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The isothermal compressibility of a general crystal is analyzed within classical density functional theory. Our
approach can be used for homogeneous and unstrained crystals containing an arbitrarily high density of local
defects. We start by coarse-graining the microscopic particle density and then obtain the long-wavelength limits
of the correlation functions of elasticity theory and the thermodynamic derivatives. We explicitly show that the
long-wavelength limit of the microscopic density correlation function differs from the isothermal compressibility.
We apply our theory to crystals consisting of soft particles which can multiply occupy lattice sites (“cluster
crystals”). The multiple occupancy results in a strong local disorder over an extended range of temperatures. We
determine the cluster crystals’ isothermal compressibility, the fluctuations of the lattice occupation numbers
and their correlation functions, and the dispersion relations. We also discuss their low-temperature phase
diagram.

I. INTRODUCTION

In crystals, where translational invariance is spontaneously
broken, strain enters as an additional thermodynamic variable
in the free energy, describing the distortion of the solid.
The trace of the strain tensor is connected to the change
in density. In particular, in ideal crystals, where all atoms
can be unambiguously assigned to lattice sites and all lattice
sites are occupied, density change is determined by the trace
of the strain tensor. In real crystals, point defects such as
interstitials and vacancies are present, and density can change
by both deformation of the solid (captured by the strain)
and diffusion of defects [1]. Thus, the presence of defects
opens the question of how density and strain fluctuations are
defined in real crystals. Here, no one-to-one mapping of atoms
to lattice positions is possible. Therefore, the displacement
field, whose symmetrized (in linear approximation) gradient
gives the strain, cannot be obtained from the displacements
of individual atoms from their lattice positions. Only recently
microscopic definitions of strain and density fluctuations in
real crystals were derived from the statistical mechanical
description of real crystals, overcoming this difficulty [2].
This work followed an earlier suggestion by Szamel and Ernst
[3–5]. Preliminary Monte Carlo simulations and comparisons
with older approaches, including to amorphous solids, indi-
cated the potential of the microscopic theory [6].

An intriguing finding of the microscopic approach of
Ref. [2] concerns the coarse-grained density field δn(r,t)
which enters into the theory of crystal elasticity [7]. Even
for arbitrarily large wavelengths, particle density fluctuations
with wave vectors close to all (finite) reciprocal lattice
vectors contribute to the coarse-grained density field. In this
contribution, we discuss this at first surprising finding within
the framework of density functional theory. This theory allows
us to properly link microscopic and macroscopic density
fluctuations in states with broken translational symmetry
in order to parallel the coarse graining of the free energy
functional achieved previously for, e.g., homogeneous liquid
crystals [8].

Based on the microscopic definition of the coarse-grained
variables of elasticity theory, we can address another intriguing
question, originally raised by Stillinger [9–11]. Namely,
whether the structure factor is an analytic function around
zero wave vector and whether its small-wave-vector limit
coincides with the compressibility. We find that due to the
long-ranged displacement correlations, the small-wave-vector
limit of the correlation function of the coarse-grained density
field is nonanalytic and depends on the direction relative to the
crystal lattice. We derive these results from density functional
theory and can thus put them on a firm microscopic basis. Thus,
we generalize earlier findings obtained within the harmonic
crystal approximation [12]. Because of the nonanalyticity, spe-
cial care is required when discussing the thermodynamic limit.
From studies on two-dimensional crystals it is known that
defects enter the expression for the isothermal compressibility
in a complicated fashion [13]. We generalize these results
to crystals of arbitrary symmetry. Correcting the Appendix of
Ref. [2], we also derive relations between fluctuation functions
and thermodynamic derivatives. These results suggest that the
elastic constants of crystals with point defects [14] could
be measured by microscopy techniques applied to colloidal
crystals [15].

In order to test the theory, we apply it to so-called “cluster
crystals” [16,17] which consist of particles interacting with a
soft-core repulsion. The softness of the potential allows for
multiple occupancy of individual lattice sites by the particles
and for fluctuations of the lattice site occupation numbers.
These fluctuations play the role of mobile local defects. Indeed,
the approximation which considers these cluster crystals as
ideal crystals (with a uniquely occupied lattice sites) is valid
only at extremely low temperatures [18], and the different
crystal structures can only be understood by allowing for a
distribution of site occupation numbers [19,20]. For these
crystals, we will derive thermodynamic derivatives, correlation
functions, and dispersion relations, which were not acces-
sible previously, and we will discuss their low-temperature
phases.
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The paper is organized as follows: In Sec. II we first recall
definitions and results from Ref. [2] and then, in Sec. III,
we derive expressions for the fluctuations of displacement
and density fields in an unstressed reference state. They
are given by microscopic quantities defined in terms of
the direct correlation function of the crystal. To facilitate
application of these expressions, we also invert these relations
considering two sets of independent fluctuations, coarse-
grained density and displacement field or defect density [21]
and displacement field. In Sec. IV we derive the thermo-
dynamic free energy, including the thermodynamic elastic
susceptibilities, by coarse-graining the microscopic classical
density functional. As the first step, we obtain the free energy
functional containing the elastic fields, which reduces to the
thermodynamic one for homogeneous fields. This is followed
by the discussion of thermodynamic derivatives. In Sec. V
we discuss the small-wave-vector limit of the coarse-grained
density fluctuation function and show that it differs from
the isothermal compressibility κ . We also discuss scattering
functions and conclude that scattering experiments do not
allow us to measure the compressibility in a crystal, in contrast
to liquids and gases [22]. Finally, in Sec. VI we apply our
theory to cluster crystals. We show that a simple mean-field
density functional leads to surprisingly accurate values of
compressibilities and occupation number fluctuations. Details
of some of the calculations are presented in appendices.

II. COARSE-GRAINED FIELDS

Crystals exhibit spontaneously broken translational sym-
metry (e.g., the average density is nonuniform) and this, via the
Goldstone theorem, leads to long-ranged correlations. Specif-
ically, the vector displacement field u(r,t) possesses correla-
tions which decay like the inverse distance. In ideal crystals,
one can use the familiar expression for the microscopic density
of the displacement field

∑
i ui(t)δ(r − Ri), involving the

displacement ui(t) = ri(t) − Ri of the instantaneous position
of the particle i, ri(t), from its lattice site Ri . However, in
real crystals, in which defects are present, this expression is
invalid [3]. In order to find the microscopic definition for the
displacement field u(r,t) and for the other fields of elasticity
theory, an alternative approach was developed in Ref. [2].

Before we discuss the approach of Ref. [2], we need
to define precisely various fields used in the present paper.
First, we have microscopic densities, i.e., quantities that are
defined for and depend on an individual configuration of the
N -particle system. To distinguish these quantities we will
always explicitly state that they depend on time t (such as
in the standard definition of the displacement field mentioned
in the previous paragraph). Another example, which will be
important in the following, is the microscopic particle density
ρ(r,t); it will be precisely defined in Eq. (1) below. In crystals,
in general the averages of microscopic quantities will change
on the spatial scale of the crystalline cell. For example, the
average density in a crystal, n(r) = 〈ρ(r,t)〉, is nonuniform,
with large peaks near lattice sites’ positions. In contrast, the
scalar density, denoted δn(r), and the vector displacement
field, δu(r), used in the theory of elasticity vary only on
much larger scales; here the δ indicates a deviation from
homogeneous thermal equilibrium. Thus, one of the goals of

Ref. [2] was to identify microscopic fields whose averages
correspond to the fields of elasticity theory. In the rest of
this paper we will call these fields microscopic coarse-grained
fields. Also, in the rest of the paper we will refer to averages
of microscopic quantities as macroscopic fields. Especially,
second moments, viz. covariances and correlation functions,
will be considered in the following and will be connected to
thermodynamic derivatives.

A. Microscopic particle density

The concepts of generalized elasticity theory [1,23] indicate
that density fluctuations close to (all) reciprocal lattice vectors
are long ranged [24]. Therefore, they all could contribute to
coarse-grained fields. The microscopic approach to find the
displacement field in a real crystal starts from the particle
density field ρ(r,t) which depends on the configuration
of the N -particle system (considering, for simplicity, a
one-component crystal of point particles interacting with a
spherically symmetric pair potential)

ρ(r,t) =
N∑

i=1

δ(r − ri(t)), (1)

where ri(t) are the particle positions, and N is the number of
particles in the volume V ; later on we will use n0 to denote the
average density, n0 = N/V . Spatial Fourier transformation
gives fluctuations close to vectors g of the reciprocal lattice,

δρg(q,t) = ρ(g + q,t) − ngV δq,0, (2)

where

ρ(k,t) =
∫

ddre−ik·rρ(r,t) =
N∑
i

e−ik·ri (t) (3)

and

ng = 1

V
〈ρ(g,t)〉 = 1

V

N∑
i

〈e−ig·ri (t)〉. (4)

Here, the general wave vector k was divided up into reciprocal
lattice vector g and wave vector q, which lies within the
first Brillouin zone; 〈 〉 brackets indicate canonical averaging
at fixed temperature T (averages are time independent due
to time-translational invariance of equilibrium states [25]).
ng are the Bragg-peak amplitudes (Debye-Waller factors)
which serve as crystal order parameters. They quantify the
spontaneous breaking of the translational invariance (spatial
homogeneity).

B. Coarse-graining microscopic density fluctuations
to elasticity fields

In Ref. [2] the following representation was established for
the microscopic density fluctuation in terms of microscopic
coarse-grained density and displacement fields:

δρg(q,t) = −inggαδuα(q,t) + ng
δn(q,t)

n0
, (5)

with Greek indices denoting spatial directions; repeated
indices are summed over (Einstein summation convention is
used). Equation (5) is the crucial relation linking the fields of
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macroscopic elasticity theory to the underlying microscopic
density fluctuations. It states that for wave vectors q within
the first Brillouin zone, the four coarse-grained fields δn(q,t)
and δu(q,t) determine the hydrodynamic contributions of
the microscopic density field. This is valid even close to
Bragg peaks at arbitrarily high reciprocal lattice vectors g.
Equation (5) was introduced in Ref. [2]. It was deduced using
the Zwanzig-Mori equations of motion for the microscopic
density fluctuations and its relation to older DFT approaches
was discussed. In the present contribution, we support it by
considerations of equilibrium correlations.

In ideal crystals without defects the coarse-grained density
and the divergence of the displacement field are proportional
[1]. In real crystals, mass transport can arise from lattice
distortions (described by the displacement field) but also from
defect motion, which occurs diffusively over large distances.
This additional hydrodynamic mode is called point defect
density. It enters by the standard definition [1]:

δc(q,t) = −δn(q,t) − in0qαδuα(q,t). (6)

In Ref. [2] it is shown that Eqs. (5) and (6) predict the correct
reversible dynamics of the defect density. Because many
situations require theoretical expressions at constant defect
density [21], we will use Eq. (6) repeatedly in the following
sections.

