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The dynamics of ultrafast electron currents triggered by femtosecond laser pulse

irradiation of narrow gaps in a plasmonic dimer is studied using quantum mechanical

Time-Dependent Density Functional Theory (TDDFT). The electrons are injected into

the gap due to the optical ଏeld emission from the surfaces of the metal nanoparticles

across the junction. Further evolution of the electron currents in the gap is governed by

the locally enhanced electric ଏelds. The combination of TDDFT and classical modelling

of the electron trajectories allows us to study the quiver motion of the electrons in the

gap region as a function of the Carrier Envelope Phase (CEP) of the incident pulse. In

particular, we demonstrate the role of the quiver motion in establishing the CEP-

sensitive net electric transport between nanoparticles.

1 Introduction

Electron emission from metallic surfaces is a physical process which exploits the

exchange of energy between incident photons and outgoing electrons.1,2 The

current trends in nanotechnology are able to design complex morphologies of

metallic nanostructures which can act as eଏective optical nanoantennas trapping

and enhancing light of speciĎc wavelengths in their proximity.3–5 This is achieved

by means of the collective excitation of the electronic charge density at the

interfaces of the metallic nanostructures, so-called surface plasmons.6,7 Plas-

monic nanoparticles are thus a very appealing structure for the generation of

strong-Ďeld emitted electrons due to the electric-Ďeld enhancement and
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localization produced near the particle surface.8–15 Among others, metallic tips

have been commonly used in the generation of photoemitted electrons, for

instance in the guns of electron microscopes.16

More recently, plasmonic gaps, formed in a metal–insulator–metal junction,

have been shown to host very intense bonding-gap plasmons which produce

electromagnetic hot spots commonly exploited in surface-enhanced spectros-

copy.17–22 The plasmonic gap has also been the object of intense research

regarding the interplay between optical and transport properties, as the two

metallic particles forming the gap can be externally biased, and the current across

the gap can thus be accessed while illuminating the structure with light.22–27 Last,

but not least, the ability to shape light into ultra-short single-cycle pulses with

varying Carrier Envelope Phase (CEP) provides an additional degree of control on

the photoelectrons emitted.9,13,24 When those electrons are emitted in a plasmonic

gap as a result of the incidence of an ultra-short laser pulse, a complex dynamical

behaviour of the electrons can be foreseen which depends on the particular

conditions of the emission, such as energy of the photons, duration of the pulse,

local Ďeld enhancement, or size of the gap.24 Diଏerently from a metallic tip,

characterized by electron emission into free-space, the plasmonic gap oଏers the

possibility of achieving electron transport between nanoparticles controlled at the

optical cycle time-scale thus granting mutual coherence between radiation and

electron current. A theoretical scheme capable of tracing the dynamics of these

ultra-short electron bursts in plasmonic gaps can be extremely useful when it

comes to the design and control of the optoelectronic properties of ultrafast

electron currents.

This discussion precisely addresses the challenge of describing the complex

dynamics of photoemitted currents in plasmonic gaps under ultra-short illumi-

nation. A simple model of the structure will help to provide an understanding of

the interplay between the carrier envelope phase of a single pulse and the motion

of the electron bursts in the gap. We describe our model system, the methodo-

logical approach to the dynamics of the electrons, and the results in the following

sections.

2 Plasmonic system

As a prototype of a plasmonic gap system we consider a dimer of parallel gold

cylinders of diameter D ¼ 10 nm as sketched in Fig. 1. The identical cylinders are

inĎnite along the z-axis and the distance between the two nanoparticle surfaces at

the closest point is dgap ¼ 3 nm as measured along the x-axis. The centre of the

gap is located at (x ¼ 0, y ¼ 0). This structure is illuminated by a single-cycle

femtosecond (fs) Gaussian pulse polarized along the x-axis. The electric Ďeld of

the pulse is given by:

E(t) ¼ ~E cos(ut + f)e"t2/s2, (1)

where the amplitude of the electric Ďeld is ~E ¼ 3.7 V nm"1, u is the carrier

frequency, f is the CEP, and s ¼ ð2p=uÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 logð2Þ
p

is the duration of the pulse.

