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1 Introduction

Since the seminal contributions by Becker (1964) and Mincer (1974) the analysis of

the returns to schooling has been in the focus of labor economic research. While

early empirical studies focused on the correlation between unobserved heterogene-

ity (ability) to remove the ability bias, the more recent contributions motivated by

the econometrics of evaluation emphasize the endogeneity of schooling in the light

of heterogeneous agents.1 Provided that individuals differ in their (at least partly

unobservable) marginal costs and benefits of schooling, the educational choice leads

to heterogeneous returns to schooling. Thus selfselection into schooling levels effects

not only mean return rates but the also the observed residual wage distribution.

Therefore educational policies which have an impact on the individuals’ marginal

cost and benefit not only effect the returns to schooling, but also the residual wage

inequality. The potential selectivity bias in variances is usually neglected in the

literature on residual wage inequality (e.g. Juhn, Murphy, and Pierce (1993) and

Katz and Autor (1999)).

In addition, individual heterogeneity also has serious implications for the quality

of educational policies. Evaluating the causal effects of schooling by means of the

potential outcome approach, taking into account heterogeneity of returns and the

endogeneity of schooling decisions, usually focuses on mean causal effects. This

ignores that the effectiveness of educational policies also depends on the riskiness

of the program, i.e. the variance of the causal effect. It is needless to stress that

knowledge of the program risk is another valuable dimension which risk averse pol-

icy makers are concerned about in assessing the quality of a program. The variance

of causal effects, however, is not identified given the standard assumptions of the

potential outcome approach.

The purpose of the paper is twofold. First, we try to shed more light on causal

residual income inequality due to schooling using the potential outcome approach.

Unlike Chen (2004), whose analysis is based on the Heckmans’s control function

approach, we use the ignorability (unconfoundedness) assumptions to identify the

causal effects and base our analysis on the random coefficient specification of the

earnings function. This leaves enough flexibility to analyze the nonparametric case

1See for example Blundell, Dearden, and Sianesi (2005) for an application as well as Card (2001)
for a simple theoretical motivation.

1



of binary treatment (participation in a schooling program or not) and the case con-

tinuous or ordered treatments implicitly assumed in traditional earnings functions.2

Secondly, since causal program risk cannot be identified by the usual ignorability

assumptions we derive identifying conditions for the variance of the treatment ef-

fect. Moreover, we derive bounds for the program risk, which can be nonparametric

without additional identifying assumptions.

Our paper is organized as follows. In Section 2 we develop the potential outcome

approach for the random coefficient model based on appropriate ignorability (un-

confoundedness) assumptions. Following Wooldridge (2004), we identify the average

treatment effect via conditional mean independence assumptions and show that the

ATE for the continuous treatment variable or a binary treatment can be estimated

by means of auxiliary regressions. For the random coefficient model we derive the

bounds for the causal variance effects using additional conditional independence as-

sumptions only and relate those bounds to the identifiable causal wage inequality. In

Section 3 we describe how to estimate the variance effects under unconfoundedness

using standard matching approaches. The simple way of checking the reliability of

nonexperimental evaluation estimators is to confront their estimates with the ones

obtained from experimental data. We do this by estimating the variance effects using

the data from LaLonde (1986). Finally, in Section 4 we show the estimator at work

by evaluating the causal effect of schooling for graduates from the German Gymna-

sium using cross-sectional data from the German Socioeconomic Panel. Section 5

concludes and gives an outlook on future research.

2See also Abadie (2002), Angrist (2004) and Chernozhukov and Hansen (2001) who analyze
quantile treatment effects using nonparametric methods.
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2 Identifying Treatment Parameters under Ignor-

ability

Our general starting point is the standard correlated random coefficient model of

the form

Y = α + βS, (2.1)

where Y is the outcome variable (e.g. log income) and α and β are correlated random

coefficients. The scalar treatment variable S (schooling) can be continuous, a count,

or a binary treatment variable. The term ”correlated” refers to the property that

the two coefficients are random variables correlated with attributes affecting the out-

come variable through α and β. It is needless to stress that the treatment variable

is endogenous and is also correlated with unobservable factors and observable at-

tributes. Note that (2.1) is general enough to capture a variety of specifications. The

classic Becker-Mincer earnings function arises with α = X ′α0 + ε and β = β0, where

α0 and β0 are fixed coefficients, X a vector of attributes (experience, etc.) and ε an

error term capturing unobserved abilities possibly correlated with schooling. More-

over, if β is correlated with observable and unobservable factors, the specification

corresponds to the one proposed by Garen (1984) and Heckman and Vytlacil (1998).