C. Relating the coarse-grained fields to microscopic
density fluctuations

Explicit expressions for the coarse-grained density and
displacement fields can be derived by inverting Eq. (5). The
inversion can be performed using the two summations

n0

N0

∑
g

n∗
g, (7a)

N−1
αβ

∑
g

n∗
ggβ, (7b)

and the relation
∑

g |ng|2g = 0. The normalization con-
stants are N0 = ∑

g |ng|2 and Nαβ = ∑
g |ng|2gαgβ . Perform-

ing the sums over the reciprocal lattice in Eq. (5) leads to the
microscopic coarse-grained density

δn(q,t) = n0

N0

∑
g

n∗
g δρg(q,t), (8)

and to the microscopic coarse-grained displacement field

δuα(q,t) = iN−1
αβ

∑
g

n∗
g gβ δρg(q,t). (9)

These expressions could be evaluated using information
obtained from computer simulations or from colloidal experi-
ments [15].

Equations (8) and (9) express the coarse-grained fields
in terms of microscopic particle density (1). It is intriguing
that contributions from all finite lattice vectors g �= 0 are
present in the coarse-grained density. Even in the limit of
vanishing wave vector, q → 0, it is not sufficient to measure
particle density fluctuations close to the center of the first
Brillouin zone, in order to determine the thermodynamic

density field in crystals. Fluctuations from the regions around
all lattice vectors contribute and describe how macroscopic
strain fluctuations and defect density independently cause
changes in the hydrodynamic particle density.

III. RELATIONS INVOLVING CORRELATIONS OF THE
COARSE-GRAINED FIELDS

A. Correlation functions of the coarse-grained fields

After recalling the relations between the fields of elasticity
theory and microscopic fluctuations [2], we turn now to the
focus of our work, the correlation functions of the coarse-
grained fields and the thermodynamic derivatives (including
the isothermal compressibility). First, we will obtain the corre-
lation functions from classical density functional theory (DFT)
[25–27]. These correlation functions will then be analyzed in
the homogeneous case to obtain the thermodynamic quantities.

Close to equilibrium, owing to the fluctuation dissipation
theorem, only equilibrium correlation functions are required
in order to discuss the linear response to small external fields
[28]. In a homogeneous and unstrained crystal, the equilibrium
correlation functions of the microscopic density fluctuations
on the left-hand side of Eq. (5) can be calculated within
DFT. This enables us to obtain the correlation functions of
the coarse-grained fields in Secs. III A 1 and III A 2. The
fundamental Ornstein-Zernike relation provides a connection
between the density correlations and the inverse density-
density correlation matrix Jgg′ (q):

V kBT δgg′′ =
∑

g′
〈δρ∗

g (q,t) δρg′(q,t)〉 Jg′g′′ (q). (10)

Here, the periodicity of the two-point density correlation
function [29] was used which implies that only density
fluctuations whose wave vectors differ by a vector of the
reciprocal lattice are correlated. The (infinite-dimensional)
Hermitian matrix Jgg′ is the double Fourier transform of the
second functional derivative of the free energy with respect to
the macroscopic density, which includes as a nontrivial part
the direct correlation function c(r1,r2):

Jgg′ (q) = kBT

V

∫
ddr1

∫
ddr2e

ig·r1e−ig′ ·r2

× eiq·r12

(
δ(r12)

n(r1)
− c(r1,r2)

)
. (11)

The direct correlation function c(r1,r2) is one of the central
quantities of DFT [26,27] and is obtained as second functional
derivative of the excess free energy F ex with respect to the
average density profile, kBT c(r1,r2) = δ2F ex [n(r)]

δn(r1)δn(r2) . Given an
(approximate) expression for the free energy, Jgg′ can thus
be taken as known. It constitutes the only input for the
ensuing theory. As one consequence, in Sec. IV below only
the quadratic expression of the free energy functional will play
a role and will be sufficient to evaluate the thermodynamic
derivatives required for the elastic response.

1. Including coarse-grained density

It is now conceptually straightforward albeit somewhat
tedious to derive the correlation functions of the coarse-grained
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fields in terms of expressions containing the direct correlation
function. Using Eq. (5), one gets

〈δρ∗
g (q,t)δρg′(q,t)〉

= n∗
gng′

[
gαg′

β〈δu∗
α(q,t)δuβ(q,t)〉 +

〈
δn∗(q,t)δn(q,t)

n2
0

〉

+ igα

〈
δu∗

α(q,t)
δn(q,t)

n0

〉
− i

〈
δn∗(q,t)

n0
δuβ(q,t)

〉
g′

β

]
.

(12)

Inserting this into Eq. (10) and with the help of the two
summations (7) and Eqs. (8) and (9), one obtains the following
set of equations:

V kBT = 〈δn∗δn〉
n2

0

ν∗(q) −
〈
δn∗

n0
δuβ

〉
μβ(q), (13a)

0β = 〈δn∗δn〉
n2

0

μ∗
β(q) −

〈
δn∗

n0
δuδ

〉
λ∗

δβ(q), (13b)

0α = 〈δu∗
αδuβ〉μβ(q) −

〈
δu∗

α

δn

n0

〉
ν∗(q), (13c)

V kBT δαγ = 〈δu∗
αδuβ〉λ∗

βγ (q) −
〈
δu∗

α

δn

n0

〉
μ∗

γ (q). (13d)

Here, generalized (viz. q-dependent) constants of elasticity,
ν(q),μα(q), and λαβ(q), appear. We will show that they
enter into the equilibrium correlation functions of the coarse-
grained fields and reduce to thermodynamic derivatives in the
long-wavelength limit [2]. Using Eq. (11), the q-dependent
constants of elasticity can be expressed in terms of integrals
containing the crystal direct correlation function:

ν(q) = kBT

V

∫
ddr1

∫
ddr2n(r1)n(r2)e−iq·r12

×
(

δ(r12)

n(r1)
− c(r1,r2)

)
(14a)

≈ ν + O(q2), (14b)

μα(q) = kBT

V

∫
ddr1

∫
ddr2c(r1,r2)(1 − e−iq·r12 )

× n(r1)∇αn(r2) (14c)

≈ iμαβqβ + O(q2), (14d)

λαβ(q) = kBT

V

∫
ddr1

∫
ddr2c(r1,r2)(1 − e−iq·r12 )

× (∇αn(r1))(∇βn(r2)) (14e)

≈ λαβγ δqγ qδ + O(q3). (14f)

The small-wave-vector limit and the index symmetries
μαβ = μβα and λαβγ δ = λβαγ δ = λαβδγ = λγδαβ are discussed
in detail in Ref. [2]. Note that ν(q) is real in general, while
λαβ(q) is real only in crystals with inversion symmetry.
The explicit integrals are given in Eqs. (27), (30), and (32)
below, where also crucial steps in their derivation are recalled.
The connection of the elastic coefficients to thermodynamic
derivatives will be established in Eqs. (39) and (43).

The obtained set of equations (13) is best presented in
matrix notation:

V kBT δij =
( 〈δn∗δn〉

n2
0

−〈 δn∗
n0

δuβ

〉
−〈δu∗

α
δn
n0

〉 〈δu∗
αδuβ〉

)
ik

×
(

ν(q) μ∗
γ (q)

μβ(q) λ∗
βγ (q)

)
kj

, (15)

with Latin indices i = 0,α. The matrix of correlation functions
of the macroscopic variables is thus given by the inverse of the
matrix of the generalized constants of elasticity:( 〈

δn∗δn
n2

0

〉 −〈 δn∗
n0

δuβ

〉
−〈δu∗

α
δn
n0

〉 〈δu∗
αδuβ〉

)
= V kBT

(
ν(q) μ∗

β(q)
μα(q) λ∗

αβ(q)

)−1

.

(16)
The single matrix elements corresponding to the wave-vector-
dependent correlation functions are [30]

〈
δn∗δn

n2
0

〉
= V kBT

(
1

ν
+ μ∗

α

ν

[
λ∗

αβ − μαμ∗
β

ν

]−1
μβ

ν

)

= V kBT
(
ν − μ∗

α

(
λ−1

αβ

)∗
μβ

)−1 = V kBT K−1,

(17a)

〈δu∗
αδuβ〉 = V kBT (λ∗

αβ − μαν−1μ∗
β)−1 = V kBT H−1

αβ

= V kBT
((

λ−1
αβ

)∗ + (
λ−1

αγ

)∗
μγ K−1μ∗

δ

(
λ−1

δβ

)∗)
,

(17b)

−
〈
δn∗

n0
δuβ

〉
= V kBT

(
−ν−1μ∗

αH−1
αβ

)
= V kBT

(−K−1μ∗
α(λ−1

αβ )∗
)
, (17c)

−
〈
δu∗

α

δn

n0

〉
= V kBT

(−H−1
αβ μβν−1

)
= V kBT

(−(λ−1
αβ )∗μβK−1

)
. (17d)

The second line of each expression is a nontrivial alterna-
tive, which is here given for completeness; it is based on the
algebraic Woodbury identity.

We thus reached our first goal of expressing the correla-
tion functions of the coarse-grained variables, hydrodynamic
density and displacement vector field, in terms of integrals
containing the functional derivative of the free energy with
respect to density, viz. the direct correlation function. Let
us note in passing that translational symmetry [2] yields the
expected q divergences or q dependencies of the correlation
functions in the limit q → 0. In particular, 〈δu∗

αδuβ〉 ∝ 1/q2

follows from λαβ(q) ∝ q2 and μα(q) ∝ q in this limit.

2. Including defect density

Although the relation between the constants of elasticity
and the fluctuations of the coarse-grained fields is complete,
it is worthwhile to consider a second set of variables. So far
the displacement field uα appeared in two different ways. It
contributes to the coarse-grained density, but it also appears as
a broken-symmetry variable. In this section we introduce the
point defect density c in lieu of the coarse-grained density, and
keep the displacement field.
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The correlation functions of the coarse-grained density and
displacement field are easily transformed into correlations
between the fluctuations of the point defect density and the
displacement field using the definition Eq. (6). The set of
variables {δc(q),δuα(q)} may be more appropriate to describe
an experiment when few defects are present and δc(q,t) can
be measured easily. It allows one to take the limit of vanishing
defect density and thus it is a natural set of variables to be
used when defects are neglected. Thus, it correctly captures
the ideal crystal limit. Equation (15) is transformed into

V kBT δij =
( 〈δc∗δc〉

n2
0

〈
δc∗
n0

δuα

〉〈
δu∗

σ
δc
n0

〉 〈δu∗
σ δuα〉

)
ik

×
(

ν(q) n0Vδ(q)
n0V

∗
α (q) �∗

αδ(q)

)
kj

. (18)

The combination of the constants of elasticity appearing here
is directly connected to the hydrodynamic equation of the
momentum density expressed in terms of point defect density
and displacement field as hydrodynamic variables [2]. There,
the time derivative of the momentum density couples to the
displacement field via the negative of

�αβ(q) = λαβ(q) − iqαμβ(q) + iμ∗
α(q)qβ + qαν(q)qβ.

(19)
The coupling to the point defect density is given by the
negative of

Vα(q) = 1

n0
(μ∗

α(q) − iqαν(q)). (20)

The individual matrix elements of the correlation func-
tions in terms of ν(q), Vα(q), and �αβ(q), and the limit
q → 0, may be determined according to the steps in the
previous paragraphs. As the results can be obtained from
Eqs. (17) by straightforward replacements, identified from
comparing Eqs. (15) and (18), they will not be repeated
here.

