
Visual DMDX: A web-based authoring tool for DMDX,

a Windows display program with millisecond accuracy

Pablo Garaizar & Ulf-Dietrich Reips

Abstract DMDX is a software package for the experimen-

tal control and timing of stimulus display for Microsoft

Windows systems. DMDX is reliable, flexible, millisecond

accurate, and can be downloaded free of charge; therefore it

has become very popular among experimental researchers.

However, setting up a DMDX-based experiment is burden-

some because of its command-based interface. Further,

DMDX relies on RTF files in which parts of the stimuli,

design, and procedure of an experiment are defined in a

complicated (DMASTR-compatible) syntax. Other experi-

ment software, such as E-Prime, Psychopy, and WEXTOR,

became successful as a result of integrated visual authoring

tools. Such an intuitive interface was lacking for DMDX.

We therefore created and present here Visual DMDX (http://

visualdmdx.com/), a HTML5-based web interface to set up

experiments and export them to DMDX item files format in

RTF. Visual DMDX offers most of the features available

from the rich DMDX/DMASTR syntax, and it is a useful

tool to support researchers who are new to DMDX. Both old

and modern versions of DMDX syntax are supported.

Further, with Visual DMDX, we go beyond DMDX by

having added export to JSON (a versatile web format),

easy backup, and a preview option for experiments. In

two examples, one experiment each on lexical decision

making and affective priming, we explain in a step-by-step

fashion how to create experiments using Visual DMDX. We

release Visual DMDX under an open-source license to foster

collaboration in its continuous improvement.

Keywords DMDX . HTML5 . Internet-based research .

JSON .Web technologies

Several software packages are available to conduct psycho-

logical experiments under strict timing requirements. These

packages can be categorized by different dimensions: (1)

general versus specific purpose, (2) single-platform versus

multiplatform, (3) online versus offline, and (4) commercial

versus noncommercial (see Mathôt, Schreij, & Theeuwes,

2012). Because of this wide variety, researchers are often

forced to learn a large number of configuration options and

specific programming languages. Frequently, one program

may have fewer options than another, more powerful pro-

gram, but offer a small, indispensable set of extra features

that the latter program does not implement. In addition, the

chances of technical errors tend to increase with the size and

power of software packages, and such errors may go unde-

tected by researchers who do not have an extensive knowl-

edge of computer science.

Given the wide variety of alternatives, many researchers

choose to use a tool that has the endorsement of having been

used in many previous studies. Such is the case with

DMDX. The main reasons for the success of DMDX in

experimental psychology are its price (it can be downloaded

and used at no cost) and the existence of a community of

researchers who are using DMASTR, a set of experiment

utilities developed at Monash University (Australia) begin-

ning in 1975. This software was improved by various con-

tributors over the years and ported to Windows 95/98/Me by

Jonathan Forster in 1997. Despite the initial reluctance

P. Garaizar

Faculty of Engineering, University of Deusto, Bilbao, Spain

U.-D. Reips

Department of Psychology, University of Konstanz, Konstanz,

Germany

U.-D. Reips

Ikerbasque, Basque Foundation for Science, Bilbao, Spain

P. Garaizar (*)

Deusto Institute of Technology (DeustoTech), Universidad de

Deusto, Avda. Universidades 24, 48007, Bilbao, Spain

e-mail: garaizar@deusto.es

Konstanzer Online-Publikations-System (KOPS)
URL: http://nbn-resolving.de/urn:nbn:de:bsz:352-

Erschienen in: Behavior Research Methods ; 47 (2015), 3. - S. 620-631
https://dx.doi.org/10.3758/s13428-014-0493-8

regarding the suitability of Windows NT and Windows 2000

to directly access video, audio, and timing hardware (see,

e.g., Krantz, 2000), Forster and Forster (2003) devised a

way to port the old DMASTR to Windows 2000/XP (or later

versions) through the use of DirectX and multimedia timers.

This is the reason for the name DMDX—it is a combination

of DMASTR and DirectX.

Benefits and pitfalls of DMDX

The large size of the DMDX user community is not moti-

vated only by its long history. Among other important

factors, four stand out: price, support, accuracy, and power.

First, DMDX can be downloaded and used free of charge.

All updates are being made available from the DMDX home

page to the community, as they are developed. Moreover,

DMDX’s main developers offer free technical support via e-

mail. Third, DMDX uses the most appropriate multimedia

technologies and timing mechanisms to maximize accuracy

and precision during the stimuli presentation and gathering

of user responses. Auxiliary tools for fine tuning (such as

TimeDX) are provided with DMDX for achieving this goal,

even on commodity hardware (i.e., regular PCs). Fourth,

DMDX is powerful. Researchers have almost unlimited

options to create experimental designs and procedures by

using more than 400 keywords to create loops, conditional

branches, or scrambled lists of trials.

DMDX is powerful and accurate. Forster and Forster

(2003) measured the validity of DMDX presenting stimuli,

reporting zero errors after 100 tests. With regard to response

times, they found a standard deviation of 0.53 ms (i.e.,

submillisecond precision). DMDX achieves these results

by two different methods. First, DMDX uses the real-time

clock system—which is independent of the system load—to

minimize errors in the presentation of stimuli. Since waiting

times are known, the thread can be idle until a moment

shortly before the screen refresh. After the timer period

expires, DMDX actively checks whether the screen refresh

has occurred. If DMDX fails to detect the screen refresh

signal through a timer (properly calibrated through

TimeDX), it will infer that the screen refresh already hap-

pened and reset the timer according to this assumption.

Second, to avoid possible errors recording user interaction,

DMDX polls input devices every millisecond, using a mul-

timedia timer.

However, there are also some drawbacks to using

DMDX. Although DMDX is an application with a graphical

user interface (GUI), the process to design, develop, and

carry out an experiment differs little from working with

commands directly. At a user level, the biggest advantage

of DMDX (i.e., its compatibility with DMASTR and its

associated power) is also its main problem, because the

syntax of the configuration files is far from intuitive for

those using the tool for the first time. Mastering DMDX

syntax is not easy, mainly because of the sheer number of

terms available. DMDX currently offers 414 keywords,

including 224 synonyms, to define subroutines and other

aspects of an experiment. Moreover, it is noticeable that

DMDX uses a 30-year-old syntax: More than 75 different

branching keywords combined with global counters are

needed to control the flow of an experiment, instead of

parsimoniously combining a small set of reserved terms

such as if, for, or while with Boolean expressions.

