considerably in duration and number
of buzzes (Additional file 1: Table S1), providing a com-
plex set of data for each segmentation method. Our goal
was to identify the best performing segmentation
method for fish-eating bat foraging trips. We found that
1) HMM had the highest median balanced accuracy, 2)
HMM, FPT, and CVCP foraging segments predicted
speed and turn angles similar to those for buzz locations
and 3) HMM segmentation was most similar to FPT in
terms of percent of trip foraging, duration of segments,
and number of segments in a trip. These results point to
HMM as the best segmentation methodology with FPT
as a useful alternative. Overall, balanced accuracy was
limited (no greater than 67% overall, and 84% for the
best-identified individual trip) because buzzes are rare
events during a foraging bout, so segmentation methods
will inevitably identify more locations as foraging than
will buzzes. Variation in accuracy of segmentation meth-
odology may also be influenced by sampling design,
which can be controlled by researchers, or by nuances of
animal behavior, which can lead to biological insights.

Predicting foraging behavior
Fish-eating bat trips typically consist of an outward com-
mute from the roost, composed of straight fast flight,
followed by several foraging bouts, which can either have
short transits or longer commutes connecting them, and
finally a commute back to the roost [26]. All methods
identified commuting phases with higher speeds and
lower turn angles than during foraging bouts, consistent
with animals searching for unpredictable patchy re-
sources [26, 37, 58]. While generally robust at identifying
long commute or foraging movements, segmentation
methods often struggle with how finely they parse short
foraging bouts and transits.
Inspection of an example trip provides insight into

how each method performs (Fig. 5). All methods con-
verged on a large foraging area at the furthest point from

Table 2 Mean and standard deviation of flight parameters for behavioral states identified by each segmentation method

Foraging Commuting

Method Speed (m/s) Turn angle |degrees| Speed (m/s) Turn angle |degrees| Omitted points

kmC 2.87 ± 0.20** 130.3 ± 3.1*** 5.05 ± 0.40 19.2 ± 3.2 30

FPT 3.48 ± 0.46 69.0 ± 11.2 5.49 ± 0.61 21.5 ± 13.0 99

HMM 3.13 ± 0.22 83.4 ± 8.1 5.65 ± 0.42 13.9 ± 1.5 0

EMbC 3.12 ± 0.22 112.2 ± 5.9*** 5.13 ± 0.39 17.3 ± 2.4 0

CVCP 3.48 ± 0.50 74.8 ± 12.2 5.33 ± 0.34 21.8 ± 7.2 0

Buzz 3.36 ± 0.54 72.5 ± 16.7 NA NA NA

Wilcoxon pairwise comparisons between buzz occurrence and foraging parameters for each method with Bonferroni correction (see text)
**p-value < 0.01, ***p-value < 0.001
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the roost and, after lining up foraging segments in time
(Fig. 5), most methods agree on the beginning and end
of some segments. However, coverage and change points
for each method vary. All methods show several breaks
in the foraging segment, increasing from CVCP, which
only has a few foraging segments separated by a few
breaks, to HMM and FPT, which have more breaks, to
kmC and EMbC, which break the foraging event into
over 100 brief events. Methods with high numbers of
segments, such as EMbC and kmC, consistently had
lower true positive rates, suggesting that finely parsing
foraging results in more missed buzzes. Yet, some of
these breaks are real events in which the bat transits be-
tween small patches, such as at 2:00 (UTC-7). Other
breaks in foraging segments could reflect an ARS that
follows a drifting resource patch and therefore has an in-
creased speed and more uniform direction. These identi-
fications would then be considered “false negatives” of
foraging detection and are more likely to occur with the
unsupervised methods, EMbC and kmC.

Evaluating foraging with buzzes
Buzzes appear to be concentrated in foraging bouts, sup-
porting the hypothesis that prey capture attempts in-
crease during foraging movements [10]. However, some
buzzes were clearly recorded along a straight outgoing
track, which all methods classify as commuting (Fig. 5).
There was no obvious change in speed or turn angle
during these events, and they were consequently missed
by all the classification algorithms, increasing the num-
ber of false negatives. It is possible that these buzzes
occur during brief foraging bouts in which the bat
attempted to attack prey on the water surface while
commuting. Another possibility is that these brief events
occur when fish-eating bats opportunistically encounter
aerial prey, a behavior occasionally observed [36]. The
fact that buzzes are not exclusively limited to ARS sug-
gests some plasticity in the foraging behavior of M.
vivesi.
Balanced accuracy values are also likely reduced be-