B. Inverse relations

Equations (17) predict the fluctuations of the macroscopic
coarse-grained density and displacement field based on the
generalized constants of elasticity obtained from the direct
correlation function and thus the free energy. Experimen-
tally, the inverse relations are of interest: expressing the
generalized constants of elasticity of the crystal in terms
of measurable correlation functions. Two different sets of
correlation functions can be obtained from experiments. Either
displacement field and coarse-grained density fluctuations can
be recorded, or displacement field and defect density. For
reference, we provide the inverse relations for both cases in this
section.

1. Including coarse-grained density

The matrix equation (15) can be inverted in order to
find the elastic functions ν(q), μα(q), and λαβ(q) in terms
of measurable fluctuation functions. The inverse relations
read

ν(q)

V kBT
=
〈
δn∗δn

n2
0

〉−1

+
〈
δn∗δn

n2
0

〉−1〈
δn∗

n0
δuα

〉[〈
δu∗

αδuβ

〉− 〈
δu∗

α

δn

n0

〉〈
δn∗δn

n2
0

〉−1〈
δn∗

n0
δuβ

〉]−1〈
δu∗

β

δn

n0

〉〈
δn∗δn

n2
0

〉−1

=
(〈

δn∗δn
n2

0

〉
−
〈
δn∗

n0
δuα

〉〈
δu∗

αδuβ

〉−1
〈
δu∗

β

δn

n0

〉)−1

= R−1, (21a)

λ∗
αβ(q)

V kBT
=
(〈

δu∗
αδuβ

〉− 〈
δu∗

α

δn

n0

〉〈
δn∗δn

n2
0

〉−1〈
δn∗

n0
δuβ

〉)−1

= S−1
αβ

= 〈δu∗
αδuβ〉−1 + 〈δu∗

αδuγ 〉−1

〈
δu∗

γ

δn

n0

〉
R−1

〈
δn∗

n0
δuδ

〉
〈δu∗

δ δuβ〉−1, (21b)

μα(q)

V kBT
= S−1

αβ

〈
δu∗

β

δn

n0

〉〈
δn∗δn

n2
0

〉−1

= 〈δu∗
αδuβ〉−1

〈
δu∗

β

δn

n0

〉
R−1. (21c)

We thus reached our second goal to derive relations which
determine the generalized elasticity constants λαβ(q), μα(q),
and ν(q) from measurements of correlation functions.

2. Including defect density

Replacing the total density with the defect density using
Eq. (6), the generalized constants of elasticity can be connected
to fluctuation functions which can be measured at constant

(possibly vanishing) defect density. The comparison of the
matrices in Eqs. (15) and (18) indicates that only straightfor-
ward replacements are required in Eqs. (21), so that the explicit
results need not be given here. The dynamical matrix �αβ(q)
determines the wave equation of the momentum density, and
its eigenvalues give the (acoustic) phonon dispersion relations.
The analog of Eq. (21b) shows that for its determination,
displacement and defect density fluctuations need to be
measured in general.
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IV. FREE ENERGY AND THERMODYNAMIC RELATIONS

In order to obtain the thermodynamics derivatives, a
consideration of the free energy appears useful in cases where
the connection to the small-wave-vector limit of the correlation
functions is not established or under debate [9–11]. In this
section, we will coarse-grain the free energy functional of
density functional theory in order to derive the thermodynamic
derivatives. This purely equilibrium statistical mechanics
approach supplements the dynamical one based on projection
operator formalism in Ref. [2]. Importantly, the wave-vector-
dependent correlation functions of the coarse-grained fields of
elasticity theory and the thermodynamic elastic free energy of
real (viz. defect-containing) crystals are then obtained from a
single microscopic starting point.

A. Coarse-grained free energy functional with elastic fields

The second-order change in free energy �F due to a
deviation δρ(r) in the average density distribution from the
periodic crystalline equilibrium density n(r) is [25,27,31]

�F = kBT

2

∫ ∫
ddr1d

dr2

[
δ(r12)

n(r1)
− c(r1,r2)

]
δρ(r1)δρ(r2),

(22)

where c(r1,r2) is the direct correlation function of a periodic
crystal. Note that this quadratic functional contains the direct
correlation function as a single input and thus the same
information as used in the correlation functions approach of
Sec. II.

1. Including coarse-grained density

We start from the representation of the microscopic density
fluctuation in terms of displacement field and coarse-grained
density, Eq. (5). We assume that an analogous equation holds
also for the averaged (macroscopic) densities. In this way
we get a change of the average density due to nonvanishing
displacement field and average coarse-grained density,

δρ(r) = −δu(r) · ∇n(r) + n(r)
δn(r)

n0
. (23)

We shall emphasize that while δρ(r) varies on the spatial scale
of the crystalline lattice, the coarse-grained density varies far
more smoothly and contains wave-vector contributions only
from the first Brillouin zone:

δn(r) =
∫

1st BZ

ddq

(2π )d
eiq·r δn(q).

Using Eq. (23) we obtain the following expression for the
product of density changes:

δρ(r1)δρ(r2) = δuα(r1)δuβ(r2)∇αn(r1)∇βn(r2)︸ ︷︷ ︸
(1.)

+ n(r1)n(r2)δn(r1)δn(r2)

n2
0︸ ︷︷ ︸

(2.)

−δuα(r1)∇αn(r1)
n(r2)δn(r2)

n0︸ ︷︷ ︸
(3.)

−n(r1)δn(r1)

n0
δuα(r2)∇αn(r2)︸ ︷︷ ︸
(4.)

. (24)

In the following, we substitute the four parts of Eq. (24) into Eq. (22). We denote the resulting expressions �F(i.), where
i = 1, . . . ,4. We then rewrite these expressions using the LMB [32] W [33] equation

∇αn(r)

n(r)
=
∫

ddr ′c(r,r′)∇αn(r′). (25)

Our subsequent calculation is analogous to that of Masters [34] and is equivalent to the discussion of the surface tension in [35].
We will in detail describe the calculation originating from the first part of Eq. (24), which leads to the elastic tensor λ, and then
summarize calculations originating from the other parts.

In the expression for �F(1.) one expands δuβ(r2) around r1, which is valid for a short-range (in r12) direct correlation
function. The zero-order term vanishes, because of (25), and the first-order term does not contribute due to the symmetry
c(r1,r2) = c(r2,r1). Since the hydrodynamic variable δu(r) is slowly varying, one obtains an expression which is quadratic in
∇δu(r) as the leading contribution:

�F(1.) = kBT

2

∫ ∫
ddr1d

dr2

[
δ(r12)

n(r1)
− c(r1,r2)

]
δuα(r1)δuβ(r2)∇αn(r1)∇βn(r2)

= kBT

2

∫ ∫
ddr1d

dr2∇αn(r1)c(r1,r2)∇βn(r2)δuα(r1)
(
δuβ(r1) − δuβ(r1) + ∇γ δuβ(r1)r12,γ︸ ︷︷ ︸

=0 symmetry

−1

2
∇γ ∇δδuβ(r1)r12,γ r12,δ

)

= −1

2

∫ ∫
ddr1d

dr2

[
kBT

2
∇αn(r1)c(r1,r2)∇βn(r2)r12,γ r12,δ

]
δuα(r1)∇γ ∇δδuβ (r1)

= 1

2

∫
ddrλαβγ δ∇γ δuα(r)∇δδuβ(r), (26)

λαβγ δ = kBT

2V

∫ ∫
ddr1d

dr2∇αn(r1)c(r1,r2)∇βn(r2)r12,γ r12,δ. (27)
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In the last line of Eq. (26) the separation of spatial scales
was used in order to replace the slowly varying local elastic
coefficient given by the contents of the square bracket on the
third line of Eq. (26) by the macroscopic constant of elasticity
λαβγ δ . The same reasoning and using LMBW (25) gave for the
first-order term that it vanishes:

0 =
∫ ∫

ddr1d
dr2∇αn(r1)c(r1,r2)∇βn(r2)r12,γ

=
∫

ddr1∇αn(r1)
∇βn(r1)

n(r1)
r1γ

−
∫

ddr2∇βn(r2)
∇αn(r2)

n(r2)
r2γ .

We emphasize that the expression (27) agrees with the one
obtained in the framework of hydrodynamic equations of
motion [2], which was reproduced in Eq. (14f).

For the second term of the free energy, δn(r2) is expanded
around r1 and, as hydrodynamic variable, assumed to be slowly
varying:

�F(2.) = kBT

2

∫ ∫
ddr1d

dr2
δn(r1)δn(r2)

n2
0

×[n(r1)δ(r12) − n(r1)c(r1,r2)n(r2)], (28)

= 1

2

∫
ddr ν

(δn(r)

n0

)2
, (29)

with

ν = kBT

V

∫ ∫
ddr1d

dr2(n(r1)δ(r12) − n(r1)c(r1,r2)n(r2)).

(30)

The third and fourth part yield with the same arguments

�F(3.+4.) = −
∫

ddr μαβ

δn(r)

n0
∇βδuα(r), (31)

μαβ = kBT

V

∫
ddr1

∫
ddr2n(r1)∇αn(r2)r12,βc(r1,r2). (32)

Summarizing, we obtain the following expression for the
free energy change:

�F = 1

2

∫
ddr ν

(δn(r)

n0

)2
+ Cn

αβγ δuαβ(r)uγδ(r)

−
∫

ddrμαβ

δn(r)

n0
uαβ(r). (33)

Expression (33) involves the symmetrized linear strain tensor
uαβ(r) = 1

2 [∇αδuβ(r) + ∇βδuα(r)] and the Voigt-symmetric
elastic constants Cn

αβγ δ = λαγβδ + λβγαδ − λαβγ δ . Both com-
binations reflect the rotational symmetry as only symmetric
combinations of strain enter into the elastic energy and the
tensor of elastic constants obeys a number of symmetry
relations. Their proof [2] is based on the rotational analog
of the LMBW equation [35]:

r1 × ∇(1) ln n(r1) =
∫

ddr2c(r1,r2)(r2 × ∇(2)n(r2)). (34)

We thus arrived at our third goal, to derive the general
elastic free energy functional of real crystals containing the

coarse-grained macroscopic fields. Let us add that the above
expression for the free energy also determines the constant
C0 = 0 in Eqs. (89), (90), and (92) of Ref. [2], which could not
be determined from the hydrodynamic equations considered
there.

2. Including defect density

The free energy in terms of the defect density δc(r) and the
displacement field δu(r) is obtained from Fourier-transforming
ansatz (5) and Eq. (6) into real space:

δρ(r,t) = −∇ · [n(r)δu(r,t)] − n(r)

n0
δc(r,t). (35)

Following the steps of the previous section one arrives at the
coarse-grained free energy including the defect density:

�F = 1

2

∫
ddrν

(
δc(r)

n0

)2

+ 2(νδαβ + μαβ)
δc(r)

n0
uαβ(r)

+ (
Cn

αβγ δ + νδαβδγ δ + μαβδγ δ + δαβμγδ

)
× uαβ(r)uγδ(r). (36)

This gives the relation between the elastic coefficients at given
defect density Cc in terms of the corresponding coefficients at
given total density Cn, namely, Cc

αβγ δ = Cn
αβγ δ + νδαβδγ δ +

μαβδγ δ + δαβμγδ .