Fig. 1 shows two of the pulse CEPs used in the calculation: in blue f¼ 0 and in red

f ¼ p/2. We use carrier frequencies u in the near-infrared, thus far from the

bonding dipolar plasmon resonance of the dimer at Up.
25,28 With the present
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choice of model to describe the electronic structure of the gold cylinders, as

discussed below, Up ¼ 5.5 eV. Due to the oଏ-resonance excitation of the system

the time-dynamics of the local Ďelds in the gap are similar to those of the incident

pulse (sub-cycle). Since the local Ďeld in the gap triggers the electron current

across the junction it is expected that the net electronic transport will be sensitive

to the CEP of the external pulse. Contrary to this situation, for the resonant

excitation the dynamics of the Ďeld in the junction would be determined by the

damping rate of the corresponding plasmon mode. As a result, except for an

extremely broad plasmon resonance, the local ac Ďeld in the gap would generally

last a long time a�er the end of the external transient. In such a resonant situa-

tion, the averaging by many-cycle oscillations would lead to an almost zero net

current across the junction and very low sensitivity to the CEP of the incident

pulse.

Under these oଏ-resonance illumination conditions, with the corresponding

Ďeld enhancement in the gap, and the range of frequencies used, the Keldish

parameter29 (g) obtained in this work is in the range of g z 0.48–1.90, which is

usually considered within the optical-Ďeld emission regime.2,8,30,31

3 Methodology

To treat the electron dynamics of the system under strong-Ďeld illumination we

use Time-Dependent Density Functional Theory (TDDFT) based on the Kohn–

Sham (KS) scheme.32–34 The Au cylinders are described with the so-called

Fig. 1 Dimer of parallel gold cylinders of diameter D ¼ 10 nm. The cylinders are separated

by a gap of dgap ¼ 3 nm. The dimer is excited by a sub-cycle laser pulse with a Gaussian

envelope characterized by a carrier frequency u and a carrier envelope phase f. Two

examples of the laser electric ଏeld are shown for f¼ 0 (blue line) and f¼p/2 (red line). We

study the dynamics of the optical-ଏeld emitted electrons in the plasmonic gap and their

dependence on f and u.
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Stabilized JelliumModel (SJM).35 Within the SJM, the valence electrons are treated

explicitly, while the atomic cores are represented as a positive background charge

density

nþ ¼

#

4p

3
rs

3

$"1

; (2)

where rs is the Wigner–Seitz radius (here rs ¼ 3.02a0, 1 a0 ¼ 0.053 nm). An

attractive pseudopotential (Vst, see below) is used so that the empirical work

function of Au36, F ¼ 5.5 eV, is retrieved with the ground-state Density Functional

Theory (DFT)32 calculations. Even though the use of the SJM neglects atomistic

details and eଏects linked with localized d-electron bands, it allows us to trace the

dynamics of valence electrons in the metal, which are involved in the screening,

photoemission, strong-Ďeld ionization and transport properties in the plasmonic

dimer. The jellium model of metal nanoparticles has been successfully used in

the context of plasmonics allowing the theoretical prediction of quantum eଏects

later conĎrmed experimentally23,37,38 as well as corroborated by TDDFT studies of

strong-Ďeld emission from metal nanotips.39

The time evolution of the KS orbitals is obtained from the 2D time-dependent

KS equations (all equations are written in atomic units, a.u., unless otherwise

indicated):
%

"
1

2
V

2 þ Veff ½n'ðx; y; tÞ

&

Jkðx; y; tÞ ¼ i
v

vt
Jkðx; y; tÞ; (3)

whereJk are the KS orbitals, V ¼ x̂
v

vx
þ ŷ

v

vy
, where x̂(̂y) is the unit length vector in

the direction of the x(y) axis. The eଏective KS potential Veଏ[n](x, y, t) is given by:

Veff[n](x, y, t) ¼ VH[n](x, y, t) + Vxc[n](x, y, t) + Vst(x, y, t) + Vext(x, t). (4)

The Hartree potential, VH[n](x, y, t), accounts for the interaction with the charge

density of the system. Due to the subwavelength scale of the relevant dimensions of

the cylindrical dimer, the non-retarded approximation is considered in the calcu-

lations. The exchange–correlation potential, Vxc[n](x, y, t), eଏectively incorporates

the exchange and correlation eଏects of the many-electron interacting system. Here

we use the functional of O. Gunnarsson and B. I. Lundqvist40 within the Adiabatic

Local Density Approximation (ALDA).34,41 The stabilizing potential, Vst(x, y, t),

corresponds to an attractive constant potential in the region of space Ďlled by the

nanoparticles, allowing the correct work function of gold to be obtained as already

discussed above. Finally, Vext(x, t) ¼ xE(t) is the interaction potential between an

electron and the external electromagnetic Ďeld.

The Fourier-grid Hamiltonian approach42–45 with wavefunction representation

on a grid of equidistant points in x- and y-coordinates, and the Split-Operator

technique43,46,47 are used to solve eqn (3) by short time-step propagation. The

initial conditions are Jk(x, y, t ¼ 0) ¼ Jk
0(x, y), where Jk

0 correspond to the

ground state KS orbitals retrieved from self-consistent DFT32 calculation of the

system in the absence of the external electromagnetic Ďeld.