There are two different parts in a DMDX “item file”:

general parameters and items. The general parameters are

placed at the beginning of the item file and define global

settings that apply to all parts of an experiment, unless

explicitly noted otherwise. For example, screen resolution

of the experiment, time between items, input devices, and so

on are defined here. After the general parameters are set, it is

necessary to configure the items (i.e., the trials of the

experiment).

Table 1 shows a simple example of a DMDX item file

with two items (one per line) that we will explain here to

demonstrate the complexity of creating experiments with

DMDX. The first character of each line indicates whether

the expected response is positive (+) or negative (–). It is

also possible to configure items that require no response or

items for which any answer is correct. Then a numerical

value acts as item identifier. If two items have the same

identifier, only the response to the latter is stored. When zero

is used as the item identifier, DMDX assumes it is not an

experimental item, but an instructions message. Then, as

many frame elements as are necessary are defined, using

“/” as the frame separator. Every frame may contain text

(delimited by double quotes) or references to images, vid-

eos, or audio files. The duration of each frame can be

configured using the “%” symbol followed by the number

of ticks that the frame should be presented. (If no specific

duration is defined, the standard duration defined as a gen-

eral parameter is used.) The “*” symbol indicates the point

at which the timer measuring user responses is started. The

“;” symbol marks the end of the item definition. Thus, in the

example shown in Table 1, two items are defined to affect

user performance in classifying a word as positive or nega-

tive after the brief presentation of another word. The first

item (001) requires a positive response (+). Four frames are

defined for this item: (1) a frame in which the “+” symbol is

Table 1 Items definition in a DMDX / DMASTR ítem configuration

file

+001 “+” %60 / “HOPE” %15 / * “LOVE” %120 / ;

-002 “+” %60 / “LOVE” %15 / * “SAD” %120 / ;

621

displayed in the center of the screen for 60 ticks (1,000 ms at

60 Hz), (2) a frame in which the word “HOPE” is shown for

15 ticks (250 ms at 60 Hz), (3) a frame in which the word

“PEACE” is displayed for 120 ticks (2,000 ms at 60 Hz),

and (4) an empty frame. DMDX starts measuring a partic-

ipant’s response time at the beginning of the third frame

(because of the “*” symbol). The second item (002) is very

similar, except for the expected response (positive, in this

case). As can be seen, the definition of each item requires

knowledge of a very specific syntax. The complexity of this

syntax increases when advanced functionality is required

(e.g., conditional branches, loops, automatic generation of

items, etc.).

Editing a DMDX item file is not an easy task. Moreover,

most DMDX users are not really interested in coding experi-

ments, but in running them. This results in many instances

in which DMDX users just copy, paste, and modify experi-

ments previously created by other researchers, resulting in

functional but very difficult to understand code. For in-

stance, DMDX offers very advanced features for the itera-

tion and shuffling of items. Using counters in DMDX, it is

possible to repeat a set of items as many times as necessary.

There are also plenty of alternatives to scramble items on

DMDX keywords, such as Scramble, ScrambleSeed, and

Grouping. Backslashes can also be used to split the item

file into two or more parts, with different scrambling setups.

However, both features require a thorough knowledge of the

syntax of DMDX and are often misused by researchers. At

the same time, several advanced DMDX users (Woods,

Forster, Curtin, and others offer tutorials aimed at beginners,

which is to say that they cover only the basics. With the help

provided in these tutorials, novice DMDX users are able to

create their own experiments from scratch.

DMDX is therefore a highly recommended experimen-

tal tool, both in an economical sense (because it is free)

and a technical one (because it is very precise and

accurate). Further, DMDX is well-supported and has an

active user community. However, its learning curve is

still very steep for beginners. For this reason, we devel-

oped Visual DMDX, a web-based authoring tool that

makes it possible to create DMDX item files within

minutes. In the following section, we discuss Visual DMDX’s

main features.

Visual DMDX: A web-based authoring tool for DMDX

Experiment software such as E-Prime (Schneider, Eschman,

& Zuccolotto, 2002), Psychopy (Peirce, 2007), and WEX-

TOR (Reips & Neuhaus, 2002) became successful as a

result of integrated authoring tools that help the experiment-

er design and conduct experiments in intuitive ways. Ideally,

there is no need to deal directly with the syntax in designing

and conducting experiments. DMDX would thus benefit

from an intuitive interface.

Modern software is often programmed as a web

service

“because the functionality of Web browsers is less

dependent on the operating system (sometimes they

are even referred to as being platform independent), all

who access a Web service are likely to see and expe-

rience almost the same interface […]. Web services

spare the user from upgrading and updating, since this

is done by the Web service administrators at the server.

Nothing is installed on the user’s computer, saving

space and time.” (Reips & Lengler, 2005, p. 287).

Visual DMDX is programmed as a web service to com-

plement the suite of web-based tools available for research,

many of which were published in Behavior Research Meth-

ods (FactorWiz and SurveyWiz: Birnbaum, 2000; ReCal

and ReCal OIR: Freelon, 2010, 2013; Social Lab: Garaizar

& Reips, 2013; Form Processor: Göritz & Birnbaum, 2005;

VAS Generator: Reips & Funke, 2008; iScience Maps:

Reips & Garaizar, 2011; Web Experiment List: Reips &

Lengler, 2005; Web Experimental Psychology Lab: Reips,

2001; WEXTOR: Reips & Neuhaus, 2002; Dynamic

Interviewing Program and User Action Tracer: Stieger &

Reips, 2008, 2010).