Mean Effects

Wooldridge (2004) proposes an estimation approach for the average partial effect

∆APE := E
[

∂Y
∂S

]
= E [β] based on the following conditional mean independence

assumptions (ignorability conditions) as identification strategy.3

Assumption 2.1 (Ignorability I)

Let Y be the outcome variable and S the treatment. For a set of covariates X the

following conditions hold:

i. The relationship between outcome and treatment is given by the random coef-

ficient model (2.1).

ii. E [Y |α, β, S, X] = E [Y |α, β, S]

iii. Conditional on X, α and β are redundant in the first two conditional moments

of S: a) E [S|α, β, X] = E [S|X] and b) V [S|α, β, X] = V [S|X] > 0

3See also the textbook by Wooldridge (2002, pp. 639) for a brief description of this approach.
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Identification condition ii obviously holds since the control variable X enters the

equation through α, β and S only. Assumption iii.a) guarantees that, conditional

on the controls, expected treatment is mean independent of α and β. Thus no new

information is gained in projecting treatment if there are sufficient controls. As-

sumption iii.b) is closely related to iii.a) and extends the ignorability assumption to

the second moments of S. As shown in the Appendix, these assumptions build cru-

cial identification conditions (ignorability conditions) needed to identify the average

partial effect ∆APE.4

Proposition 2.1 (APE in the RC-Model under Ignorability)

Given the ignorability assumptions ii) and iii) the average partial effect ∆APE of the

random coefficient model 2.1 is given by:

E [β] = E
X

[E [β|X]] = E
X

[
Cov [S, Y |X]

V [S|X]

]
. (2.2)

The similarity of equation (2.2) to the linear predictor formula is by no means

incidental. In fact, Wooldridge (2004) derives ∆APE as the expectation of the linear

predictor of Y on S conditional on X. For the case of a binary treatment S ∈
{0, 1}. The random coefficient model (2.1) with ignorability assumptions ii and

iii a) is simply an alternative representation of the potential outcome model under

unconfoundedness. In this case α = Y0 and β = Y1 − Y0, where Y1 and Y0 are the

potential outcomes for the treatment and the nontreatment case. Thus β is the

conditional average treatment effect:

∆ATE(X) := E [Y1 − Y0|X] = E [β|X] .

Without loss of generality, the ignorability conditions are reversed compared to the

literature on estimation of binary treatments under unconfoundedness. There, the

conditional mean independence assumption is defined in terms of the mean of the

outcome variable conditional on the treatment indicator and the controls, while in

Assumption 2.1 unconfoundedness is defined in terms of the conditional mean of the

treatment variable.

4Since the approach is general enough to deal with discrete and continuous treatments we prefer
to use the term average partial effect rather than average treatment effect used in the literature
on binary treatment effects.
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Moreover, note that the binary treatment case (2.1) is fully nonparametric and

does not impose any functional form restrictions. The ignorability condition iii.b)

becomes redundant, since the conditional variance of the treatment variable is merely

determined by the mean function. Let µS(X) ≡ E [S|X] and ω2
S(X) ≡ V [S|X] then

(2.2) can be rewritten as

E [β|X] =
E [(S − µS(X))Y |X]

ω2
S(X)

. (2.3)

Since we are assuming an iid random sample a consistent estimator for E [β] is given

by

Ê [β] =
1

n

n∑
i=1

(Si − µ̂s(Xi))Yi

ω̂2
s(Xi)

, (2.4)

where µ̂S(Xi) and ω̂2
S(Xi) are estimators of the conditional mean and the variance

function. Note, the Si − µ̂S(Xi) is simply the residual of a regression of S on X.

For a binary treatment, the conditional mean function of S is the propensity score,

µS(X) = p(X) with the conditional variance function ω2
S(X) = p(X)(1 − p(X)).