The time-dependent electronic density and electron current density, n(x, y, t)

and j�(x, y, t) respectively, are computed at each time step as follows:
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nðx; y; tÞ ¼ 2
X

k˛occ

ckjJkðx; y; tÞj
2
; (5)

~jðx; y; tÞ ¼ 2
X

k˛occ

ckRe
(

J*
kðx; y; tÞ p̂ Jkðx; y; tÞ

)

; (6)

where p̂ ¼ "iV, the sum runs over all the occupied KS orbitals, the factor 2

accounts for the spin degeneracy, and ck ¼
1

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ðEF " EkÞ
p

accounts for the

number of electronic states associated with the z-motion. EF stands for the Fermi

level of the nanostructures and Ek for the ground-state energy of the orbital k.

4 Results

To study the dynamics of strong-Ďeld emitted electrons in the gap, we illuminate

the system with the Ďeld transient given by eqn (1) mimicking a single-cycle

optical pulse, and at each time step we compute the electron current across the

mid-plane of the gap,

Jðx ¼ 0; tÞ ¼

ðN

"N

x̂~jðx ¼ 0; y; tÞdy: (7)

Fig. 2 shows the result of such analysis for the case of a pulse carrier frequency

u¼ 0.67 eV, where the electric Ďeld at the centre of the gap, Egap, is plotted in blue

and the current density across the mid-plane of the gap, J(x ¼ 0, t), is plotted in

red. Egap comprises both the electric Ďeld of the incident pulse and the induced

electric Ďeld due to the polarisation of the nanowires. Prior to the central peak of

the pulse at t¼ 0, the electromagnetic Ďeld in the junction is not strong enough to

produce a signiĎcant electron current through the middle of the gap. Upon

arrival, the central peak produces the emission of electrons from the surface of

the cylinder on the right hand side in Fig. 1 and therefore a negative electronic

current is observed at t z 1 fs. Around t z 1.5 fs, the Ďeld in the gap changes

polarity and a second smaller current density peak can be observed, which Ďows

in the opposite direction to the main one. This weaker current density is formed

Fig. 2 TDDFT results for the dimer illuminated by a pulse of carrier frequency u ¼ 0.67 eV

and CEP f ¼ 0. Blue line: electric ଏeld at the centre of the gap, Egap. Red line: electron

current across the mid-plane of the gap, J(x ¼ 0, t).
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from two contributions. The Ďrst contribution is due to the cylinder situated on

the le� hand side in Fig. 1. The second contribution, as we will show below, is

originating from electrons which were emitted from the right cylinder but did not

reach the opposite nanoparticle before Egap changed polarity, thus inducing

electron quiver motion.

Integrating in time the current in eqn (7), one can obtain the number of

electrons transferred across the gap. The analysis of the net electron transport as

a function of CEP is shown in Fig. 3 for diଏerent carrier frequencies of the inci-

dent pulse. We Ďrst focus our attention on the lowest frequencies, u ¼ 0.32 eV

(solid grey line) and u ¼ 0.48 eV (solid pink line). For these frequencies, the

results in Fig. 3 show a behaviour consistent with the direct propagation of the

emitted electrons across the junction without any eଏect of the quiver motion.10–12

Indeed, for a CEP f ¼ p/2 or f ¼ 3p/2, the local Ďeld in the gap, Egap, is anti-

symmetric (sine-like) with respect to the centre of the Gaussian envelope and

thus, the Ďeld shows two identical peaks of opposite polarity (see the red line in

the sketch of Fig. 1). In such a situation, the amount of electrons transferred in

both directions is equal, they compensate each other, and the net transport is

zero. The maximum electron transfer occurs for f ¼ 0 or f ¼ p. The incident

electromagnetic pulse in this case has a symmetric electric Ďeld proĎle, with the

main positive or negative peak centred at t ¼ 0 (see Fig. 2). As the optical-Ďeld

emission process is highly non-linear,30,31 the electron current in the junction is

dominated by the ultra-short burst of electrons emitted at the half-period with

strongest Ďeld, as nicely observed in Fig. 2. Under the assumption that all the

electrons arrive to the opposite surface, f ¼ 0 or f ¼ p correspond to the

Fig. 3 Normalized electron transfer per pulse as a function of the CEP f. Diଏerent

colours indicate the various carrier frequencies considered. Solid lines: results of the

TDDFT calculations. Dashed lines: results obtained using Simpleman’s model for elec-

tron emission and transport. The quiver amplitude associated to each of the frequencies

(u ¼ 0.32 eV, 0.48 eV, 0.55 eV, 0.67 eV, 0.95 eV and 1.34 eV) is Xq ¼ 6.33 nm, 2.82 nm,

2.12 nm, 1.42 nm, 0.72 nm and 0.37 nm, respectively.
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maximum number of electrons transferred in positive (f ¼ p) or negative (f ¼ 0)

directions of the x axis.