Structure and design

Our main purpose with Visual DMDX is to provide a web

service that facilitates the process of creating DMDX item

files. Following good design for web-based research tools

(Reips, 2010; Reips & McClelland, 2013) we decided to

develop a web application based on open standards such as

HTML5, CSS, and JavaScript, so it could be used from any

platform (e.g., Windows, Mac OS, GNU/Linux, iOS, An-

droid, etc.) without installing add-ons or plug-ins. Since one

of the initial requirements of the tool was to be able to work

from anywhere at any time, Visual DMDX does not require

user accounts and passwords. Instead, it uses unique URLs

to edit each experiment. These URLs are defined when

creating the experiment and can easily be shared with all

members of the research team. The format of Visual DMDX

URLs is thus similar to those used on sites such as YouTube,

where each video is identified by a string of alphanumeric

characters. Six alphanumeric characters are used to identify

each experiment in Visual DMDX (see Fig. 1A), for exam-

ple, http://visualdmdx.com/edit/7qvofp (where the identifier

7qvofp points to the experiment). Furthermore, because

Visual DMDX allows researchers to store successive ver-

sions of the same experiment, each version will have its own

URL derived from the URL of the experiment. Thus, the

URL http://visualdmdx.com/edit/7qvofp/1 is the URL of the

622

first version of the experiment 7qvofp; http://visualdmdx.com/

edit/7qvofp/2 corresponds to the second version of the same

experiment; http://visualdmdx.com/edit/7qvofp/3 corresponds

to the third, and so on. This naming convention provides

access to the history of each experiment. From the user inter-

face of Visual DMDX it is also possible to access each of the

previous versions from the “Versions” dropdown menu in the

header (see Fig. 1B).

Since Visual DMDX is designed to be used mostly by

novice users, it does not require any knowledge of the

syntax used in DMDX item files. On the contrary, Visual

DMDX users only have to define general parameters via

simple web controls (i.e., text fields, checkboxes, dropdown

lists, buttons, drag-and-drop sortable lists, tabs, modal dia-

log boxes, etc.) and create new items using a drag-and-drop

editor. Following the recommendations of the previously

mentioned manuals by Forster and others, Visual DMDX

currently supports 43 keywords (18 synonyms) in DMDX.

For the sake of simplicity, Visual DMDX assumes that

DMDX runs under an English version of Microsoft Win-

dows. (Users should be aware of possible configuration

issues related to DMDX and other language versions of

Windows; e.g., the “keyboard” input device is called “cla-

vier” in French and “teclado” in Spanish and thus DMDX

will not run under respective versions of Microsoft Win-

dows if the device is not renamed manually in the DMDX

item file.) These design decisions have two advantages: (1)

keeping a simple user interface, (2) covering the most com-

mon DMDX features in simple experiments. In addition,

general parameters are provided with contextual help that

shows the underlying keywords involved and their different

options (see Fig. 1C).

Item editor

The most remarkable feature of Visual DMDX is the item

editor, with which users can create new instructions items,

stimuli presentation items, and loops. The instructions items

are the simplest types of items. They are used to define an

informative text that will be displayed to the participant until

the spacebar is pressed. All items allow users to define a

description that will not be exported to the DMDX syntax,

but may serve to identify different parts of the experiment

(see Fig. 2).

Stimuli presentation items are responsible for controlling

the trials of the experiment. In these items, researchers

Fig. 2 Instructions item

Fig. 1 Visual DMDX user interface: (A) unique identifier of the experiment; (B) dropdown list of the versions of the experiment; (C) link to the

contextual help of the keyword related to this parameter

623

define details such as: (1) what stimuli to present to partic-

ipants, (2) how long to present stimuli, (3) when to start

measuring response times, and (4) what response to expect

(i.e., positive, negative, none, or any). Within each stimuli

presentation item, researchers can define several types of

stimuli: blank, text, image (BMP or JPG), audio, and video

(see Fig. 3). Adding a stimulus necessitates definition of its

presentation duration and other parameters within the item,

depending on the type of stimulus—for example, path to the

file in the case of multimedia stimuli, horizontal and vertical

position on the screen for visual stimuli, left or right chan-

nels for audio stimuli, and so forth. It is possible to change

the order of the stimuli simply by clicking on one stimulus

and dragging it to the desired position on the stimulus list of

the item. The same applies to items: to change the order in

which they will be exported to DMDX, users simply have to

drag an item to the desired position. Considering that the

definition of a trial (i.e., a stimuli presentation item) is a

laborious task, Visual DMDX provides the ability to clone

an existing item.

Loop items are exclusive to Visual DMDX and go be-

yond options available in DMDX. As mentioned in the

previous section, DMDX provides advanced features for

the iteration and shuffling of items. However, using these

features is beyond the reach of DMDX novice users because

they have to understand how to set and update global

counters and use the proper branching keyword (from a set

of more than 75 branching keywords). Therefore, we pro-

pose an alternative method: loop items. When a researcher

creates a loop item, she must place it immediately before the

first item to be repeated. Then, she must indicate which item

is the last of the loop, how many iterations should be

performed, and whether the items in the loop must be

scrambled at each iteration. In this way it is possible to

make simple loops, shuffling (i.e., one iteration loop with

scrambling), and loops with scrambling (Fig. 4).

Because loop items do not really exist in the DMDX

syntax, loops are “unrolled” when Visual DMDX exports

an experiment to DMDX. This means that Visual DMDX

will create as many new items as needed (e.g., if we have a

Fig. 3 Stimuli presentation item

624

five-iteration loop for three items, five copies of those three

items will be created, making a total of 15 items). In the case

of loops with scrambling, each time the researcher asks

Visual DMDX to export her experiment to DMDX, a new

order will be generated. Nevertheless, it is always possible

to combine the output of Visual DMDX with the DMDX

scrambling keywords discussed above (i.e., Scramble,

Grouping, and ScrambleSeed). Moreover, creating complex

nested structures is straightforward using loop items; for

example, a three-iteration loop for six items and an inner

loop within these six items that repeats the last two items

twice would generate a list of 24 items: 3 × (4 + 2 × 2).