3. Gaussian probability distribution function

The harmonic free energy Eq. (33) can be written in a more
compact form with the help of the 4 × 4 matrix of elastic
coefficients introduced in Eq. (15). Fourier transformation
leads to

�F = 1

2

∫
ddq

(2π )d

(
δn∗(q)

n0
, δu∗

α(q)
)

×
(

ν −iμγ δqδ

iμαβqβ Cn
αβγ δqβqδ

)(
δn(q)
n0

δuγ (q)

)
. (37)

This free energy functional is a superposition of independent
terms each containing the square of the Fourier-transformed
coarse-grained fields at one specific wave vector. Often
one connects such quadratic free energy functionals with a
probability distribution for fluctuations of the coarse-grained
fields [1]: P [δn(q),δu(q)] ∝ exp {−�F/kBT }. In the present
case, this would yield the wave-vector-dependent correlation
functions (15) as a statement of the equipartition theorem
resulting from this Gaussian approximation.

B. The thermodynamic elastic free energy

The thermodynamic free energy corresponds to homoge-
neous fluctuations, viz. the coarse-grained fields evaluated at
q = 0. It can handily be obtained from the explicit free energy
functional in Eq. (33). The result shall be given using the Voigt
notation [36] (in three dimensions), because this form appears
convenient for explicit model calculations later on. Quantities
in Voigt notation carry lowercase Latin indices 1 � i � 6,
where ui denotes the independent elements of the symmetric
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strain tensors uαβ . For 1 � i � 3 the relation ui = uα,β holds
with (α,β) = {(1,1); (2,2); (3,3)}, while for 4 � i � 6, ui =
2uα,β holds with (α,β) = {(2,3); (1,3); (1,2)}. For spatially
constant fluctuations (to be indicated by subscript q = 0
where otherwise unclear), one obtains in obvious notation as
a quadratic form

�F = V

2

(
δn
n0

, ui

)(
ν −μj

−μi Cn
ij

)(
δn
n0

uj

)
. (38)

The thermodynamic free energy is a quadratic form given by a
7 × 7 matrix of elastic coefficients, where in Voigt notation the
elastic matrix is Cij = Cαβγ δ for 1 � i,j � 6 with the index
correspondences given above.

1. Connection to elastic coefficients and variances

Thermodynamic derivatives can now easily be evaluated
and lead to the parameters already introduced in Eq. (14). They
follow from the Gibbs fundamental form of the free energy
density f = F/V ≈ �F/V , where the quadratic expression
(38) suffices in order to obtain the second-order derivatives of
interest:

∂2f

∂n2

∣∣∣∣
uαβ

= ∂μ

∂n

∣∣∣∣
uαβ

= ν/n2
0, (39a)

∂2f

∂n∂uαβ

= ∂μ

∂uαβ

∣∣∣∣
n

= ∂hαβ

∂n

∣∣
uγ δ

= −μαβ/n0, (39b)

∂2f

∂uαβ∂uγ δ

∣∣
n

= ∂hαβ

∂uγ δ

∣∣
n

= Cn
αβγ δ = λαγβδ + λβγαδ − λαβγ δ.

(39c)

These relations identify the elastic parameters of our
approach as thermodynamic derivatives. They already use the
familiar intensive variables, chemical potential μ and stress
tensor hαβ , in order to familiarize with later relations [1,6].
These variables will be introduced and discussed in Sec. IV C
below. Let us note that these calculations supplement the
derivation of the thermodynamic relations in Ref. [2] [recalled
in Eq. (14)], where the equivalence of the hydrodynamic
equations was used. The thermodynamic free energy thus takes
the form

�F = V

2

(
δn
n0

, ui

)(n2
0

∂μ

∂n
n0

∂μ

∂uj

n0
∂hi

∂n

∂hi

∂uj

)(
δn
n0

uj

)
, (40)

where in Voigt notation the stresses correspond to hi = hαβ

for 1 � i � 6.
This compact expression is a convenient starting point for

evaluating the thermodynamic covariances and susceptibilities
which enter elasticity theory. The isothermal compressibility
and the defect density susceptibility will be obtained in
Sec. IV C. In order to prepare for this, first the second
moments of the fluctuations of the thermodynamic variables
shall be obtained. These are connected to the thermodynamic
derivatives using the thermodynamic formalism. Because the
inverse of the Jacobian matrix is equal to the Jacobian matrix

of the inverse function one obtains from Eq. (39)

(
ν −μj

−μi Cn
ij

)−1

=
(

n2
0

∂μ

∂n
n0

∂μ

∂uj

n0
∂hi

∂n

∂hi

∂uj

)−1

=
(

1
n2

0

∂n
∂μ

1
n0

∂uj

∂μ

1
n0

∂n
∂hi

∂uj

∂hi

)

= 1

V kBT

( 〈δnδn〉
n2

0

〈
δn
n0

uj

〉
〈
ui

δn
n0

〉 〈uiuj 〉

)∣∣∣
q=0

. (41)

In the last step the fluctuation-dissipation theorem is used [23].
The variance of the total coarse-grained density variation is
thus obtained from a simple matrix inversion [30]:

〈
δnδn

n2
0

〉∣∣∣∣
q=0

= V kBT

(
1

ν
+ μi

ν

[
Cn

ij − μiμj

ν

]−1
μj

ν

)

= V kBT
(
ν − μi

(
Cn

ij

)−1
μj

)−1

= V kBT
(
ν − μαβ

[
Cn

αβγ δ

]−1
μγδ

)−1
, (42)

where the second line follows from a Woodbury identity, and
the usual notation is used instead of the Voigt one in the last
line; see the textbook by Wallace [40] and our Appendix A for
the proper interpretation of the inverse fourth-rank tensor.

We thus derived the second moment of the particle number
fluctuations from DFT. We started from the same free energy
functional as was used in the derivation of the wave-vector-
dependent correlation functions summarized in Eq. (17). Thus,
in Sec. V, both results can be compared in the long-wavelength
limit.

2. Including defect density

In a similar manner an expression for the defect density
fluctuation can be obtained. Starting from the free energy
functional in Eq. (36) and considering homogeneous variations
(viz. at q = 0), one recognizes that the relevant thermodynamic
derivatives are now given by

∂2f

∂c2

∣∣∣∣
uαβ

= −∂μ

∂c

∣∣∣
uαβ

= ν/n2
0, (43a)

∂2f

∂c∂uαβ

= − ∂μ

∂uαβ

∣∣∣
c
= ∂σαβ

∂c

∣∣∣
uαβ

= (νδαβ + μαβ)/n0 = μc
αβ/n0, (43b)

∂2f

∂uαβ∂uγ δ

∣∣∣
c

= Cc
αβγ δ = Cn

αβγ δ + μαβδγ δ + δαβμγδ + νδαβδγ δ,

(43c)

where the stress tensor σαβ was introduced, which will be
discussed in Sec. IV C below. Also the abbreviation μc

αβ was
introduced. Thus, using the fluctuation dissipation theorem
again, the matrix of total thermodynamic variations is given
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by ( 〈δcδc〉
n2

0

〈
δc
n0

uj

〉
〈
ui

δc
n0

〉 〈uiuj 〉

)∣∣∣∣∣
q=0

= V kBT

(−1
n2

0

∂c
∂μ

− 1
n0

∂uj

∂μ

1
n0

∂c
∂σi

∂uj

∂σi

)

= V kBT

(
ν μc

j

μc
i Cc

ij

)−1

. (44)

Cc
ij and μc

i are the tensors from Eq. (43c) and Eq. (43b) in Voigt
notation. This leads to the correlation of the defect density
fluctuations

〈δcδc〉
V kBT n2

0

∣∣∣∣
q=0

=
(

1

ν
+ μc

i

ν

[
Cn

ij − μiμj

ν

]−1 μc
j

ν

)

= (
ν − μc

i

(
Cc

ij

)−1
μc

j

)−1

= (
ν − μc

αβ

(
Cc

αβγ δ

)−1
μc

γ δ

)−1
. (45)

As in Eq. (42), the second line followed from a Woodbury
identity, and the usual notation is used instead of the Voigt
one in the last line. This covariance of the number of point
defects will be connected to a compressibility-like expression
κc below.

C. The isothermal compressibility of crystals

In this section the general expression for the compressibility
of a single-component crystal of arbitrary space group symme-
try and containing an arbitrarily high density of local defects
is derived from a thermodynamic consideration; details are
given in Appendix A. The situation described is one in which
no pre-stress is applied to the crystal in equilibrium.

The definition of the isothermal compressibility of a fluid
reads

κ = − 1

V

∂V

∂p

∣∣∣∣
N

, (46)

where p is the pressure. For a crystal, the question arises
as to how this has to be generalized to describe the additional
degrees of freedom. The infinitesimal change of the free energy
of a crystal at constant temperature (dT = 0),

dF = −pdV + μdN + hαβdUαβ, (47)

includes a term with a stress tensor hαβ at constant volume
V and particle number N times an extensive strain tensor
Uαβ = V uαβ . The contribution to the work done is δW =∫

hαβδuαβdV with the symmetrized linear strain tensor uαβ =
1
2 (∇αuβ + ∇βuα). The chemical potential is denoted by μ,
and the particle density will be denoted n. While this “first law
of thermodynamics” for a crystal is familiar from textbooks
[1], the coupling of strain and density fluctuations complicates
the interpretation of the stress tensor hαβ , which calls for a
discussion before addressing the compressibility. Taking a
canonical N -particle system and straining it infinitesimally
[37,38] leads to the stress tensor tαβ = 1

V
∂F

∂uαβ
at fixed T and N .

(It can be also obtained from averaging the Irving-Kirkwood
microscopic stress tensor.) Because the volume V varies in
this procedure, the two stress tensors differ by a scalar term
[6,21]: tαβ = hαβ − (p − hγδuγ δ)δαβ . The compressibility for

a periodic crystal shall be understood as the derivative at
constant h-stress tensor, because it then measures the change
in particle density with chemical potential,

κ = − 1

V

∂V

∂p

∣∣∣∣
N,hαβ

= 1

n2
0

∂n

∂μ

∣∣∣∣
hαβ

, (48)

where we used Maxwell and Gibbs-Duhem relations described
in Appendix A. They lead to the Gibbs fundamental form of the
free energy density f = F/V which was already anticipated
in Eqs. (39), namely,

df = μdn + hαβduαβ. (49)

Also, the calculations for determining κ have already been
done. Equations (41) and (42) immediately give the isothermal
compressibility as variance of the total density fluctuations:

κ = 1

V kBT

〈
δnδn

n2
0

〉∣∣∣∣
q=0

. (50)

1. Including density

While the result for κ in terms of the elastic coefficients
[viz. Eqs. (42) and (50)] is useful for explicit evaluations,
and will be used in Sec. VI below, a relation connecting it
to thermodynamic derivatives is desirable and would take the
form expected in the thermodynamic formalism. Using the
relations (39) in order to replace the elastic coefficients in
Eq. (42), we find

κ = 1

n2
0

[
∂μ

∂n

∣∣∣∣
uαβ

− ∂hαβ

∂n

∣∣∣∣
uαβ

(
∂hγ δ

∂uαβ

∣∣∣∣
n

)−1
∂hγ δ

∂n

∣∣∣∣
uαβ

]−1

.