However, when the illumination frequency is increased, the Carrier Envelope

Phase (CEP) at which the maximum electron transfer is produced shi�s away

from the expected f ¼ 0 and f ¼ p values. In contrast to single nanoparticles

where the evanescent near-Ďeld decays rapidly as the distance to the nano-

particle’s surface is increased and the quiver motion might be quenched,10 the

Ďeld in small plasmonic gaps is almost constant across the full distance sepa-

rating the nanoparticles. Therefore, the quiver motion of the emitted electrons

needs to be carefully considered. This quiver motion of the electrons in the gap is

responsible for the shi� of the value of the CEP corresponding to the maximum

net electron current shown in Fig. 3, as we analyse below.

Classical analysis

We employ the classical Simpleman’s model (SMM) to study the quiver motion of

the photoemitted electrons in the plasmonic gap, and the role that the quiver

motion plays in the electron transfer between the nanoparticles. The SMM has

been Ďrst developed to describe the optical Ďeld electron emission from atomic

species,48–50 and later successfully applied to electron emission from surfaces of

metallic tips.30,31,39 To qualitatively capture the main physical eଏects, while

keeping the analysis of the results simple, we neglect the 2D aspect of the problem

and only consider the electron motion along the x-axis. The optical Ďeld electron

emission is treated as a two step process. First we use the Ďeld in the gap, Egap,

obtained from the TDDFT calculations to compute the instantaneous Fowler–

Nordheim tunneling current,51 JFN, at each time step within the pulse,

JFNf" EgapðteÞ
+

+EgapðteÞ
+

+exp

 

"
bF

3
2

+

+EgapðteÞ
+

+

!

; (8)

where b ¼ 6.83 V (nm"1 eV"3/2), F ¼ 5.5 eV is the work function of gold, and

Egap(te) is the electric Ďeld in the gap at the time instant of emission deĎned as te.

The second step consists of calculating the classical trajectory on the x-axis of an

electron emitted at time te and subjected to the time-dependent electric Ďeld Egap
(assuming that Egap is homogeneous in the gap region):

_vx ¼ "Egap. (9)

The initial condition vx(te) ¼ 0 corresponds to a tunneling electron emerging

from the potential barrier at the metal/vacuum interface into the classically

allowed region in the gap. Using the relationship between the electric Ďeld and

the vector potential (A), E ¼ "dA/dt, the velocity of the classical electron at any

time t > te is:

vx(t) ¼ Agap(t) " Agap(te). (10)

This trajectory is computed until the electron reaches the surface of one of the

two cylinders. If the electron crosses the gap, the trajectory is considered for the

calculation of the net charge transfer assuming that it contributes with a weight

given by eqn (8). The trajectory is discarded if, because of the quiver motion, the
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electron returns back to the initial nanoparticle. We thus neglect the possible,

albeit small, contribution of the electron back-scattering.39

Analysing eqn (10), a third scenario is possible. If an electron is emitted at

a time te such that Egap is a local maximum, the associated vector potential is

Agap(te) ¼ 0. Furthermore, the Ďnite duration of the illumination transient

ensures that Agap(t / N) ¼ 0. Therefore, electrons emitted within the condition

Agap(te)¼ 0 might end up in the middle of the gap with velocity vx(t/N)¼ 0. We

will call these trajectories as “trapped” trajectories.

The electron transfer across the plasmonic gap calculated within the SMM as

a function of the CEP and frequency of the incident pulse is shown with dashed

lines in Fig. 3. The agreement with the TDDFT calculations (solid lines) is

remarkable. The Simpleman’s model allows the identiĎcation of the quiver

amplitude Xq as a key parameter controlling the electron transfer. The quiver

amplitude, Xq, is the amplitude of the oscillatory movement of an electron in

a homogeneous harmonic electric Ďeld, E(t) ¼ E0 cos(ut), of frequency u and

amplitude strength E0:

Xq ¼
E0

u2
: (11)

Taking E0 as the maximum of the total electric Ďeld generated in the gap, E0 ¼

[Egap]max z 8.45 V nm"1, the carrier frequencies of the incident electromagnetic

pulse u ¼ 0.32 eV, 0.48 eV, 0.55 eV, 0.67 eV, 0.95 eV and 1.34 eV result in the

corresponding quiver amplitudes Xq ¼ 6.33 nm, 2.82 nm, 2.12 nm, 1.42 nm,

0.72 nm and 0.37 nm, respectively. As follows from the results presented in Fig. 3,

the maximum electric transport is produced at CEP f ¼ 0 or f ¼ p only for the

cases where Xq T dgap.