Ê [β] =
1

n

n∑
i=1

(Si − p̂(Xi))Yi

p̂(Xi)(1 − p̂(Xi))
(2.5)

Note that this is the feasible version of the weighting estimator (Imbens (2003)).

Lemma 2.1 provides interesting implications for the generality of the random coef-

ficient model (see the Appendix for the proof):

Lemma 2.1 (Conditional Uncorrelatedness of S and β)

Under the ignorability conditions given in Assumption 2.1, S and β conditional on

X are uncorrelated:

Cov [β, S|X] = 0.

Moreover, this implies that E [α] is identified.

Conditional on the attributes of X the partial effect and the treatment variable

are uncorrelated, i.e. given sufficient controls the model rules out nonlinearities be-

tween earnings and schooling. However, the linear form of the random coefficient

model does not exclude decreasing or increasing returns to schooling. For the binary

case Lemma 2.1 reflects a well-known property: since Cov [Y1 − Y0, S|X] = 0 simply

states that, conditional on X, the average effects for the treated, the non-treated,
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and the average treatment effect are identical, i.e. knowledge of the attributes cor-

rects for selectivity.

The identifiability of α turns out to be important if S = 0 is an important bench-

mark value, e.g. if the treatment variable is binary on a non-treatment situation or

baseline treatment level (minimum schooling) can be defined. In this case α is the

potential outcome for the minimum treatment situation.

Variance Effects and Variance Bounds

Mean program effects may not be the only measures policy makers are interested in

if they are risk averse. They also need information on the variability of a program

effect, shortly its risk. However, the usual ignorability assumptions as given above

are not sufficient to identify the variance of the partial effect (∆V PE := V
[

∂Y
∂S

]
=

V [β]). In order to derive identification conditions for higher moments we replace

the conditional mean independence assumptions iii by the following somewhat more

restrictive conditional independence assumption:

Assumption 2.2 (Ignorability II)

Let Y be the outcome variable and S the treatment. For a set of covariates X the

following independence property holds:

iii. S ⊥ α, β | X.

For the binary treatment case it is easy to show that this additional ignorability

condition is sufficient to identify the variances of the two potential outcomes V [Y0]

and V [Y1]. Corresponding to the quantile treatment effects literature, we may call

V [Y1]−V [Y0] the variance treatment effect, while V [Y1 − Y0] is the variance of the

treatment effect. In the case of the earnings function the two variances determine

the wage inequality of two groups of individuals with different levels of education

if the individuals had been selected randomly into the two groups. The difference

between the two variances can be thought of as being a pure measure of residual

wage inequality that is independent of the selfselection process of the residual wage

distributions, respectively and thus residual wage inequality. However, Assumption

2.2 is not sufficient to identify program risk. This requires additional information

on Cov [α, β|X].
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Proposition 2.2 (Identification of the ∆V PE) Given the ignorability assumption

2.2 the variance of the treatment effect (∆V PE) is identified, if Cov [α, β|X] is iden-

tified.

The proof is given in the Appendix 5. The covariance term indicates whether there

are increasing or decreasing returns to treatment. Assume the treatment variable is

bounded from below at zero (min S = 0, e.g. required years of schooling) then α re-

flects outcome in the case of minimal treatment. Thus Cov [α, β|X] = Cov [Y0, β|X]

contains the information whether individuals with higher outcomes in case of non-

treatment are expected to reveal higher returns than those with lower outcomes if

not treated. Thus Cov [α, β|X] < 0(> 0) simply reflects decreasing (increasing) re-

turns to treatment. Since we can give this covariance an economic interpretation we

may be able to use external information (e.g. from experimental studies) to infer on

the sign of Cov [α, β|X] in the study of interest.

For the case of a binary treatment variable information on the covariance between α

and β is equivalent to information on the correlation between the potential outcomes

Y0 and Y1. The relationship between program risk and residual wage inequality

becomes evident by reformulating the definition of the variance of the program effect

in terms of the variances of the two potential outcomes:

V [Y1 − Y0] = V [Y1] − V [Y0] − 2 Cov [α, β] . (2.6)

Assuming nonincreasing returns to treatment the residual wage inequality serves as

a lower bound for program risk:

V [Y1 − Y0] ≥ V [Y1] − V [Y0] . (2.7)

Obviously this lower bound is only informative if V [Y1] − V [Y0] > 0. Finally, we

can unambiguously conclude that if V [Y1] − V [Y0] ≤ 0 returns to treatment are

nonincreasing. For the more general random coefficient model Proposition 2.3 gives

a lower bound for the program risk.