(51)

This expression for the isothermal compressibility of a
general crystal generalizes results obtained for high-symmetry
crystals [13,39]. Hence, together with Eqs. (50) and (42) and
Sec. III A, we have achieved our main goal establishing the
general connection between the isothermal compressibility of
nonideal crystals and the correlation functions of the fields of
elasticity theory. The connection is derived from microscopic
DFT. See Appendix A for an alternative formulation of
Eq. (51) derived within the thermodynamic formalism, and
corresponding to the first line of Eq. (42). [Equation (51)
corresponds to the second line of Eq. (42).]

If the coupling between strain and density fluctuations in
the result for the isothermal compressibility in Eq. (50) is
neglected, the second term vanishes and the compressibility κ

is given by κ−1 = ν = n2
0

∂μ

∂n
|uαβ

, which plays the role of the
inverse bulk modulus at constant strain. While in regular solids
the coupling between strain and density in the free energy, μ =
∂2f

∂n∂u , cannot be neglected and this approximation fails, see
Sec. VI for a system where it holds well. In order to dissect the
contributions to the compressibility in detail for more regular
crystals, transforming to defect density is required.

2. Including defect density

If one considers the set of independent variables with the
defect density c instead of the coarse-grained density n with
Eq. (6) simplifying to

dn = −n0duαα − dc, (52)
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the manipulations leading from Eq. (50) to Eq. (51) have to
be adapted. The compressibility is given now in terms of
derivatives at constant defect density [2]. The stress tensor
σαβ (with σαβ = hαβ − n0μδαβ) and the chemical potential μ

now are functions of the strain tensor and the defect density
combining with the Gibbs fundamental form of the free
energy density [6,21] df = −μdc + σαβduαβ . The relevant
thermodynamic derivatives are given by Eqs. (43) [see Eq. (36)
for the free energy density], which need to be used in order to
replace the elastic coefficients in Eq. (42). This leads to

κ = −
(

n2
0
∂μ

∂c

∣∣∣∣
uαβ

)−1

+
⎡
⎣δαβ −

(
n0

∂μ

∂c

∣∣∣∣
uαβ

)−1
∂μ

∂uαβ

∣∣∣∣
c

⎤
⎦

×
⎡
⎣ ∂σγ δ

∂uαβ

∣∣∣∣
c

− ∂σγ δ

∂c

∣∣∣∣
uαβ

(
∂μ

∂c

∣∣∣∣
uαβ

)−1
∂μ

∂uαβ

∣∣∣∣
c

⎤
⎦−1

×
⎡
⎣δγ δ + 1

n0

∂σγ δ

∂c

∣∣∣∣
uαβ

(
∂μ

∂c

∣∣∣∣
uαβ

)−1
⎤
⎦

= −
{

n2
0
∂μ

∂c

∣∣∣∣
uαβ

+
(

n2
0
∂μ

∂c

∣∣∣∣
uαβ

δαβ + n0
∂σαβ

∂c

∣∣∣∣
uαβ

)

×
[

∂σαβ

∂uγ δ

∣∣∣∣
c

− n2
0
∂μ

∂c

∣∣∣∣
uαβ

δαβδγ δ

−n0
∂σαβ

∂c

∣∣∣∣
uγ δ

δγ δ − n0
∂σγ δ

∂c

∣∣∣∣
uγ δ

δαβ

]−1

×
(

n2
0
∂μ

∂c

∣∣∣∣
uγ δ

δγ δ + n0
∂σγ δ

∂c

∣∣∣∣
uαβ

)}−1

. (53)

An interesting limit is now the vanishing of the coupling
between the defect density and the strain field, ∂2f

∂c∂uαβ
= 0;

see Eq. (43b). This yields two independent contributions
to the compressibility which shall be denoted κ0 in this
approximation:

κ0 = ν−1 + (
Cc

αβγ δ

)−1
δαβδγ δ = ν−1 +

3∑
i,j=1

(
Cc

ij

)−1
. (54)

The first contribution ν−1 is due to the fluctuations of the
defect density, whereas the second one (Cc

αβγ δ)−1δαβδγ δ is due
to independent fluctuations of the strain tensor, which agrees
with the known result for a perfect crystal without external
strain [40].

3. Shape and defect density change

It is instructive to consider the various contributions to the
compressibility in more detail. For nonideal crystals, volume
changes not only through variations in the lattice constants.
Also, the defect density can change; e.g., the total number of
lattice sites can reduce and new interstitials occur. Reflecting
this, Eq. (52) allows one to decompose the compressibility into

two parts, a strain part and a defect part:

κ = 1

n2
0

∂n

∂μ

∣∣∣∣
hαβ

= −1

n0

∂uαα

∂μ

∣∣∣∣
hαβ

− 1

n2
0

∂c

∂μ

∣∣∣∣
hαβ

. (55)

The first term can be found in the Jacobian matrix of Eq. (41).
With the formulas of block matrix inversion one obtains

1

n0

∂uαα

∂μ

∣∣∣∣
hαβ

= κ
(
Cn

ααγ δ

)−1
μγδ. (56)

Note the difference between the strain part of the compress-
ibility and the second term of Eq. (54). The latter is the
compressibility with fixed defect density, which captures the
lattice distortion in an ideal crystal. By contrast, the strain part
of the compressibility in Eq. (56) describes changes without
this constraint.

For anisotropic crystals, a change in hydrostatic pressure
may cause a distortion of the shape (see, e.g., Ref. [41]), which
means that the derivative of the strain tensor uαβ with respect
to the pressure need not be diagonal. Using Eq. (A3), one finds

∂uαβ

∂p

∣∣∣∣
hαβ

= κn0
∂uαβ

∂n

∣∣∣∣
hαβ

= −κn0

(
∂hαβ

∂uγ δ

∣∣∣∣
n

)−1
∂hγ δ

∂n

∣∣∣∣
uζη

= κ
(
Cn

αβγ δ

)−1
μγδ. (57)

This thermodynamic derivation provides a tensorial general-
ization of Eq. (56). It also shows

∂uαβ

∂p

∣∣∣∣
hαβ

= 1

n0

∂uαβ

∂μ

∣∣∣∣
hαβ

. (58)

Equation (57) completes the discussion of the first row of the
Jacobian matrix of Eq. (41). The symmetry of the matrix leads
to the Maxwell relation ∂uαβ

∂μ
|hαβ

= ∂n
∂hαβ

|μ.

D. The isothermal defect density susceptibility

Varying the chemical potential changes not only the average
density but also the defect density. The derivative of the
defect density with respect to μ can be obtained analogously
to Eq. (50), and a thermodynamic susceptibility akin to the
compressibility can be defined

κc = −1

n2
0

∂c

∂μ

∣∣∣∣
σαβ

= 1

V kBT

〈
δcδc

n2
0

〉∣∣∣∣
q=0

. (59)

The explicit result for κc in terms of the elastic coefficients is
given in Eq. (45) and in terms of the derivatives from Eq. (43)
is given here:

κc = 1

n2
0

[
−∂μ

∂c

∣∣∣∣
uαβ

− ∂σαβ

∂c

∣∣∣∣
uαβ

(
∂σγ δ

∂uαβ

∣∣∣∣
c

)−1
∂σγ δ

∂c

∣∣∣∣
uαβ

]−1

.

(60)

Connecting the isothermal defect density susceptibility to
derivatives of the density appears useful in order to obtain it,
e.g., from computer simulations. Starting from the definition
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of κc in Eq. (59), Eq. (52) leads to

−1

n2
0

∂c

∂μ

∣∣∣∣
σαβ

= −1

n2
0

∂c

∂n

∂n

∂μ

∣∣∣∣
σαβ

+ −1

n2
0

∂c

∂uαβ

∂uαβ

∂μ

∣∣∣∣
σαβ

= 1

n2
0

∂n

∂μ

∣∣∣∣
σαβ

+ 1

n0

∂uαα

∂μ

∣∣∣∣
σαβ

. (61)

The first term on the right-hand side is a thermodynamic sus-
ceptibility at constant σ -stress tensor, which bears similarity
to the isothermal compressibility:

κσ = 1

n2
0

∂n

∂μ

∣∣∣∣
σαβ

. (62)

Yet, Appendix B will show that this specific susceptibility
vanishes in the limit of an ideal crystal, and thus does not play
the role of a compressibility in solids. The second term can be
reformulated using Eq. (44), and the result can be rearranged
to give

κσ = κc

[
1 − ∂σγ δ

∂c

∣∣∣∣
uαβ

(
∂σαα

∂uγ δ

∣∣∣∣
c

)−1
]

= κc
[
1 − μc

γ δ

(
Cc

γ δαα

)−1] = κc

⎡
⎣1 −

3∑
j=1

μc
i

(
Cc

ij

)−1

⎤
⎦,

(63)

where in the last equality the thermodynamic derivatives from
Eq. (43) were used, and the result transferred in Voigt notation.
The difference between κc and κσ , which both are derivatives
at constant σ -stress tensor, vanishes in cases where strain and
defect density fluctuations do not couple (viz. μc = 0). In the
general case, density and (the negative of the) defect density
vary differently with chemical potential at fixed σ .

V. SMALL-WAVE-VECTOR LIMIT OF
THE STRUCTURAL FUNCTIONS

So far we considered correlation functions and the isother-
mal compressibility of crystals. In this section we bridge
the gap between the density correlation function and the
compressibility, and point out the subtle difference between
the two expressions. In the second part of this section the
so-called generalized structure factor is discussed.

In order to understand the connection to the compressibility,
the q dependence in the limit q → 0 of the correlation function
of the coarse-grained density (17a) needs to be discussed in
detail:

1

V kBT

〈
δn∗δn

n2
0

〉
= ν−1(q) + ν−1(q)μ∗

α(q)(λαγ (q) − μα(q)ν−1(q)μ∗
γ (q))−1

× μγ (q)ν−1(q)

q→0= 1

ν
+ μαβqβ

ν

[(
λαγ εφ − μαεμγφ

ν

)
qεqφ

]−1 μγδqδ

ν
.

(64)

Here we used the known small-wave-vector expansions of
the elastic coefficients, which were defined in Eqs. (14).

They follow from DFT relations expressing translational and
rotational symmetry [2]. Noting that only the symmetrized
combinations in α ↔ γ and ε ↔ φ of the term in square
brackets are relevant, and with the help of Eqs. (39), this
expression can be further simplified to

1

V kBT

〈
δn∗δn

n2
0

〉
q→0= 1

ν
+ μαβqβ

ν

[(
Cn

αεγφ − μαεμγφ

ν

)
qεqφ

]−1 μγδqδ

ν
.

(65)

This expression would agree with the thermodynamic one
(50), if the factors of qβqδ canceled qεqφ . That the limit q → 0
is not that simple can be seen even for highly symmetric crys-
tals. For a cubic crystal, the correlation function yields different
results in the small-q limit (65) depending on the direction of
q relative to the unit cell. And for the hypothetical model of
an isotropic crystal, the small-q limit (65) is direction inde-
pendent, but differs from the thermodynamic value from (50).
The latter simplified case allows us to identify the origin of the
discrepancy and will be studied in detail in the next section.