Loop items also enable researchers to create a list of

variables that may take different values in each iteration of

the loop. To facilitate the definition of these lists of varia-

bles, Visual DMDX provides a variable editor. In the cases

in which the list of variables and/or values is long, research-

ers can use the “Import variables from CSV” functionality

of the editor. To use one of these variables, researchers must

indicate the name of the variable in brackets (e.g., [first] for

the value of the first variable), and the variable will be

replaced by the value corresponding to each iteration of

the loop. All aspects of stimuli presentation items can be

defined using variables. If the widget used to define a

property of a stimulus is not editable (e.g., a dropdown list),

Visual DMDX provides a small orange button at the right to

convert it into a text field in which you can create a name for

the variable in brackets (see Fig. 3).

Other features: Export, choice of syntax, preview

In addition to the item editor, we built the following features

into Visual DMDX. Researchers can choose to export their

experiments not only to DMDX syntax but also to JSON

(JavaScript Object Notation) format. This format is ideally

suited for use by other web applications. Visual DMDX

users can export their experiment to JSON and then import

all or parts of it to a new Visual DMDX experiment. Thus, it

is possible to store offline backups of Visual DMDX experi-

ments, or even to generate JSON content with an auxiliary

program written in Python or Java and then import it to

Visual DMDX. Regarding the export to DMDX, it is possi-

ble to choose between traditional DMDX syntax and mod-

ern syntax (verbose). Finally, Visual DMDX provides

researchers with a preview mode to check whether the order

of the items and stimuli configured in the editor is correct or

not.

Illustrative examples

The best way to illustrate the potential of Visual DMDX in

setting up DMDX experiments is through examples. In the

first example, we will create a lexical decision experiment in

Visual DMDX similar to the one presented in the tutorial by

Jiang (2012). In the second example, we use loops to repeat

several items in an affective priming task with multimedia

stimuli. Finally, we improve both examples using Visual

DMDX’s advanced features: variables and stimuli lists.

Lexical decision example

The first thing to do to create a new experiment in Visual

DMDX is to access the http://visualdmdx.com website and

click the “New Project” button. You will be redirected

automatically to the editor of experiments. In the address

bar of your browser you will see the unique identifier

assigned to the project (e.g., http://visualdmdx.com/edit/

4snvk2). It is highly recommended to save this web address,

either by marking it as a favorite in the browser, using a

social bookmarking platform (e.g., Delicious), or writing it

down in suitable places.

The experiment editor includes a toolbar at the top where

you can save your changes (“Save” button, located on the

right), access previously saved versions of the experiment

(“Versions” button), preview the experiment (“Preview”

button), export the experiment to DMDX or JSON (“Ex-

port” button), import the experiment from JSON (“Import”

button), or return to the editor from other options (“Edit”

button). Below the toolbar there is a blank text field where

one can define a description of the experiment. This descrip-

tion will not be exported to DMDX syntax, but allows one

to add explanatory information to the project in Visual

DMDX. In this example, type “Lexical decision example”

into the text field.

Subsequently, we start defining the general parameters of

the experiment. In Visual DMDX the parameters are divided

into three groups: input, output, and other. In the “Input”

group there are options related to the input of the participant.

Here, we set “keyboard” as the input device (default) and we

use 3,000 ms as the default time limit for a participant’s

responses to 3,000 ms. In the “Output” group, we set up a

video mode supported by the graphics card of the computer

that will run the experiment and define other parameters

such as feedback (no feedback, outcome, or outcome and

response time), frame duration, continuous run (whether the

following item is shown automatically or not), delay

Fig. 4 Loop item

625

between items, font size, font color, and background

color. In the “Other” group, one sets parameters related

to the experiment’s data logging procedure. After setting

all the parameters, click the “Save” button. Visual

DMDX then saves the first version of the experiment

(accessible from http://visualdmdx.com/edit/4snvk2/1).

To add items (i.e., trials) to your experiment, click the

“Items” button on the left side of the editor. After you are in

the items editor, you see three buttons at the top, one for

each item type. Press the “New instructions” button and a

new light blue item box is added. Click on the item and its

details are shown. Here you can define a description (it will

not be exported to DMDX) and an instructions text that will

be displayed to the participant. Write the following text:

“This is a lexical decision experiment. Press YES if a letter

string is a word. Press NO if it is not a word. Respond as

quickly and as accurately as possible. Now press spacebar to

continue.” After an item has been defined, you can click its

header to hide the details.

Now add a new stimuli presentation item. To do this,

click on the “New item” button and a new dark blue item

box will be added. Then click on the header of this item to

display details. Describe the item using the description field,

to make it easier to identify this item when more items are

added. In this experiment, trials consist of a fixation point

displayed for 30 ticks, followed by a word that is displayed

for 60 ticks. At the beginning of this second stimulus you

want DMDX to start recording the participant’s response

time. To do this, click the “Text” button next to the words

“Add stimuli.” After the stimulus has been added, click on

its header and set the text to show the fixation point (“*”).

Leave the rest of the stimulus properties on default values

and reclick the header of the stimulus presentation item to

hide its details. To add the word for this trial in the lexical

decision task, add another “Text” stimulus and set the text to

the desired word (e.g., “Permit”). Also, set the presentation

time of this stimulus to 60 ticks and leave the rest of its

properties with default values. Finally, it is important to set

the time when DMDX starts to record the participant’s

response, using the dropdown list next to the words “Clock

on.” It is also necessary to define what response is expected

for this item, using the dropdown list next to the word

“Response.” You have finished the stimuli presentation item

definition process (see Fig. 5). To avoid losing your work,

click the “Save” button again. (This version is now accessi-

ble from http://visualdmdx.com/edit/4snvk2/2.)

Since the other trials of this experiment are very similar

to the one above, we will use the cloning tool to save time

when creating the remaining items. There is a button with an

icon of a wrench at the left side of the header of each item.

When you click this button, a modal dialog box with two

options will be shown: Delete and Clone. Add a copy of the

current item to the experiment by clicking the “Clone”

button. Perform this action as many times as necessary to

create all trials in your experiment (a total of six items, in

this example). After all the cloned items have been created,

modify them to change the words and the expected response

(negative or positive). To avoid losing your work, click the

“Save” button again. (This version is now accessible from

http://visualdmdx.com/edit/4snvk2/3.)