Proposition 2.3 (Lower Bound of the VPE)

Given the additional independence assumptions iv.) a lower bound for the variance
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of the treatment effect (∆V PE) is given by:

V [β] ≥ E
X

[
V [Y |X] − V [α|X] + E [S|X]2

E [S2|X]

]
− E [β]2 , (2.8)

if Cov [α, β|X] ≤ 0.

The proof of Proposition 2.3 is given in Appendix 5. Like the bound given in (2.7)

the proof only exploits purely statistical properties of the variance decomposition.

In a similar fashion we can also derive an upper bound for the variance of the partial

effect.

Proposition 2.4 (Upper Bound of the VPE )

Given the ignorability assumptions ii and iii an upper bound for the variance of the

treatment effect (∆V PE) is given by:

V [β] ≤ E
X

[
V [Y |X]

V [S|X]

]
− E [β]2 . (2.9)

The proof of Proposition 2.4 is given in Appendix 5.
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3 Performance in the Light of Experimental Data

Estimation Issues

In our applications below we will concentrate on treatment effects of the treated

only.5 Mean and variance treatment effects are estimated by conventional propensity

score matching methods. Let us define σ2
1 := V [Y1|S = 1] and σ2

0 := V [Y0|S = 1]

as the variances for the two potential outcomes for the treated. The estimate of the

counterfactual variance is based on the following formula:

V̂ [Y0|S = 1] = Ê[V̂ [Y0|P̂ , S = 1]] + V̂ [Ê[Y0|P̂ , S = 1]], (3.1)

where P̂ denotes the estimated propensity score P = P (X) = Pr [S = 1 |X ]. The

estimation procedure consists of four steps:

1. Estimate P = Pr [S = 1 |X ] by a probit or logit model.

2. Estimate E[Y0|P̂ , S = 1] and E[Y 2
0 |P̂ , S = 1] nonparametrically (i.e. Nearest

Neighbor Matching, Kernel Matching, Local Linear Matching).

3. Compute V̂ [Y0|P̂ , S = 1] = Ê[Y 2
0 |P̂ , S = 1] − Ê[Y0|P̂ , S = 1]2.

4. Obtain V̂ [Y0|S = 1] by simply averaging and taking variances over the corre-

sponding conditional moments.

V̂ [Y1|S = 1] can be estimated by the sample variance of the treated observations.

Estimation is performed with both Nearest Neighbor Matching (NN) and Local

Linear Matching (LLM) by using a quartic kernel. In the empirical applications

we consider two different global bandwidths in order to investigate the sensitivity

of the results with respect to the smoothing parameter: h = 0.5 and h = 1.0.

Note, the conventional data driven selection algorithms like cross validation do not

yield the optimal bandwidth in terms of minimizing the mean squared error (MSE)

or the integrated mean squared error (IMSE). This is because additional smoothing

takes place by averaging the estimated means over different simulated counterfactual

values.6 For the sake of an easier comparison we report the variance treatment effects

for the treated in terms of a percentage difference τ := (σ1 − σ0)/σ0.

5In later versions of the paper we plan to extend our analysis to the case of the overall population.
6Froelich (2004) for example derives an MSE approximation for matching estimators of the

TT in the bivariate treatment case and investigates its performance in finite samples by a plug
in bandwidth choice. The reliability of this approximation turns out to be not very high and
conventional cross validation bandwidth selection results to perform relatively well.
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An Application to the LaLonde Data

In the following we use the job training program data, which were first analyzed by

LaLonde (1986) and then formed the basis of several subsequent studies in econo-

metric evaluation research including Heckman and Hotz (1989), Dehejia and Wahba

(1999), Smith and Todd (2001, 2005) or Abadie and Imbens (2002). The reason for

the widespread use of this data set is the availability of an experimental data set

from the ”National Supported Work Program” (NSW). The experimental data were

obtained by a random assignment of treatment to eligible participants. It consists of

information on earnings, treatment status, background characteristics like ethnicity

or age, and also earnings before treatment. Due to the randomness of the treatment

assignment, estimates based on the NSW data set can be regarded as a benchmark

for nonexperimental program evaluation.