Fig. 4 Classical trajectories obtained using the Simpleman’s model for carrier frequencies

of the incident pulse (a) u ¼ 0.48 eV, (b) u ¼ 0.67 eV and (c) u ¼ 0.95 eV. In all cases the

CEP f¼ p. The electric ଏeld at the centre of the gap, Egap, (horizontal axis) as a function of

time (vertical axis) is shown to the left of each panel. The classical trajectories of electrons

emitted along the x-axis are shown to the right of each panel. The position x is shown on

the horizontal axis and time on the vertical axis. The x-component of the velocity of the

electrons in each trajectory is colour-coded with positive velocity in red and negative in

blue. The velocity in each panel is normalized by the maximum velocity in the x-direction

to the range [–1, 1]. The weight of each trajectory as given by eqn (8) is represented by the

width of the corresponding trajectory line. Wider lines imply a larger weight and thus

a larger amount of charge moving along in such trajectory. The black lines in (b) and (c)

mark two examples of “trapped” trajectories.
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Fig. 4 shows the electric Ďeld in the gap (le� line-plot in each panel) and the

color-map formed by classical electron trajectories (right side of each panel) for

three diଏerent carrier frequencies selected in such a way that the respective quiver

amplitudes belong to the two diଏerent regimes, i.e., XqT dgap and Xq < dgap. In the

three cases the CEP is f ¼ p. The velocity of the electron in each trajectory is

colour-coded, having positive velocity (vx > 0) marked in red and negative velocity

(vx < 0) in blue. The width of each line is linked with the tunneling current in eqn

(8), which indicates that a larger amount of charge is moving along wider lines. In

the three examples quiver motion is observed depending on the moment te when

the electrons are emitted. In Fig. 4a, Xq ¼ 2.82 nm and thus, most of the electron

trajectories reach the opposite nanoparticle before the ballistic motion is inver-

ted. In particular it can be observed how almost all the trajectories involving

a large number of emitted electrons (wider lines) directly reach the opposite

nanoparticle, corroborating that the maximum net electron transfer occurs for

f ¼ p (see the pink line in Fig. 3).

Fig. 4b and c show the situation where Xq < dgap. In both cases the quiver

motion is more obvious and relevant as Xq decreases. An increasing number of

trajectories quiver back because the polarity of the Ďeld changes before they reach

the opposite side of the gap. It is particularly relevant that in these two cases many

of the trajectories involving a large number of emitted electrons (wide lines) are

not able to cross the gap and thus the maximum electron transfer no longer

occurs for the incident pulse with CEP f ¼ p which is the value displayed in this

Ďgure. This eଏect is consistent with the situation observed for larger illumination

frequencies displayed with blue and red lines in Fig. 3. The black lines in Fig. 4b

and c follow two examples of “trapped” trajectories where, as already mentioned,

the Ďnal velocity is vx z 0. The electrons moving along “trapped” trajectories are

thus stopped in the middle of the gap upon the termination of the electromag-

netic pulse. In practice, these electrons will be absorbed by the substrate or

deviated by the stray Ďelds without contributing to the coherent charge transport.

As follows from the discussion above, the classical SMM analysis turns out to be

a powerful and intuitive tool to trace the dynamics of ultrafast electron currents in

plasmonic gaps driven by light.

5 Discussion and conclusion

Using a combination of quantum calculations (TDDFT) and classical modelling

(Simpleman’s model) we have been able to address the complex dynamics of

strong-Ďeld emission currents in plasmonic gaps. In contrast with the reported

results using metallic tips,10,12 we observed that the homogeneous Ďeld distri-

bution characteristic of small plasmonic gaps produces a situation where the

quiver motion of electrons has a substantial impact on the electron current. The

ratio between the electron quiver amplitude, Xq, and the gap distance separating

the nanoparticles, dgap, is a key parameter to establish the absolute Carrier

Envelope Phase (CEP) which produces the maximum electron transport between

nanoparticles. These results reveal the importance of the CEP of an incident pulse

to control the mutual coherence between electron and photon dynamics in

speciĎc metallic junctions.
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