A. Perfect crystal embedded in a matrix

To study the difference in more detail, it is, as a first
simplification, more convenient to look at the simpler problem
of a perfect crystal. In this section we also use the more familiar
expressions of elasticity theory. The connection to the terms
used so far is given in Appendix B. For a perfect crystal the
correlations of the displacement field is given by the (inverse)
of the dynamical matrix Dαβ(q) (for particles with mass m):

〈δu∗
αδuβ〉 = V kBT

mn0
D−1

αβ (q). (66)

The coarse-grained density fluctuation for a perfect crystal is
δn(q,t) = −in0qαδuα(q,t) and the dynamical matrix is related
with the elastic constants [1] via Dαγ (q)Cαβγ δqβqδ/(mn0).
Thus for the coarse-grained density correlation function we get

〈δn∗δn〉
V kBT n2

0

= 1

mn0
qαD−1

αβ (q)qβ
q→0= qα(Cαεβφqεqφ)−1qβ,

(67)

which shows the same problem in the limit q → 0 as arises in
Eq. (65), when compared to the thermodynamic compressibil-
ity of an ideal crystal [40] κ ic = (C−1

αβγ δ)δαβδγ δ (contraction of
the inverse of the matrix of elastic constants). For an isotropic
crystal the elastic tensor simplifies to the two Lamé coefficients
Cαβγ δ = λδαβδγ δ + μ(δαγ δβδ + δαδδβγ ); see Appendix C.
(Note that for notational simplicity the superscript c is dropped
in this subsection, and that the symbol μ stands for the second
Lamé coefficient in the present discussion of isotropic solids
only.) Thus, the compressibility is (κ ic)−1 = λ + 2

3μ, whereas
the correlation function yields λ + 2μ (which corresponds to
the longitudinal speed of sound).

To show the origin of this difference we consider an
isotropic (ideal) solid for which the so called fundamen-
tal solution of elasticity is known. Other symmetries with
known solutions are hexagonal [42] and pentagonal [43]. The
corresponding problem in two dimensions can be found in
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[44]. We consider a three-dimensional sphere with volume
VB embedded in a spherical matrix V of the same isotropic
material. The radius RB of the embedded sphere is increased
RB → RB + �r and the surrounding matrix is compressed.
To determine the displacement field and the elastic energy of
such a deformation one has to solve the equation of elastostatic
theory, which is the vanishing of the divergence of the stress
tensor, or in terms of displacement field

∇βCαβγ δ∇γ uδ = 0. (68)

The solution is a sphere with increased volume VB + �VB .
The only nonvanishing displacement field is (homogeneous
dilatation)

δur =
{

�r r
RB

r < RB,

�r
(

RB

r

)2
r > RB.

(69)

This yields for the total elastic energy

E = VB

2

(
�VB

VB

)2[(
λ + 2

3
μ

)
+ 4

3
μ

(
1 − VB

V

)]
. (70)

The first part is due to the stretched sphere and the second
contribution is from the surrounding matrix. Thus, depending
on the ratio VB

V
the relevant combination of elastic constants

changes from λ + 2
3μ for (VB

V
→ 1) to λ + 2μ for (VB

V
→ 0).

In the limit of vanishing shear modulus μ the difference
vanishes. Thus, for a fluid it does not matter if one determines
the volume fluctuations of a small sphere in surrounding fluid
(of the same kind) or if one looks at the global fluctuations of
the whole system.

It is worthwhile to note that the same ratio between these
two combinations of Lamé coefficients appears in a related
context. In Eshelby’s study [45] of an inclusion in a matrix of
elastic material, the so called constrained strain uC

αβ is given
by the stress-free strain uT

αβ :

uC
αα = λ + 2

3μ

λ + 2μ
uT

αα. (71)

This calculation has recently been extended to atomistic
inclusions [46], which could be used to test approximations
in the present DFT approach. An analogous problem is a
polar fluid in a dielectric medium [25,47,48]. There, the
susceptibilities show a directional dependence due to the
dipolar interaction, and a different combination of dielectric
constants is relevant depending on the surrounding medium.

B. Generalized structure factor

The relations between the compressibility and the corre-
lations of the density fluctuations in a crystal are different
from that in a fluid. A difference can be seen in the elements
of the generalized structure factor which contribute to the
compressibility.

We recall that the generalized structure factor is defined by
[29]

Sg(k) = 1

V

∫
ddr1

∫
ddr2 〈δρ(r1)δρ(r2)〉 e−ig·Re−ik·�r

= 1

V
〈δρ(g/2 + k)δρ(g/2 − k)〉, (72)

[with R = (r1 + r2)/2 and �r = r1 − r2] and its S0(k) ele-
ment is measured in a scattering experiment [1,36] at wave
vector k.

In a liquid, where translational invariance dictates that only
S0(k) is nonvanishing and isotropic, its connection [25,26] to
the compressibility is well known S0(k → 0) → n2

0kBT κ . To
convince oneself that such a connection does not hold in a
crystal, the definition of the coarse-grained density Eq. (8) can
be used to derive〈
δn∗δn

n2
0

〉
= 1

N 2
0

∑
g,g′

ng′ 〈δρ∗(g′ + q)δρ(g + q)〉n∗
g

= (2π )d

N 2
0

∑
g,g′

ng′
∑

g̃

Sg̃

(
g̃
2

− g − q
)

δ(g − g′ − g̃)n∗
g

= (2π )d

N 2
0

∑
g,g′

ng′Sg−g′

(
−g + g′

2
− q

)
n∗

g, (73)

where the left-hand side becomes κ for q to zero in the
fluid case. Clearly, every element of 〈δρ∗(g′ + q)δρ(g + q)〉
is involved, not just the one with vanishing reciprocal lattice
vector g = g′ = 0. Also the correlation of coarse-grained
density fluctuations is given by a combination of generalized
structure factors Sg−g′ ( − (g + g′)/2 − q) in the limit q → 0
and not just by Sĝ=0(q → 0) as for a fluid. Although the
possibility that the right-hand side of the last equation is
indeed the compressibility cannot be ruled out, it seems rather
unlikely.

VI. AN EXAMPLE: CLUSTER CRYSTALS

To test the theory presented in the preceding sections,
single-component crystals of Bravais symmetry formed by
spherical particles provide the closest cases. Large densities
of local defects are desirable since the strength of the theory
is its ability to account for the coupling of strain and defects
densities. Additionally, a good approximate DFT functional
should be available. Recently, cluster crystals made from soft
particles were discovered which satisfy these criteria and are
thus ideally suited for testing the theory.

A. Model and approximate density functional theory

We consider a system of spherically symmetric particles
interacting via a purely repulsive, bounded pair potential.
Following earlier studies [16,17], we use a generalized
exponential model of exponent four (GEM-4),

�(r) = ε e−( r
σ

)4
. (74)

The GEM-4-system shows several interesting properties. The
finite upper bound of the potential allows cluster formation,
i.e., the occupation of one lattice site by several particles. The
GEM-4 system crystallizes in the fcc and bcc phases, and at
low temperatures it undergoes isostructural phase transitions
between fcc phases with integer occupation numbers per lattice
site. At higher temperatures hopping of the particles between
the lattice sites is possible and leads to a continuous, average
occupation number. For the average density distribution of the
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cluster crystal the following ansatz is chosen [17]

ρ(r) = nc

(α

π

) 3
2
∑

R

e−α(r−R)2
(75)

with the occupation number nc, the inverse width of the
(Gaussian) density distribution around a single lattice site α,
and the lattice vectors R. With this ansatz and an appropriate
free energy functional one can get the parameters nc and
α for given temperatures, and average densities through
minimization of the functional. Then, the equilibrium state can
be found by a direct comparison of the free energies of each
phase. For the description of the phase diagram of the GEM-4,
Mladek and coworkers found that a liquid-like mean-field
approximation is appropriate [18] which leads to the simple
expression for the direct correlation function c(r1,r2)

c(r1,r2) ≡ c(r) = −β�(r), with r = |r2 − r1|. (76)

This results in the following free energy functional:

F [ρ] = Fid[ρ] + Fex[ρ],

Fid[ρ] = 1

β

∫
d3r{ρ(r) ln[ρ(r)�3] − ρ(r)}, (77)

Fex[ρ] = 1

2

∫
d3r1ρ(r1)

∫
d3r2�(r1,r2)ρ(r2).

Here � denotes the thermal de Broglie wavelength. By
subtracting the free energy of the fluid from the crystal one,
the parameter � can be eliminated without changing the
position of the minimum of the crystal free energy functional.
Similarly, dividing by the average density n0 does not change
the free energy functional minimum, but leads to a convenient
expression

f̃

(
nc

n0σ 3
,ασ 2,

kBT

n0σ 3ε

)
= �f

n0σ 3

= kBT

n0σ 3ε

(
ln

nc

n0σ 3
+ 3

2
ln

{
ασ 2

eπ

})
+ 1

2

∑
g�=0

e− g2

2α �g,

(78)

with the Fourier-transformed potential �g. As we alluded to
earlier, the free energy functional (78) is to be minimized with
respect to nc and α. The resulting, normalized free energy
only depends on the single (dimensionless) thermodynamic
parameter kBT

n0σ 3ε
. Thus, the fluid-bcc and the fcc-bcc phase

transitions lie on straight lines drawn from the origin of the
T -n0 phase diagram. It should be noted that the free energy
functional (78) is minimized by the ratio nc

n0σ 3 instead of nc

itself. Numerical minimization shows that nc

n0σ 3 varies only by
about ±3% in the whole solid phase; i.e., the system changes
its density mainly due to changes in the occupation number
and not due to changes in the lattice constant [18].

B. Compressibility and occupation number covariance

After minimizing the free energy and obtaining the average
density profile, the elastic coefficients from Eq. (14), which
are relevant for the compressibilities, can be calculated by
straightforward integrations in the reciprocal space. The
thermodynamic derivatives then follow from the relations in
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FIG. 1. (Color online) Compressibilities of the GEM-4 system in
units of [n2

0εσ
3]−1 versus the reduced thermodynamic variable kBT

εn0σ 3 .
While κ is taken at fixed stress hαβ , κc is taken at fixed stress σαβ ,
and κ0 is the approximation neglecting the strain-density coupling
introduced in Eq. (54). The approximation κ ≈ 1/ν to neglect the
strain-defect density coupling holds within the line thickness; see
Fig. 4.

Sec. IV C. Figure 1 shows three compressibility-like quantities
in all stable phases obtained from the mean-field DFT
functional (78). The compressibility κ is taken at fixed stress
hαβ and describes the density change with chemical potential
μ. The susceptibility κc is taken at fixed stress σαβ and
captures the defect density change with μ. The quantities κ0

and 1/ν are approximations neglecting the strain-density and
strain-defect density coupling, respectively. In reduced units,
the thermodynamic derivatives change little throughout the
complete stable fcc phase. In the bcc crystal, defect fluctuations
grow appreciably with increasing temperature. The fluid is
less compressible than the solids, as follows from the familiar
expression of the isothermal compressibility [25], κfluid =
1/ν = (∂n/∂μ)/n2

0. The neglect of the coupling between
strain and defect density qualitatively fails in the crystal
phases. The full compressibility κ differs strongly from the
approximation κ0, where both fields are assumed uncorrelated.
Thus, the widely made approximation [40] which identifies κ

and κ0 fails for cluster crystals. The very close agreement
between κ and 1/ν, on the other hand, indicates that the
coupling between strain and density fluctuations is negligible,
i.e., μαβ ≈ 0; see Sec. IV C 1. Cluster crystals predominantly
accommodate density changes by increasing the occupation
numbers while keeping the lattice constants almost fixed
[17]. Equation (57) allows us to quantify the contribution
of the lattice straining to the compressibility. The value of
− ∂uαα

∂p
|h is lower than 2 × 10−4κ in magnitude and can even

be negative. With the approximation μαβ ≈ 0, the coefficient
μc

αβ becomes μc
αβ ≈ νδαβ and the formulas for κc and κσ

simplify to κc ≈ ν−1 + δαβ(Cn
αβγ δ)−1δγ δ and κσ ≈ κ ≈ ν−1.