Dehejia and Wahba (1999) use the NSW data to evaluate the performance of propen-

sity score matching methods. They conclude that the experimental results can be

replicated very well by nonparametric estimates based on observational data. One of

the data sets Dehejia and Wahba use is a subset of the NSW data of 185 treated units

and 2490 control observations of the ”Panel Study of Income Dynamics” (PSID1).

Like LaLonde (1986), they also extract subsets from the PSID1 data set that re-

semble the treatment group in terms of single preintervention characteristics. These

data sets are defined as PSID2 (all men from PSID1 who were not working when

surveyed in the spring of 1976) and PSID3 (all men from PSID2 who were not work-

ing in 1975).

Using the same data we estimate the variance treatment effect of the treated ∆V TT

by the proposed method and compare the results to the experimental benchmark.

Following Dehejia and Wahba (1999), the propensity scores are estimated by a logit

model. The specification of the propensity score equation differs for each sample

because it is chosen such that it balances the distribution of the covariates over

both treatment groups. The estimation results are given in Table 1. Regarding the

estimates of the average treatment effect of the treated ∆TT we are able to replicate

the results by Dehejia and Wahba (1999) exactly for the method of NN-Matching.

For LLM the results for the TT are very sensitive to the chosen bandwidth. The

nonexperimental estimates for the variance differential vary strongly with respect to

the estimation method and the sample. For the PSID1 sample, LLM with a band-
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width of 1.0 performs best, while for the PSID2 sample NN-Matching and LLM

with bandwidth 1.0 yield estimates that come close to the experimental benchmark.

Finally, NN-Matching performs very well when applied to the PSID3 sample.

Table 1: Estimation Results for the Dehejia/Wahba Data

Sample Method ∆TT τ

PSID1 NN-Matching 1691 (1217) 0.1845 (0.3374)
LLM (h=0.5) 1671 (941) 0.0933 (0.2310)
LLM (h=1.0) 1955 (1078) 0.3404 (0.5397)

PSID2 NN-Matching 1455 (1377) 0.5451 (0.3676)
LLM (h=0.5) 1467 (1258) 0.2543 (0.2627)
LLM (h=1.0) 993 (1261) 0.4288 (0.5355)

PSID3 NN-Matching 1120 (1491) 0.4089 (0.3511)
LLM (h=0.5) 1055 (1400) 0.2139 (0.3354)
LLM (h=1.0) 710 (1366) 0.2060 (0.5622)

- Standard errors (in brackets) are bootstrapped (1000 replications)

- Experimental estimates based on NSW-data: τ = 1.794, ∆V TT = 0.4347

The standard errors (in parenthesis) of both the estimated variance treatment effect

and the mean treatment effect of the treated are computed by the bootstrap method.

The bootstrapped standard errors of the mean effects considerably exceed the ones

reported by Dehejia and Wahba (1999), who use the empirical standard deviation.

This difference can be explained by the fact that the bootstrap standard errors also

account for the estimation uncertainty generated by the propensity score estimates.

Note that the estimates of the variance differentials are positive for all three samples

so that the variance differential can serve as an estimate of the lower bound of the

variance treatment effect.

Table 2 reports on the bound for the variance treatment effect. The estimates for the

upper and the lower bound are far apart. Nevertheless the lower bound estimates

are quite informative. Keeping in mind that the true program risk is even higher

than our lower bound estimates, we can conclude that the lower bound compared

to the mean treatment effect indicates that NSW program was not very efficient for

the treated.
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Table 2: Estimated Bounds for the Program Risk

Sample Method Lower Bound Upper Bound

PSID1 NN-Matching 4217 50640
LLM (h=0.5) 3180 50641
LLM (h=1.0) 5239 50631

PSID2 NN-Matching 5981 31963
LLM (h=0.5) 5134 31962
LLM (h=1.0) 5140 31980

PSID3 NN-Matching 5542 38758
LLM (h=0.5) 4486 38802
LLM (h=1.0) 4370 38809

Estimated bounds for
√

V [Y1 − Y0|S = 1]
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4 An Application to Educational Choice

For our application to educational choice we use data from the 2001 wave of the Ger-

man Socio Economic Panel (GSOEP). In our sample we include German workers

who are full-time employed and live in West-Germany. Individuals who were at the

moment of the survey self-employed, part-time employed, or in vocational training

are excluded from the analysis. After eliminating all units with missing values in

any of the variables considered we obtain a sample size of 1054 individuals.