Finish the editing process by adding another instructions

item with this text: “Thank you for your participation. End

of experiment.” Once we have fully defined the experiment,

we can export it to DMDX syntax. To make sure everything

is correct, click the “Preview” button in the top toolbar and,

once there, click the “Generate preview” button. The pre-

view mode provides a simplified version of what DMDX

will display. This animation does not take into account the

colors or sizes of stimuli, there is no chance to respond to

stimuli, and instruction items are shown only briefly (it is

not necessary to press the spacebar). To reposition an item,

return to the items editor, click on the item, and drag it to the

desired position. Once everything is as expected, click the

“Save” button again. (This version is now accessible from

http://visualdmdx.com/edit/4snvk2/4.)

Access the “Export” option from the top toolbar. From

here, export the experiment to DMDX syntax by clicking on

the “Export to DMDX” button (see Table 2) or save a

backup of your work using the “Export to JSON” option.

This format allows you to create a new project in Visual

DMDX and import to it all settings from a previous exper-

iment using the “Import” option from the top toolbar. There-

fore, creating modified versions of the same experiment is

straightforward.

Affective priming example

Since the seminal article on affective priming by Fazio,

Sanbonmatsu, Powell, and Kardes appeared in 1986, much

research has been conducted on the automaticity of evalua-

tion (for reviews, see Fazio, 2001; Klauer & Musch, 2003;

Wentura & Rothermund, 2007).

In this example we will show how to use Visual DMDX’s

advanced features, such as multimedia stimuli or loop items

with scrambling. To create this experiment, access the Vi-

sual DMDX website and click the “New experiment” but-

ton. After you are in the editor, define the description of theFig. 5 Variable editor

626

experiment and set the general parameters, as discussed in

the previous example. Then, create an instructions item

explaining to participants how to proceed: “Welcome to this

experiment. Press LIKE key or DISLIKE key to indicate

your feelings about each word. Respond as quickly and as

accurately as possible. Now press spacebar to continue.”

Save the state of the experiment by pressing the “Save”

button. (This version is now accessible from http://visual-

dmdx.com/edit/jahjq5/1.)

The affective priming example consists of an unordered

list of 40 items. In this list there are four different types of

primes: (1) text, (2) image, (3) sound, and (4) video. Within

each type, there will be five items, which will be shown two

times each throughout the experiment (5 items × 2 times × 4

types = 40 items). First, create a stimuli presentation item

with the following stimuli: (1) a text stimulus for the initial

fixation point (text: “+,” duration: 30 ticks), (2) a blank

stimulus of 30 ticks of duration, (3) a text stimulus to

indicate the prime word (text: prime word, duration: 18

ticks), (4) a 12-ticks blank stimulus, and (5) a text stimulus

to show the word that must be assessed by the participant

(text: target word, duration: 60 ticks). Then set the clock to

start running at the beginning of the 5th stimulus and

set the expected response (positive/negative). Click the

“Save” button; this version is now accessible from

http://visualdmdx.com/edit/jahjq5/2.

After creating the stimuli presentation item, clone it five

times and adapt the content of the clones to create the items

corresponding with trials using primes of type text (the list

of primes and targets used in this example is shown in

Table 3). Because each of these items should be presented

twice, add a loop item and place it between the initial

instructions item and the first stimuli presentation item (drag

and drop). Then, set the number of iterations (2) and the last

item in the loop (item number 7). Save the state of the

experiment by pressing the “Save” button. (This version is

now accessible from http://visualdmdx.com/edit/jahjq5/3.)

To do the same with other types of primes, clone the last

of the stimuli presentation items and show its details. Then,

press the button to add a new stimulus (BMP/JPG, WAV,

Video) and add it to the end of the stimuli list. Configure

the path to the media file and set its duration to 18 ticks.

Delete the text stimulus in the third place in the stimuli

list by pressing the “X” button on its header. Then put

the new stimulus in that position (drag and drop). For the

rest of the items, repeat the actions explained in the

previous paragraph: (1) clone this item five times, (2)

adapt the content, and (3) create a new loop item and

place it at the beginning of this set of five items. Perform

the same procedure with the items that show audio and

video primes. Finally, click the “Save” button again.

(This version is now accessible from http://visualdmdx.com/

edit/jahjq5/4.)

Now you have created an array of 40 items (four blocks

of five items to be repeated two times). To scramble it,

simply create a new loop item, place it at the very beginning

(immediately after the initial instructions item), set the last

item as the end of the loop, define one iteration, and enable

the scramble option. Note that you could also have enabled

the scrambling option in each of the four existing loop items

to randomize trials within blocks. The result would not be

the same: If you create a new loop item that scrambles the

whole list of items, all items can end up anywhere in the 40-

item list, but if you enable scrambling in each of the four

loops of each type of prime (i.e., text, image, audio, and

video), the first 10 items will be of type text, the following

10 of type image, the next 10 of type audio, and the last 10

of type video. It is important to realize the implications of

the chosen option in terms of randomization of all items

versus randomization within blocks.

Table 2 Lexical decision example DMDX item file generated by Visual DMDX

<ep><t 3000><d 5><dfd 30><id keyboard><vm 640, 480, 480, 8, 0><nfb><dwc 255255255><dbc 000000000><dfs 12><azk><rcot>

<! –—— >

<! Experiment: Lexical decision example>

<! Created using Visual DMDX: http://visualdmdx.com/edit/4snvk2 >

<! –—— >

<eop>

00 “This is a lexical decision experiment. Press YES if a letter string is a word. Press NO if it is not a word. Respond as quickly and accurately as

you can. Now press spacebar to continue.”;

+2 “*” / * <% 60> “Permit” / ;

-3 “*” / * <% 60> “Dital” / ;

-4 “*” / * <% 60> “Faity” / ;

+5 “*” / * <% 60> “Replay” / ;

-6 “*” / * <% 60> “Larive” / ;

+7 “*” / * <% 60> “Heavy” / ;

00 “End of experiment. Thanks.”;

627

Finally, add a new instructions item with the text “Thank

you for your collaboration” and save the experiment one

more time. (This version is now accessible from http://

visualdmdx.com/edit/jahjq5/5.)

