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the recruitment (i) of cadherin to the cell membrane of 
embryonic and epithelial cells, (ii) of the TCR to the T cell 
cap in Iymphocytes, and (iii) by inference, of integrins to 
focal adhesions (Solis et al. 20 I 0), it becomes reasonable 
to propose that the reggies participate in guiding specific 
membrane proteins from internal compartments to very 
specific regions of the plasma membrane. The many 
reggie-decorated vesicles in the cells moving towards and 
away from the cell membrane (Langhorst et al. 2008a) 
seem to represent vesicular carriers of cargo originating 
from post-Golgi compartments and the Rabll recycling 
endosome. In differentiating neurons the role of reggies 
appears to consist in targeting growth receptors and bulk 
membrane to the axon and growth cone for process 
extension and elongation (Munderloh et al. 2009). Direc­
tional cues for the delivery of the membrane proteins might 
co me from the GPI-anchored proteins which co-cluster with 
the reggies upon their activation. PrP-PrP trans-interaction 
and association with reggies at cell contact sites, for instance, 
provides a spatial c1ue for the recruitment of E-cadherin to 
these sites (Fig. I). It has been recognised that E-cadherin­
dependent adhesion is a dynamic process (Wirtz-Peitz 
and Zallen 2009) involving the continuous recycling of 
E-cadherin between the plasma membrane at the contact sites 
and the recycling compartment. This would explain why PrP 
and reggie are always together at cell contact sites; they are 
the 'motor' driving E-cadherin turnover. This mechanistic 
concept on reggielPrP fimction could Iikewise be applied to 
focal adhesion formation and turnover of focal adhesion 
components during cell migration, to the growth receptors 
and adhesion and guidance molecules in the growth cones 
and to the recruitment of the TCR to the cap. The delivery 
of Glut4 from internal stores to the cell membrane seems to 
be regulated in a similar manner although information on 
the potential involvement of specific GPI-anchored proteins 
in demarcating the site of Glut4 deposition is not available. 
It has, however, been reported that Glut4 delivery depends 
on the exocyst (Chen et al. 2007), and this is consistent 
with the observation that reggie signals to the Rho-GTPases 
including TCIO (Baumann et al. 2000; Munderloh et al. 
2009) which are involved in exocyst-mediated cargo 
transport and delivery (Feig 2003; Kawase et al. 2006; 
Chang et al. 2007). Whether the exocyst is involved in the 
other reggie-dependent delivery pro ces ses discussed herein 
has not yet been explicitly analysed but is expected as the 
exocyst is known to participate in growth receptor delivery, 
in E-cadherin delivery and process elongation in neurons 
(Dupraz et al. 2009), and is expressed in T Jurkat cells (our 
own unpublished observation). The hypothesis of reggie 
functions, presented here (Fig. I) can, in fact, be experi­
mentally tested and refined as research progresses and 
knowledge increases and is consistent with the evolutionary 
conservation of reggies and their widespread expression 
across cell types. 
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