Table 3: Variable Definition

Label Description
LNWAGE Log gross hourly income
STIME Years of schooling (years)
AGE Age (years)
AGESQ Age squared
SIBLINGS Number of siblings
FEDUCATION Educational degree of father (years)
MEDUCATION Educational degree of mother (years)
URBAN Dummy, if individual grew up in an urban area
FPROF Dummy for occupational position of father

(1= Public servant/self employed/white-collar, 0 else)
MPROF Dummy for occupational position of mother

(1= Public servant/self employed/white-collar, 0 else)
LIVING Dummy indicating, if the individual grew up with both parents
PINTEREST Dummy for parental interest in educational achievement of

the individual (1=strongly interested, 0 else)
MUSIC Dummy indicating, if the individual was active

in music during youth (1=active, 0 else)
SPORT Dummy indicating, if the individual was actively

doing sport during youth (1=active, 0 else)
FARGUE Dummy for argue or fight with father, when the individual was 15
MARGUE Dummy for argue or fight with father, when the individual was 15

Dummies for region of last school attendance (base category: North Rhine-Westphalia):

SCHLESACHS Schleswig-Holstein or Lower Saxony
BWBAY Baden-Wuerttemberg or Bavaria
WBERLIN West-Berlin
BREMHAM Bremen or Hamburg
RPHESAAR Rhinland-Palatinate/ Hesse /Saarland

Table 3 gives an overview of the variables and its definitions. Apart from the usual

covariates on family background in human capital-earnings equations, variables that
13



Table 4: Summary Statistics

Variable Mean Std.error
LNWAGE 3.3968 .0434
STIME 12.7348 2.6967
AGE 42.0313 10.1752
SIBLINGS 1.7789 1.635
FEDUCATION 10.9967 1.471
MEDUCATION 10.5588 1.0211
URBAN .6531
FPROF .4279
MPROF .2429
LIVING .9032
PINTEREST .6281
MUSIC .2448
SPORT .6803
FARGUE .2429
MARGUE .1034
SCHLESACHS .1499
BWBAY .3435
WBERLIN .0028
BREMHAM .0332
RPHESAAR .1983
N=1054

indicate activeness of the individual in music and sport are added to proxy individ-

ual motivation. Table 4 reports the descriptive statistics of our sample. Our treat-

ment variable consists of two categories, reflecting the special institutional setting of

the German schooling system and is formed by the highest school degree obtained:

Secondary/ intermediate school (Low) and technical school/upper secondary school

(High). We allow for further educational degrees like apprenticeship, foreman, uni-

versity, or higher technical college. Since a technical school degree and an upper

secondary school degree allow one to obtain a higher technical college degree or a

university degree, we want to investigate the effect of this type of higher educa-

tion on earnings. Table 5 contains some information about about the structure of

qualifications. Most of the individuals have an intermediate degree while only 23 %

finished the upper secondary school.

As in the application in the previous, section the propensity scores are estimated by a

logit model. Regarding the relevance of a common support Heckman, Ichimura, and

Todd (1997) and Heckman, Ichimura, Smith, and Todd (1998) show by comparison
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Table 5: Structure of Qualifications

Highest school degree Frequency in %

Secondary School 37

Intermediate or technical school 40

Upper secondary school 23

N=1054

of experimental and nondepartmental estimation results, that an insufficient support

constitutes one of the primary components of selection bias. To construct a common

region of support we use a method applied in a similar way to Heckman, Ichimura,

and Todd (1997) and Heckman, Ichimura, Smith, and Todd (1998) or Smith and

Todd (2005). In a first step the estimated common support is obtained by:

Ŝp = {P (x) : f̂(P (x)|S = 1) > 0 and f̂(P (x)|S = 0) > 0}.

The densities are estimated nonparametrically by kernel-densities. The optimal

bandwidth is chosen by least squares cross validation. We use a quartic kernel to

allow for the possibilities of estimated densities with zero values. In a second step for

both S = 1 and S = 0 the observation with the lowest two percent of the estimated

densities are trimmed to obtain a common region of support with densities strictly

greater than zero.