Density changes with chemical potential similarly at fixed h
and σ stress tensors. This is in strong contrast to the ideal
crystal where κσ equals κc and both vanish.
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FIG. 2. (Color online) The bulk modulus B = 1
κ

in dimension-
less units for three different temperatures versus n0σ

3. The three
points are MC simulation results [16].

For a comparison with Monte Carlo (MC) simulations the
compressibility κ from Eq. (50) is identified as inverse bulk
modulus B obtained in Ref. [16]. Figure 2 shows this bulk
modulus for three temperatures versus the average density.
The deviation of the theoretical predictions from the simulation
data by about 15% is in the same range as the deviation of the
calculated fcc-bcc transitions from the simulated [16] ones;
this error is roughly 10%.

The cluster crystal is an interesting model in the context
of defect density fluctuations. The role of the defect density
is taken by the occupation number nc which obviously is an
averaged number; it takes real values, while a single lattice
site can only be occupied with an integer number of particles.
There has to be a distribution in occupation numbers with the
mean value nc and standard deviation

√〈�n2
c〉 which should

be connected with 〈δcδc〉. �nc is the occupation number
fluctuation for each lattice site, so the density δc(r) has to
be integrated over one primitive cell to become equivalent.
To simplify, we assume that the correlation in occupation
number/defect density fluctuation vanishes after the first
Wigner-Seitz cell; i.e., the occupation number fluctuation of
each lattice site is independent. With N/nc the number of
lattice sites

V

∫
d3r〈δc(r)δc(0)〉 = N

nc

〈
�n2

c

〉
. (79)

This can be rewritten using the compressibility κc from
Eq. (59):

〈
�n2

c

〉 = κcn2
0kBT

(
nc

n0

)
. (80)

Assuming a Gaussian distribution, there is a good match of the
results for the fcc lattice with MC simulations [17], as seen
in Fig. 3. Table I collects the values of the averages of the
occupation numbers obtained from the mean-field functional
(78) and of their variances obtained through Eq. (80). Also the
percentage deviations from the parameters obtained from the
Gaussian fits to the MC data are shown. The averages agree
within 1% for both lattices and the variances agree for the fcc
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FIG. 3. (Color online) Probability distribution functions for the
occupation numbers in GEM-4 cluster crystals of fcc and bcc structure
from MC simulations [17]. Gaussian distributions with the variances
calculated from Eq. (80) and the mean value nc obtained through
minimization of Eq. (78) (lines from left to right with increasing n0σ

3)
are compared with the MC data (symbols). Complete parameters are
given in Table I.

lattice within 10%, which is the same magnitude as for the
bulk modulus. For the bcc lattice bigger differences between
the theoretical and the simulated [17] occupation number
distributions are observed for reasons unclear at present. The
variances of defect fluctuations in bcc and fcc crystals are more
different in the simulations than predicted theoretically.

C. Dispersion relations and macroscopic density
correlation function

The correlation functions for the coarse-grained fields
can be obtained from the q-dependent elastic coefficients
according to Eq. (17). They follow from the density profile
obtained by minimizing the DFT free energy functional. The
top panel in Fig. 4 shows the dispersion relations obtained from
diagonalizing the dynamic matrix appearing in the wave equa-
tion of the momentum density [2]: Dαβ(q) = �αβ(q)/(mn0)
with particle mass m, and � given in Eq. (19). A typical state
with fcc lattice is considered. The eigenfrequencies ω of Dαβ

exhibit the familiar longitudinal and (up to two) transversal
acoustic branches depending on the q directions followed

TABLE I. Variances and averages of the occupation numbers in
cluster crystals with fcc and bcc structure at selected state points. The
MC results are obtained from Gaussian fits to Monte Carlo simulation
data [17]; the complete distributions are compared in Fig. 3. The
theoretical results for the averages follow from the mean-field DFT
functional (78) and for the variances from (80).√〈�n2

c〉 nc

kBT /ε n0σ
3 MC theory � (%) MC theory � (%)

bcc 1 6.5 1.76 1.32 33.3 13.34 13.24 0.76
1.1 7.5 1.66 1.37 21.2 15.31 15.25 0.39

fcc 1.1 8.5 1.23 1.31 6.5 17.48 17.49 0.06
1 9 1.12 1.24 10.7 18.25 18.44 1.04
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FIG. 4. (Color online) Top panel: Phonon dispersion relation for
a cluster crystal with fcc structure along four symmetry lines in the
first Brillouin zone; the state at kBT /ε = 1.1 and n0σ

3 = 8.5 is also
included in Figs. 2 and 3 and Table I. Bottom panel: The q-dependent
density correlation function from Eq. (64) and its dominating part for
small q given by ν−1(q) (dashed blue line). Insets: The difference
of both quantities �(q) = 〈δn2(q)〉σ 3/V − ν−1(q)kBT n2

0 in a small
range around q = 0 for the same symmetry lines. The different limits
�(q → 0) depending on direction are apparent.

in the first Brillouin zone. Remarkably, the high degree of
disorder contained in the broad distributions of occupation
numbers does not weaken the solid overly; the dispersion
relations exhibit the shapes familiar from ideal solids and
assume magnitudes comparable to the values obtained from
potential expansions at T = 0 assuming ideality [18].

While the direction dependence of the dispersion relations
is familiar, the concomitant direction dependence of the
density correlation functions had not been established. The
lower panel in Fig. 4 shows the density correlation function
〈δn∗(q)δn(q)〉 from Eq. (67) and ν(q) from Eq. (14a). The
latter is the q-dependent generalization of the thermodynamic
derivative ν = n2

0(∂μ/∂n)uαβ
from Eq. (39). Both functions

almost completely agree for small wave vectors because of
the extremely weak coupling between density and strain in
cluster crystals; the coefficient ∂2f/∂n∂uαβ = μαβ = μ0δαβ

from Eq. (39b), which is diagonal in fcc lattices, is very
small: μ0/ν ≈ 2 × 10−4. Both functions start deviating for
wave vectors approaching the Brillouin zone boundary. Be-
cause ν(q) possesses a regular small-q expansion given in
Eq. (14b), the nonanalyticity of the density correlation function
can be brought out by considering the difference �(q) =
〈δn2(q)〉σ 3/V − ν−1(q)kBT n2

0. This � is small for small wave
vectors because the small factor μ0 enters quadratically. Yet,
it clearly shows different limits for q → 0 resulting from the
direction dependence discussed in context with Eq. (65). The
insets in Fig. 4 show the curves obtained from taking the limit
q → 0 along high-symmetry directions in the first Brillouin
zone of an fcc cluster crystal. The directions go from the center
� of the Brillouin zone along direction [120] (given by Miller
indices [36]) to the point W, along [010] to X, along [111] to
L, and along [110] to K. Along each of these directions, the
density correlation function 〈δn∗(q)δn(q)〉 takes a different
limit for q → 0. The very small magnitude of the differences
results from the small value of μ0/ν specific to cluster crystals;
the differences are numerically reliable.

D. Discussion of low-temperature phase transitions

Figure 1 shows only little variation of κcn2
0, especially in

the low temperature/high density range. Because nc

n0
also varies

little, the variance of the occupation number fluctuations,
〈�n2

c〉, is nearly independent of the density and scales mainly
with the temperature. This points to an internal inconsistency
of the mean-field description at low temperatures. The width of
the occupation number distributions vanishes for T → 0, yet,
noninteger average occupation numbers can occur. The failure
to find integer occupations clearly indicates the breakdown
of mean-field theory for low temperatures. Simulations show
that the phase diagram of the GEM-4 system exhibits fcc
phases where the occupation numbers take integer values
at low temperatures [19,20]. Phase coexistence regions lie
between them; see Fig. 5 showing simulations from Ref. [19].
At critical temperatures each coexistence region vanishes, and
the homogeneous fcc phase with a distribution of occupations
becomes stable. The MC simulations [19] suggest that these
critical temperatures are nearly identical for each phase
coexistence; i.e., they are nearly independent of the density.
The mean-field density functional approach only describes the
homogeneous distributed phase and misses the coexistence
regions at low temperatures. Potential energy minimization at
zero temperature gives homogeneous integer occupations and
rationalizes their coexistences [18].

Still, the knowledge of the occupation number fluctuations
in the homogeneous phase allows us to establish a criterion
when the homogeneous phase is not consistent. We suggest that
there is a threshold of the occupation number variance 〈�n2

c〉
where the hopping between the lattice sites becomes strong
enough to lift the (zero-temperature) restriction of integer
occupation numbers. Consequently, for temperatures below
this value, we expect the mean-field density functional (78) to
breakdown and integer occupation phases to become stable,
as holds at zero temperature. Figure 5 shows that the estimate

184103-15



0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

1 1.5 2 2.5 3

k
B

T
/

n0σ
3

Δn2
c = 0.3

fc
c3

fc
c4

fc
c5

FIG. 5. (Color online) Low-temperature phase diagram of the
GEM-4 system as determined in MC simulations [19] (squares)
and phonon theory [49] (crosses); red points connected by lines as
guides to the eye indicate the coexistence regions. Pure fcc phases
with integer site-occupations (denoted fccn with n = 2,3, . . .) survive
only at extremely low temperatures. Mean-field DFT provides a good
estimates of the critical temperatures for a reasonable numerical value
of the occupation number variance,

√〈�n2
c〉 = 0.3 (labeled blue line).

of the occupation number deviation
√〈�n2

c〉 = 0.3 gives an
order-of-magnitude estimate of the critical temperatures.

The adequacy of the suggested criterion and the stability
of the estimate can be studied in a little more detail. Figure 6
shows the occupation number fluctuation for several phases
with integer occupations as function of temperature. Here
integer occupation numbers were enforced by hand before
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FIG. 6. (Color online) The occupation number fluctuation√〈�n2
c〉 (standard deviation) versus the temperature in units of ε/kB .

The standard deviation is a function of temperature and density. It is
plotted for several integer occupied states. The densities are chosen
with the approximation nc/n0 ≈ 2, which differs by about two percent
from the optimal DFT-value. The red dotted line denotes the point
of the curve at the critical temperature kBTc/ε = 0.471 which is
obtained from [N ]pT simulations [20]; the blue line is the estimate
of Fig. 5.

minimizing the functional in Eq. (78) by varying α only.
The critical temperatures observed in simulations are quite
compatible with an occupation number variation of

√〈�n2
c〉 ≈

0.25, which appears a rather reasonable value for enabling
hopping to smear out the occupation numbers on different
lattice sites. Moreover, varying the value of this criterion
moves the estimates of the critical temperatures only little.
For different integer occupations, they differ only slightly.