Table 3 Affective priming example DMDX item file generated by Visual DMDX

<ep><t 1000><d 5><dfd 30><id keyboard><vm 640, 480, 480, 8, 0><nfb><dwc 255255255><dbc 000000000><dfs 12><azk><rcot>

<! –—— >

<! Experiment: Affective priming example>

<! Created using Visual DMDX: http://visualdmdx.com/edit/jahjq5 >

<! –—— >

<eop>

00 “Welcome to this experiment. Press LIKE key or DISLIKE key to indicate your feelings about each word. Respond as quickly and as accurately

as possible. Now press spacebar to continue.”;

+2 “+” / /<% 18> “WAR” / <% 12> / * <% 60> “FUN” / ;

-3 “+” / /<% 18> “FLOWER” / <% 12> / * <% 60> “PAIN” / ;

+4 “+” / /<% 18> “WAR” / <% 12> / * <% 60> “FUN” / ;

-5 “+” / /<% 18> “FLOWER” / <% 12> / * <% 60> “PAIN” / ;

+6 “+” / /<% 18> “SUGAR” / <% 12> / * <% 60> “BEAUTY” / ;

-7 “+” / /<% 18> “EVIL” / <% 12> / * <% 60> “KILL” / ;

+8 *+“ ” / /<% 18> “CANDY” / <% 12> / <% 60> “FLOWER” / ;

+9 “+” / /<% 18><bmp> “war-image” / <% 12> / * <% 60> “FUN” / ;

+10 “+” / /<% 18><bmp> “candy-image” / <% 12> / * <% 60> “FLOWER” / ;

-11 “+” / /<% 18><bmp> “flower-image” / <% 12> / * <% 60> “PAIN” / ;

+12 “+” / /<% 18><bmp> “sugar-image” / <% 12> / * <% 60> “BEAUTY” / ;

-13 “+” / /<% 18><bmp> “evil-image” / <% 12> / * <% 60> “KILL” / ;

+14 “+” / /<% 18><bmp> “war-image” / <% 12> / * <% 60> “FUN” / ;

+15 “+” / /<% 18><bmp> “candy-image” / <% 12> / * <% 60> “FLOWER” / ;

-16 “+” / /<% 18><bmp> “flower-image” / <% 12> / * <% 60> “PAIN” / ;

+17 “+” / /<% 18><bmp> “sugar-image” / <% 12> / * <% 60> “BEAUTY” / ;

-18 “+” / /<% 18><bmp> “evil-image” / <% 12> / * <% 60> “KILL” / ;

+19 “+” / /<% 0><svp start><wav 2> “war-audio” / <% 12> / * <% 60> “FUN” / ;

+20 “+” / /<% 0><svp start><wav 2> “candy-audio” / <% 12> / * <% 60> “FLOWER” / ;

-21 “+” / /<% 0><svp start><wav 2> “flower-audio” / <% 12> / * <% 60> “PAIN” / ;

+22 “+” / /<% 0><svp start><wav 2> “sugar-audio” / <% 12> / * <% 60> “BEAUTY” / ;

-23 “+” / /<% 0><svp start><wav 2> “evil-audio” / <% 12> / * <% 60> “KILL” / ;

+24 “+” / /<% 0><svp start><wav 2> “war-audio” / <% 12> / * <% 60> “FUN” / ;

+25 “+” / /<% 0><svp start><wav 2> “candy-audio” / <% 12> / * <% 60> “FLOWER” / ;

-26 “+” / /<% 0><svp start><wav 2> “flower-audio” / <% 12> / * <% 60> “PAIN” / ;

+27 “+” / /<% 0><svp start><wav 2> “sugar-audio” / <% 12> / * <% 60> “BEAUTY” / ;

-28 “+” / /<% 0><svp start><wav 2> “evil-audio” / <% 12> / * <% 60> “KILL” / ;

+29 “+” / /<% 12><dv> “war-video” / <% 12> / * <% 60> “FUN” / ;

+30 “+” / /<% 12><dv> “candy-video” / <% 12> / * <% 60> “FLOWER” / ;

-31 “+” / /<% 12><dv> “flower-video” / <% 12> / * <% 60> “PAIN” / ;

+32 “+” / /<% 12><dv> “sugar-video” / <% 12> / * <% 60> “BEAUTY” / ;

-33 “+” / /<% 12><dv> “evil-video” / <% 12> / * <% 60> “KILL” / ;

+34 “+” / /<% 12><dv> “war-video” / <% 12> / * <% 60> “FUN” / ;

+35 “+” / /<% 12><dv> “candy-video” / <% 12> / * <% 60> “FLOWER” / ;

-36 “+” / /<% 12><dv> “flower-video” / <% 12> / * <% 60> “PAIN” / ;

+37 “+” / /<% 12><dv> “sugar-video” / <% 12> / * <% 60> “BEAUTY” / ;

-38 “+” / /<% 12><dv> “evil-video” / <% 12> / * <% 60> “KILL” / ;

00 “Thank you for your collaboration”;

628

Evoke the Preview option and check that everything is

correct; then export the experiment to DMDX syntax. As

mentioned before, each time you click the “Export to

DMDX” button, a different order of items is generated.

You can press this button as many times as needed if you

want to prepare several versions of the experiment with a

random but known ordering for each participant.1 Table 3

shows the resulting DMDX syntax for this example.

Scaling up our examples

The previous two examples demonstrated that Visual

DMDX can be used to create DMDX items files without

knowing DMDX syntax. However, we used Visual DMDX

as a mere translator of values in web forms to DMDX

keywords. The practical usefulness of Visual DMDX can

be dramatically improved by way of advanced features such

as the use of variables in loops or the ability to import lists

of stimuli.