In order to estimate ∆TT and the variance treatment effect τ , we apply again NN-

Matching and LLM. The estimated parameters are annualized by dividing the esti-

mates by the difference between the averages in years of schooling for both groups.

The results are given in Table 6.

Table 6: Estimated Average Treatment and Variance Treatment Effect

METHOD ∆TT τ

NN-Matching 0.0418 (0.0172) -0.0041 (0.0352)

LLM (h=0.5) 0.0417 (0.0125) -0.0019 (0.0259)

LLM (h=1.0) 0.0461 (0.0089) -0.0066 (0.0192)

Standard errors (in parenthesis) are bootstrapped with 500 replications.

The annualized causal return rate of school leavers with upper secondary education is
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between 4 and 5 percent depending on the matching method chosen. School leavers

with an upper secondary degree can expect 4.2 - 4.8 per cent higher income for each

school year invested compared to the counterfactual case if they had not decided

to graduate from upper secondary school. In contrast to the previous application,

the estimation results are not very sensitive with respect to the matching methods

or bandwidth choice chosen. The bootstrapped standard errors also indicate that

estimated average treatment effect of the treated is different from zero.

The estimates for the variance differential are negative but not significantly different

from zero. At least for the treated we find no empirical support for differences in

the residual wage inequality. Moreover, the nonpositive variance treatment effect

implies that the lower bound of the variance of the treatment effect is not sharp.

Thus we may conclude that the returns to schooling are nondecreasing. Without

stressing this argument too much, our findings support the view proposed by Cunha,

Heckman, Lochner, and Masterov (2005) that schooling enhances wage inequality in

the sense that those higher unobserved skills profit more from schooling than others.

Table 7: Estimated Bounds for the Program Risk

METHOD Upper Bound

NN-Matching 0.3992

LLM (h=0.5) 0.3992

LLM (h=1.0) 0.3992

Estimated bounds for
√

V [V [Y1 − Y0|S = 1].

The estimated upper bound of the variance of the treatment effect reported in Table

7 is computed by dividing the difference between the averages in years of schooling

for both groups in order to obtain a standard deviation bound for the annualized

TT. Interestingly, the estimates do not vary across estimation methods, but the

upper bound is larger then the mean effect by a factor of 10, so that it contains little

information for the data used here.
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5 Conclusions

Based on the potential outcome approach this paper analyzes the link between indi-

vidual heterogeneity, program risk, and outcome inequality. Using standard ignor-

ability conditions we derive identifying conditions for the variance of the treatment

effect, i.e. the program risk, and relate this parameter to the variance treatment

effect. Moreover, for a rather general set-up allowing for binary as well as continuous

treatments, we derive upper and lower bounds for the program risk.

Applying our approach to the LaLonde data we show that the lower bound for

variance of the treatment effect is rather high indicating a considerable inefficiency

of the NSW program. In the second application we estimate the causal effects of

graduation from higher secondary school. In this application the difference of the

residual income variance is negative and thus not informative. However, we find

evidence for increasing returns to schooling: graduates from upper secondary school

with high incomes in case of nongraduation can expect higher returns than their

classmates with lower incomes.

With the potential outcome approach adopted here we are able to estimate residual

wage inequality due to schooling taking into account the endogeneity of the decision

process. Therefore our approach maybe used to scrutinize the empirical findings on

the change of the residual wage distribution in the light of selfselection.

However, the nonparametric set-up chosen here is less informative about the sources

of income variation and program risk. Ex-post observed income variation may be

due to individual heterogeneity or ex-post shocks (uncertainty). Individual het-

erogeneity as a source of residual wage inequality emphasizes uncertainty of the

econometrician about the true data generating process at the individual level. But,

ex-post shocks also lead to randomness in wages and the returns to schooling. While

the latter source of variation is more a question of the general macroeconomic con-

ditions knowledge about unobserved individual, heterogeneity may help to design

more efficient programs. Future work should be concerned with disentangling the

two effects. This would require a more structural set-up that allows us to identify

the two sources of ex-post observable income variation.
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Appendix

Proof of Proposition 2.1

Take the expectation of (2.1) conditional on α, β and X and subtract it from the

original equation:

E [Y |α, β, X] = α + β E [S|α, β, X]

(Y − E [Y |α, β, X]) = β · (S − E [S|α, β, X])

Multiply both sides of the equation by (S − E [S|α, β, X]) to get

(S − E [S|α, β, X])(Y − E [Y |α, β, X]) = β(S − E [S|α, β, X])2.