cause audio was not sampled continuously, possibly

Fig. 3 Box plots showing (a) the percentage of a trip in foraging behavior, (b) the number of locations in a foraging segment, and (c) the
number of segments for each segmentation method (N = 15). Different letters above boxplots represent significant differences in paired Wilcoxon
sign rank tests after Bonferroni correction
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leading to missed buzzes in foraging segments. Analysis
of all-night continuous audio recordings revealed that a
10% duty cycle (0.5 s every 5 s) captured 77% of foraging
bouts (Additional file 1: Figure S2), demonstrating that
we captured most, but not all, prey capture attempts.
Unfortunately, those continuous audio recordings did
not include GPS sampling and therefore cannot be used
to determine how each segmentation method would per-
form against a more complete audio data set. Future
work should aim to collect audio at a higher duty cycle
in tandem with additional independent behavioral moni-
toring devices, such as an accelerometer, which may de-
tect changes in wingbeat patterns, or barometric
pressure, which would reveal when bats are close
enough to the surface of the ocean to capture prey.

Evaluation of methods
HMM, while not significantly better than all methods,
had the highest median balanced accuracy and predicted

movement metrics similar to those measured at buzz lo-
cations. Where they have been independently validated
with behavioral signals, HMM’s have shown promise in
accurately assigning behavioral states across a variety of
taxa, e.g. elephant seals [59] and gannets [10]. HMM’s
define both the state distribution (the distribution of in-
put turn angle and step length) and the transition prob-
ability between states (Additional file 1: Table S3). In
principle, HMM’s require data recorded at regular sam-
pling intervals with negligible measurement error and
can be influenced by autocorrelation in the data since
there is an assumption of serial independence among
turning angles and step lengths. Diagnostic plots of the
HMM pseudo-residuals indicate a lack of fit because the
independence of the data are often violated. Nonethe-
less, in our case HMM still outperformed other
methods, suggesting that, in practice, model misspecifi-
cation is not a fatal flaw. Timescale of autocorrelation
estimates from CVCP in foraging tended to be lower

Fig. 4 a Scatter plot of true positive rate against true negative rate (each point represents a bat flight and method combination) and (b) box plot
of the balanced accuracy for each trip (N = 15). The scatter plot includes mean values of each method with standard error for true positive rate
and true negative rate (a). A dashed line is included in both plots to show 50% balanced accuracy and values above the line represent good
classification. Different letters above boxplots represent significant differences in paired Wilcoxon sign rank tests after Bonferroni correction (b)
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than 15 s, indicating that foraging movements were inde-
pendent, possibly explaining the performance of HMM
in identifying foraging. Furthermore, we investigated
how subsampling to coarser sampling resolutions influ-
enced performance and found a significant but subtle de-
crease in median balanced accuracy, suggesting that
HMM performance is generally robust to GPS sampling
rate (Additional file 1: Figure S7). We also fit a three-state
HMM. Despite a lower AIC and slightly higher median
balanced accuracy of a three-state HMM, a two-state
HMM had a higher mean balanced accuracy and less
variation than the three-state model (Additional file 1:
Figure S6, Table S5).
Due to limited recordings per individual, all methods

assumed no individual variation. Nightly differences in
oceanographic conditions, weather, prey distribution,

and social context could influence the way an animal
commutes or forages and consequently affect method
performance, especially if trips are aggregated for analysis
[10, 25]. We limited our analyses to just movement and
buzzes to simplify method comparison; however, many
segmentation analyses are performed for habitat selection
analysis or use environmental parameters with movement
to identify behavior state changes [11, 60, 61]. While be-
havioral states annotation from all five methods can be
used for habitat selection, HMM can include environmen-
tal covariates in the model and clearly present how those
covariates influence transition probabilities, which is an
additional advantage of this method. Alternatively, the
transitions and parameters obtained from other methods
can be analyzed with respect to environmental covariates
post hoc. For example, the probability that a foraging

Fig. 5 Example trip showing (a) the flight trajectory, (c) cosine of the turn angle for the entire flight, and (d) speed for the entire flight. (b)
displays a close-up of the foraging area in (a), (d) cosine of the turning angle for (b), and (f) speed for (b). Buzzes are overlaid as red circles in all
plots and segmentation methodology predictions of foraging are shown in different colors below speed and turn angle plots (c-f). The number
of foraging segments identified in this trip varies between methods (kmC: 145; FPT: 80; HMM: 31; EMbC: 138; CVCP: 13)
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phase might have an advective term from the CVCP could
be modeled with respect to winds or currents to indirectly
explore hypotheses related to drifting prey patches. As an-
other example the frequency of extremely short foraging
bouts from the clustering algorithms might be related to
environmental conditions associated with less concen-
trated and patchier prey fish aggregations.
One of the earliest and heuristically simplest of the seg-