In the previous lexical decision example, we have seen

how easy it is to create an experiment with similar items by

cloning them. However, this approach does not scale well

for a large number of items. Therefore, for experiments with

many items, we recommend using an advanced feature of

Visual DMDX: loop items’ variables.

Suppose you want to create a lexical decision experiment

with 40 items, using variables. First, add four items to the

experiment: (1) an instructions item at the beginning, (2) a

loop item, (3) a stimuli presentation item, and (4) another

instructions item to indicate the end of the experiment.

Second, configure the stimuli presentation item in the same

way that you prepared it in the previous version of the

lexical decision example. Third, set to 40 the number of

iterations in the loop item and select the stimuli presentation

item in the dropdown list where the scope of the loop is

defined (i.e., the “To” property of the loop item).

If you were to conclude here, you would have created an

experiment with 40 identical items. It is at this moment

when variables come into play. To use the variables editor,

Table 4 Lexical decision example using variables generated by Visual

DMDX

<ep><t 3000><d 5><dfd 30><id keyboard><vm 640, 480, 480, 8, 0><nfb>

<dwc 255255255><dbc 000000000><dfs 12><azk><rcot>

<! –——————————————————— >

<! Experiment: Lexical decision example with variables>

<! Created using Visual DMDX: http://visualdmdx.com/edit/s1zsyd >

<! –——————————————————— >

<eop>

00 <ln -3> “This is a lexical decision experiment. ”,

<ln -2> “”,

<ln -1> “Press YES if a letter string is a word. ”,

<ln 0> “Press NO if it is not a word. ”,

<ln 1> “Respond as quickly and accurately as you can. ”,

<ln 2> “”,

<ln 3> “Now press spacebar to continue.”;

-2 “*” / * <% 60> “PUMBLEAN” / ;

+3 “*” / * <% 60> “FATHER” / ;

+4 “*” / * <% 60> “MAINTAIN” / ;

-5 “*” / * <% 60> “SAPKUD” / ;

-6 “*” / * <% 60> “GLUATION” / ;

-7 “*” / * <% 60> “PROBLE” / ;

+8 “*” / * <% 60> “DECADE” / ;

+9 “*” / * <% 60> “PASTRY” / ;

+10 “*” / * <% 60> “MANAGER” / ;

+11 “*” / * <% 60> “AIRCRAFT” / ;

+12 “*” / * <% 60> “MAJORITY” / ;

-13 “*” / * <% 60> “BOWBLE” / ;

-14 “*” / * <% 60> “HINERNOT” / ;

+15 “*” / * <% 60> “IDENTITY” / ;

-16 “*” / * <% 60> “SHILDIEN” / ;

+17 “*” / * <% 60> “CELLAR” / ;

+18 “*” / * <% 60> “CULTURE” / ;

+19 “*” / * <% 60> “KITTEN” / ;

-20 “*” / * <% 60> “BLICT” / ;

+21 “*” / * <% 60> “CHARGE” / ;

-22 “*” / * <% 60> “BOLECHUP” / ;

-23 “*” / * <% 60> “RENSOR” / ;

+24 “*” / * <% 60> “MILITARY” / ;

+25 “*” / * <% 60> “DEVICE” / ;

-26 “*” / * <% 60> “SHUSTER” / ;

-27 “*” / * <% 60> “GLOIN” / ;

-28 “*” / * <% 60> “JINNER” / ;

-29 “*” / * <% 60> “GROSHARY” / ;

-30 “*” / * <% 60> “CAPURALT” / ;

-31 “*” / * <% 60> “CORTH” / ;

+32 “*” / * <% 60> “PASSAGE” / ;

+33 “*” / * <% 60> “DRYER” / ;

-34 “*” / * <% 60> “AUBLE” / ;

+35 “*” / * <% 60> “PEPPER” / ;

-36 “*” / * <% 60> “BRANCE” / ;

+37 “*” / * <% 60> “ELECTION” / ;

Table 4 (continued)

-38 “*” / * <% 60> “BISTLE” / ;

+39 “*” / * <% 60> “PLASTIC” / ;

-40 “*” / * <% 60> “CHERP” / ;

+41 “*” / * <% 60> “HANDLE” / ;

00 “End of experiment. Thanks.”;

1 Alternatively, if you want DMDX to scramble the items for each

participant dynamically, you have to add previously explained scrambling

keywords manually (i.e., Scramble, ScrambleSeed, Grouping).

629

press the “Set variables” button of the loop item. After you

are in the variables editor (see Fig. 5), press the “Add

variable” button and then define the name of the variable

and what value it will take for each of the iterations of the

loop. Set the variable name to “word” and add words and

nonwords for a total of 40. When you are done, click the

“Add variable” button again to add a variable called “re-

sponse,” and then set the expected response (negative or

positive) for each iteration of the loop. Considering that

editing the list of values can be tedious, you can press the

“Import variables” button instead, and a simple form will be

provided to paste a list of variables and values in CSV

format and import them to the variable list using the

“Import” button.

Finally, you need to edit the item presentation of stimuli

to make use of the newly created variables. Click the orange

button with a loop icon next to the dropdown list of the

Response property of the stimuli presentation item. After

you click this button, the dropdown list becomes a text field.

Write “[response]” (without the quotes) into the text field.

Then add two text stimuli, one for the fixation point (a “*,”

in our example) and another one for the word that will be

evaluated by participants. To change the word in each trial,

write “[word]” (without the quotes) as the Text property of

the second stimulus. Now save the changes. (A version of

this example is available in http://visualdmdx.com/edit/

s1zsyd.) Check that everything went well by pressing the

“Export to DMDX” button in the “Export” tab of Visual

DMDX (see Table 4).

The example of affective priming would benefit not only

from the use of variables in loop items, but also from the

option to import whole lists of stimuli. Preparing a complex

item can become an easy task if the experimenter defines a list

of its stimuli in CSV format and uses the “Import stimuli”

button. It is necessary that each row of the stimuli list begins

with the type of stimulus that is to be added (i.e., blank, text,

bmp, jpg, wav, video) and contains an ordered list of values

for each of the properties of the item (see Table 5).