The expectation of both sides of the equation on α, β and X is:

Cov [S, Y |α, β, X] = β V [S|α, β, X]

= β V [S|X] , (.1)

where the rhs of the second equality results from ignorability assumption iii b).

Note that that under ignorability conditions ii) and iii a):

E [Cov [S, Y |α, β, X]|X]

= E
α,β

[E [Y S|α, β, X] |X] − E
α,β

[E [Y |α, β, X] E [S|α, β, X] |X]

= E [Y S|X] − E
α,β

[E [Y |α, β, X] E [S|X] |X]

= E [Y S|X] − E [Y |X] E [S|X]

= Cov [S, Y |X] .

Taking the expectation on both sides of the equation (.1) over α and β conditional

on X:

Cov [S, Y |X] = E [β|X] V [S|X] . (.2)

Solving for E [β|X] and applying the law of iterated expectations gives the desired

result.

�

Proof of Lemma 2.1
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By the law of iterated expectations and ignorability condition iii a):

E [βS|X] = E
α,β

[E [βS|α, β, X] |X]

= E
α,β

[β E [S|α, β, X] |X]

= E
α,β

[β E [S|X] |X]

= E [β|X] · E [S|X]

Given the uncorrelatedness Cov [β, S|X] = E [βS|X] − E [β|X] · E [S|X] we obtain

for α:

E [α|X] = E [Y |X] − E [βS|X]

= E [Y |X] − E [β|X] · E [S|X] .

Since all tree terms on the rhs are identified, the unconditional mean is identified

by interpretation of X

E [α] = E [E [α|X]] = E [Y ] − E [E [β|X] · E [S|X]]

= E [Y ] − E

[
Cov [S, Y |X] · E [S|X]

V[S|X]

]
.

�

Proof of Proposition 2.2

Using the assumptions and result of Proposition 2.1 only E [β2] needs to be identified

to identify V [β] = E [β2] − E [β]2.

The conditional expectation E [β2|X] can be obtained similarly to the computation

of E [β|X]. Take the expectation of equation (2.1) conditional on α, β and X and

subtract it from the original equation which gives after squaring:

(Y − E [Y |α, β, X])2 = β2(S − E [S|α, β, X])2.

The expectation of both sides of the equation on α, β and X is:

V [Y |α, β, X] = β2 V [S|X] .
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Taking the expectation on both sides conditional on X and solving for E [β2|X]

gives:

E
[
β2

∣∣ X
]

=
Eα,β [V [Y |α, β, X]]

V [S|X]
(.3)

The term in the numerator is given by

E
α,β

[V [Y |α, β, X]] = V [Y |X] − V
α,β

[E [Y |α, β, X] |X]

= V [Y |X] − V [α|X] − V [β|X] E [S|X]2 − 2Cov [α, β|X] E [S|X] .

Since V [α|X] is identified by the ignorability conditions E [β2|X] is identified if

Cov [α, β|X] is identified.

�

Proof of Proposition 2.3

Consider the numerator of .3 and assume Cov [α, β|X] ≤ 0. Then,

E
[
β2

∣∣ X
] ≥ V [Y |X] − V [α|X] − E [S|X]2 V [β|X]

V [S|X]
.

Solving for E [β2|X] results in:

E
[
β2

∣∣ X
] ≥ V [Y |X] − V [α|X] + E [β|X]2 E [S|X]2

E [S2|X]
.

�

Proof of Proposition 2.4

Using the variance decomposition for the numerator of .3

E
α,β

[V [Y |α, β, X]] = V [Y |X] − V
α,β

[E [Y |α, β, X] |X] ,

and dropping the unidentified second term of the difference we obtain an upper

bound for E [β2]:

E
[
β2

]
= E

X

[
E

[
β2

∣∣ X
]] ≤ E

X

[
V [Y |X]

V [S|X]

]

�
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