mentation methods, FPT is still one of the most commonly
used methods to identify foraging areas [10, 53, 60], and –
because it is explicitly spatial rather than velocity-based –
can outperform more statistically complex tools [8]. In our
study, FPT had the most variable accuracy among individ-
ual trips. FPT was most similar to HMM in performance,
despite having lower median balanced accuracy, and some
of the individual trips had extremely high accuracy (up to
84%). We did not explore the effect of different radii and
thresholds on balanced accuracy but instead chose a radius
that maximized the overall variation in FPT and a cut-off
between foraging and commuting that was at the upper
confidence limit for the first peak in the ln(FPT) histogram.
The fact that only one radius and threshold were used likely
explains much of the variability in accuracy, since both the
radius and threshold may change according to individual or
environmental conditions. For example, bats may be influ-
enced by drifting prey or strong winds, which may com-
promise the ARS pattern and require a larger radius or
threshold to separate behaviors. Replicates of trips for the
same individual across environmental conditions, as well as
measurements of the relevant abiotic conditions, could be
combined with an FPT analysis to gain further insights into
the context of fish-eating bat behavioral states.
CVCP requires a large enough analysis window to reli-

ably estimate movement parameters and change points.
By design, CVCP segments are more likely to correspond
to behavioral switches than spurious changes in move-
ment. Though less sensitive than other methods, its bal-
anced accuracy was comparable to HMM and FPT.
Furthermore, CVCP is the only method that provides a
completely parameterized continuous-time movement
model that is defined in terms of biologically meaningful
parameters (e.g. advective and random mean speeds and
characteristic time scales of auto-correlation, [16]), which
makes it possible to compare the mechanistic features of
larger-scaled commuting and foraging behaviors across in-
dividuals or foraging trips. Estimates of tau, which is an
estimate of the time scale at which the velocity of an ani-
mal’s movement is autocorrelated, are typically higher
than the 15 s GPS sampling schedule in commuting and
less than 15 s for foraging locations (Additional file 1:
Table S7). This suggests that the 15 s sampling rate is suf-
ficient for characterizing the commuting movements, but
that the movements (and decisions) that the bat is per-
forming while foraging occur at a faster rate, requiring an

even higher location sampling rate or ancillary informa-
tion (e.g. from an accelerometer) to explore the foraging
behaviors in higher detail. This result does, however, sug-
gest that the independence assumption behind the HMM
is essentially satisfied, at least for the foraging state. It is
further worth noting that the CVCP is perhaps best suited
to distinguish between highly localized foraging and for-
aging for a drifting patch, since it can fit a model with ad-
vection that still has varying degrees of tortuosity and
movement speeds.
The two unsupervised methods, EMbC and kmC, pro-

duced similar segmentation patterns of bat foraging
trips. Pattern description methods, such as kmC, do not
require a predefined length for segments and can there-
fore detect very brief foraging bouts (Fig. 3b). It is likely
that EMbC is attempting to overfit the movement data
and defines states that do not occur during these trips,
such as resting. However, by aggregating states, we dem-
onstrate that this method can still be useful on data that
has been filtered to exclude time in the roost. While
these methods identified most foraging sites, they pro-
vided unreliable estimates of parameters associated with
foraging due to their lower performance.

Conclusion
Despite variation in movement statistics, performance,
as measured by balanced accuracy, was not very different
among methods. While performance is highest with
HMM, technical constraints might lead some re-
searchers to use simpler or faster methods, like FPT, that
do not require parameter estimation, though recently
developed R packages like “momentuhmm” have made
the fitting of HMM models to movement data much
more accessible [54]. Our results do indicate that the
choice of segmentation method can lead to dramatically
different movement statistic estimates, such as number
of foraging bouts, percentage of time spent foraging, and
locations of foraging areas. It is therefore important to
be aware of the assumptions and limitations of each al-
gorithm, as well as each tool’s sensitivity to sampling
rate, missing locations, localization accuracy [59, 62] and
individual differences [13]. Ultimately, the research ques-
tion should inform method selection. Evaluating bio-
physical parameters such as speed and time scales of
movement is easier with a more realistic movement
model [16], while identifying covariates that influence
the rate of behavior switching between stereotyped be-
haviors will require a state space model. In many cases,
important insights can be made through “triangulation”
– i.e. by using several tools and comparing the outputs.
As animal movement data become more readily avail-
able, it will be increasingly possible to validate behavioral
annotation methods. In species that lack sufficient ob-
servational data to calibrate behavioral state estimates,
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such as animals with cryptic foraging behaviors, re-
searchers must decide whether their assumptions about
behavior reflect reality.

Additional file

Additional file 1: Supplemental figures and tables. (DOCX 270 kb)
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