VII. CONCLUSIONS AND OUTLOOK

We derived the thermodynamic expression for the isother-
mal compressibility κ in a general single-component crystal of
arbitrary space group symmetry, which may contain any high
concentration of local defects, and discussed its connection
to the small-wave-vector limit of the density correlation
function. The correlation functions of coarse-grained fields
of macroscopic elasticity theory were calculated within the
framework of density functional theory, allowing for a finite
density of defects. Explicit expressions for the complete
set of coefficients in the phenomenological free energy in
terms of the direct correlation function of density functional
theory were obtained. The correlation function of the coarse-
grained density field does not, in general, determine the
compressibility. For the case of an ideal isotropic solid, we
could identify the origin of the discrepancy from a calculation
in macroscopic elasticity theory. It arises from the long-
ranged strain fluctuations which decay like 1/r3 and thereby
cause boundary effects to enter the elastic energy. While in
systems with spontaneously broken symmetry, anomalous
longitudinal correlations exist in general [50] (besides the
familiar symmetry-restoring fluctuations [23]), the present
observation appears more related to long-ranged dipolar
correlations in polar fluids [51]. There, the dielectric tensor
in response to the vacuum electric field depends on the shape
of the material and on the boundary conditions. It can be
connected to a well-defined isotropic dielectric constant only
via shape-dependent and boundary-effect-dependent distri-
bution functions. To work out a corresponding relation for
arbitrary symmetries and sample shapes of crystalline solids
is left for future work. Crystals also contain topological
defects [1], which destroy the long-ranged order and affect
the macroscopic elasticity [39,52]. They have been considered
within DFT [53], which could be used in future extensions
of the present approach. Also the nonlinearities of elasticity
theory, which become important for larger deformations [54],
require future extensions of the approach in Ref. [2] based
on nonlinear generalizations of projection operator techniques
[55].

We applied the theory to the elasticity of cluster crystals
made by soft particles. In these crystals, the fluctuating
occupation numbers of lattice sites play the role of local
defects and strongly affect the stable phases and their material
responses. Therefore, cluster crystals appear an ideal system to
test our theory. The obtained compressibilities and occupation
number distributions compare well with data obtained in
Monte Carlo simulations. Mean-field theory breaks down at
low temperatures. Yet, the theory can be used in order to
identify the temperature range where mean-field theory breaks
down. This provides rather reasonable and stable estimates for
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the critical temperatures, below which the zero-temperature
phases with integer occupation numbers are stable.
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APPENDIX A: THERMODYNAMIC MANIPULATIONS

As a consequence of (47) a Gibbs-Duhem relation can be
derived:

−V dp + Ndμ + Uαβdhαβ = 0. (A1)

It states that the pressure obeys p = p(μ,hαβ), which can
be used to simplify the total differential of the free energy
density per volume f = F/V = μn − p + uαβhαβ . It is a
proper density because the free energy F is a homogeneous
function of its extensive variables. As a first result, from the
Gibbs-Duhem relation (A1), the total differential of f given
in Eq. (49) follows. Also Eq. (A1) yields for an isothermal
change with dhαβ = 0

Ndμ = V dp, (A2)

which can be used for

1

N

∂N

∂μ

∣∣∣∣
V,hαβ

= 1

V

∂N

∂p

∣∣∣∣
V,hαβ

= ∂n

∂p

∣∣∣∣
V,hαβ

= −n0

V

∂V

∂p

∣∣∣∣
N,hαβ

= n0κ. (A3)

This verifies Eq. (48) as the compressibility at constant stress
tensor hαβ .

Alternative formula for κ and κ c

The discussion of the quadratic terms in the free energy can
be related to more standard thermodynamic considerations,
which provides additional support for our results. To find an
alternative formula for the compressibility at constant strain
hαβ , we start with Eq. (A3) and assume a relation u(h,μ):

κ = 1

n2
0

∂n

∂μ

∣∣∣∣
hαβ

= 1

n2
0

∂n

∂μ

∣∣∣∣
uαβ

+ 1

n2
0

∂n

∂uαβ

∣∣∣∣
μ

∂uαβ

∂μ

∣∣∣∣
hαβ

. (A4)

The last derivative is at constant hαβ . With

0 = dhαβ = ∂hγ δ

∂uαβ

∣∣∣∣
μ

duαβ + ∂hγ δ

∂μ
dμ, (A5)

it can be written as

∂uαβ

∂μ

∣∣∣∣
hαβ

= −
(

∂hγ δ

∂uαβ

∣∣∣∣
μ

)−1
∂hγ δ

∂μ

∣∣∣∣
uαβ

, (A6)

which leads to the alternative formula

κ = 1

n2
0

∂n

∂μ

∣∣∣∣
uαβ

− 1

n2
0

∂n

∂uαβ

∣∣∣∣
μ

(
∂hγ δ

∂uαβ

∣∣∣∣
μ

)−1
∂hγ δ

∂μ

∣∣∣∣
uαβ

. (A7)

The inverse of

∂2f

∂uαβuγ δ

= Cαβγ δ

is defined by [40]

Cαβγ δC
−1
γ δμν = 1

2 (δαμδβν + δανδβμ). (A8)

The unusual definition for the “unit matrix” is a consequence
from the symmetrization of the strain tensor, uαβ = 1

2 (∇αuβ +
∇βuα), and holds for all second-order derivatives with respect
to uαβ .

The thermodynamic derivatives can be expressed through
the elastic coefficients ν,μαβ,Cαβγ δ as follows: The first term
of the compressibility is basically the only nonvanishing term
in the fluid limit:

1

n2
0

∂n

∂μ

∣∣∣∣
uαβ

=
(

n2
0
∂μ

∂n

∣∣∣∣
uαβ

)−1

= ν−1. (A9)

For the second term the chemical potential μ is expressed as a
function of density and strain tensor μ(n,uαβ),

dμ = ∂μ

∂n

∣∣∣∣
uαβ

dn + ∂μ

∂uαβ

∣∣∣∣
n

duαβ, (A10)

which yields

∂n

∂uαβ

∣∣∣∣
μ

= −
(

∂μ

∂n

∣∣∣∣
uαβ

)−1
∂μ

∂uαβ

∣∣∣∣
n

= n0ν
−1μαβ. (A11)

The last two terms are

∂hγ δ

∂uαβ

∣∣∣∣
μ

= ∂hγ δ

∂uαβ

∣∣∣∣
n

+ ∂hγ δ

∂n

∣∣∣∣
uαβ

∂n

∂uαβ

∣∣∣∣
μ

= Cn
αβγ δ − μαβν−1μγδ, (A12)

∂hγ δ

∂μ

∣∣∣∣
uαβ

= ∂hγ δ

∂n

∣∣∣∣
uαβ

(
∂μ

∂n

∣∣∣∣
uαβ

)−1

= −n0ν
−1μγδ. (A13)

Now the alternative formula (A7) can be expressed with ν,μαβ,

and Cn
αβγ δ , which yields Eq. (42).

The same procedure can be applied to κc, which leads to

κc = − 1

n2
0

∂c

∂μ

∣∣∣∣
uαβ

+ 1

n2
0

∂c

∂uαβ

∣∣∣∣
μ

(
∂σγ δ

∂uαβ

∣∣∣∣
μ

)−1
∂σγ δ

∂μ

∣∣∣∣
uαβ

,

(A14)
which is an alternative to Eq. (60). The following connection
to the elastic constants,

− 1

n2
0

∂c

∂μ

∣∣∣∣
uαβ

= ν−1, (A15)

∂c

∂uαβ

∣∣∣∣
μ

= −
(

∂μ

∂c

∣∣∣∣
uαβ

)−1
∂μ

∂uαβ

∣∣∣∣
c

= −n0ν
−1μc

αβ, (A16)
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∂σγ δ

∂uαβ

∣∣∣∣
μ

= Cc
αβγ δ − μc

αβν−1μc
γ δ

= Cn
αβγ δ − μαβν−1μγδ = ∂hγ δ

∂uαβ

∣∣∣∣
μ

, (A17)

∂σγ δ

∂μ

∣∣∣∣
uαβ

= −n0ν
−1μc

αβ, (A18)

can be used to reproduce Eq. (45). Equation (A17) represents
the elastic constants at constant chemical potential discussed
in Ref. [1].

APPENDIX B: ELASTICITY

With the expressions of Sec. III B 2, Eq. (66) reads

〈δu∗
αδuβ〉 = V kBT �−1

αβ (q). (B1)

This follows from Eq. (18) with Vα(q) = 0, or μc
αβ = νδαβ +

μαβ = 0 in the low-q limit, for a crystal with vanishing
coupling between strain and defects. If we assume the crystal
to be ideal, viz. defect free, then additionally the defect density
correlations 〈δcδc〉 and with it κc should be zero. This implies
that ν(q)−1 vanishes, as follows from Eq. (18). The correlations
of the coarse-grained density Eq. (17a) then become

〈δn∗δn〉
V kBT n2

0

= qα�−1
αβ (q)qβ = qα(Cαεβφqεqφ)−1qβ, (B2)

where we used the small-q expansion of the constants of
elasticity and took care of the proper symmetric combination
as discussed in [2]. The elastic constants Cαβγ δ of (ideal)
elasticity theory correspond to Cc

αβγ δ in Eq. (43c). In this ideal
crystal approximation, the compressibility becomes

κ = δαβ(Cαβγ δ)−1δγ δ =
3∑

i,j=1

(Cij )−1. (B3)

Note that the limit κc = 0 and Eq. (63) also imply κσ = 0,
while κ has a finite limit, showing the difference arising from
the different constant stress tensors.

The elastostatic theory is contained in the static limit of the
hydrodynamic equations of motion; see Eqs. (87) in Ref. [2].
Without point defects the only nonvanishing equation is (87c),
which then reads

qβCαβγ δqδuγ = 0. (B4)

But this is just the Fourier-transformed equation of elastostat-
ics (68).

APPENDIX C: ISOTROPIC SOLIDS

Often, it is useful to simplify the tensorial expressions
of elasticity theory and to consider an isotropic solid [1].
Appendix C connects to these discussions and points out
different possibilities to define bulk moduli.

For isotropic solids, a tensor of elastic coefficients Cαβγ δ

is determined by two Lamé coefficients: Cαβγ δ = λδαβδγ δ +
μ(δαγ δβδ + δαδδβγ ) and μαβ simplifies to μ0δαβ . (Note that
we follow standard practice [1,28] in calling the second
Lamé coefficient μ even though we used this letter for other
quantities already.) In the isotropic case, the compressibility
from Eqs. (42) and (50) becomes

κ iso =
(

ν − (μ0)2

Bn

)−1

, (C1)

with a bulk modulus at fixed total density

(Bn)−1 = δαβ

(
Cn

αβδγ

)−1
δδγ = (

λn + 2
3μn

)−1
. (C2)

This is the same as in Ref. [1]. There, a bulk modulus at
constant stress tensor hαβ has been defined, which is equal
to the inverse of the strain part of the compressibility given
in Eq. (57), (Bh,Ref.[1])−1 = − ∂uαα

∂p
|hαβ

. In general it differs
from κ iso because of the second term in Eq. (55). The limit
of an ideal crystal is attained for μ0 + ν = 0 and ν → ∞, so
that λn − ν → λc, while the second Lamé coefficient remains
unaffected.
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