Discussion

In this article we presented the Visual DMDX web applica-

tion, an authoring tool for creating item files for DMDX.

Our goal is to facilitate experiment creation with the widely

used DMDX syntax, in particular to ease the first steps for

novice users of DMDX. Therefore, the core functionality

provided by DMDX is available in Visual DMDX, and

experiments using DMDX can now be created without

knowledge of DMDX syntax. As a further improvement,

Visual DMDX-specific features such as loop items provide a

simple way to avoid the complexity of creating loops and

shuffling items in DMDX. Newly added features that may

also be attractive to experts of DMDX include multiple

ways to export experiment code, easy backup, and a preview

mode for experiments.

We will continue adding more routines. Improving the

preview mode and the inclusion of new functionalities of

DMDX (such as button mapping or conditional branching)

are among our future plans for Visual DMDX. The expor-

t/import function to and from JSON may serve as an inter-

face and future API to bridge the grand and powerful

DMDX tradition to the modern world of web-based

experimentation.

Visual DMDX is published under an open-source license

(Affero GPL, version 3.0; see Free Software Foundation,

2007). Therefore, any researcher is free to upgrade and

expand its features.

Author note We thank Julen Telleria for assistance in coding. Sup-

port for this research was provided by Grant PSI2011-26965 from

Dirección General de Investigación of the Spanish Government and

Grant IT363-10 from the Basque Government. The authors declare that

there was no conflict of interest in the publication of this study.

References

Birnbaum, M. H. (2000). SurveyWiz and FactorWiz: JavaScript Web

pages that make HTML forms for research on the Internet. Be-

havior Research Methods, Instruments, & Computers, 32, 339–

346.

Fazio, R. H. (2001). On the automatic activation of associated evalua-

tions: An overview. Cognition and Emotion, 15, 115–141.

Fazio R. H., Russell H., David M. Sanbonmatsu, Martha C. Powell,

and Frank R. Kardes (1986). On the Automatic Activation of

Attitudes. Journal of Personality and Social Psychology 50,

229–238.

Forster, K. I., & Forster, J. C. (2003). DMDX: A Windows display

program with millisecond accuracy. Behavior Research Methods,

Instruments, & Computers, 35, 116–124.

Free Software Foundation. (2007). GNU Affero General Public Li-

cense, version 3.0. Retrieved December 18, 2013 from: http://

www.gnu.org/licenses/agpl-3.0.html

Freelon, D. (2010). ReCal: Intercoder reliability calculation as a Web

service. International Journal of Internet Science, 5, 20–33.

Freelon, D. (2013). ReCal OIR: Ordinal, interval, and ratio intercoder

reliability as a web service. International Journal of Internet

Science, 8, 10–16.

Garaizar, P., & Reips, U.-D. (2013). Build your own social network

laboratory with Social Lab: A tool for research in social media.

Table 5 List of stimuli in CSV prepared to be imported by Visual

DMDX

text,+,30,true,center,middle

blank,30

text,[prime],18,true,center,middle

blank,12

text,[target],60,true,center,middle

630

Behavior Research Methods. doi:10.3758/s13428-013-0385-3.

Advance online publication.

Göritz, A. S., & Birnbaum, M. H. (2005). Generic HTML Form

Processor: A versatile PHP script to save Web-collected data

into a MySQL database. Behavior Research Methods, 37,

703–710.

Jiang, N. (2012). Conducting reaction time research in second lan-

guage studies. New York: Routledge.

Klauer, K. C., & Musch, J. (2003). Affective priming: Findings and

theories. In J. Musch & K. C. Klauer (eds.), The psychology of

evaluation: Affective processes in cognition and emotion (pp. 7–50).

Mahwah, NJ: Erlbaum.

Krantz, J. H. (2000). Tell me, what did you see? The stimulus on

computers. Behavior Research Methods, Instruments, &

Computers, 32, 221–229.

Mathôt, S., Schreij, D., & Theeuwes, J. (2012). OpenSesame: An

open-source, graphical experiment builder for the social sciences.

Behavior Research Methods, 44, 314–324.

Peirce, J. W. (2007). PsychoPy: Psychophysics software in Python.

Journal of Neuroscience Methods, 162, 8–13.

Reips, U.-D. (2001). The Web Experimental Psychology Lab: Five

years of data collection on the Internet. Behavior Research Meth-

ods, Instruments, & Computers, 33, 201–211.

Reips, U.-D. (2010). Design and formatting in Internet-based research.

In S. Gosling & J. Johnson (Eds.), Advanced methods for con-

ducting online behavioral research (pp. 29–43). Washington, DC:

American Psychological Association.

Reips, U.-D., & Funke, F. (2008). Interval level measurement with

visual analogue scales in Internet-based research: VAS Generator.

Behavior Research Methods, 40, 699–704.

Reips, U.-D., & Garaizar, P. (2011). Mining Twitter: Microblogging as

a source for psychological wisdom of the crowds. Behavior Re-

search Methods, 43, 635–642.

Reips, U.-D., & Lengler, R. (2005). The Web Experiment List: A Web

service for the recruitment of participants and archiving of Internet-

based experiments. Behavior Research Methods, 37, 287–292.

Reips, U.-D., & McClelland, G. (2013). Interactive applets on the Web

for methods and statistics. University of Amsterdam, AIAS Work-

ing Paper 132.

Reips, U.-D., & Neuhaus, C. (2002). WEXTOR: A Web-based tool for

generating and visualizing experimental designs and procedures. Be-

havior Research Methods, Instruments, & Computers, 34, 234–240.

Schneider, W., Eschman, A., & Zuccolotto, A. (2002). E-Prime user’s

guide. Pittsburgh, PA: Psychology Software Tools.

Stieger, S., & Reips, U.-D. (2008). Dynamic Interviewing Program

(DIP): Automatic online interviews via the instant messenger

ICQ. CyberPsychology and Behavior, 11, 201–207.

Stieger, S., & Reips, U.-D. (2010). What are participants doing while

filling in an online questionnaire: A paradata collection tool and an

empirical study. Computers in Human Behavior, 26, 1488–1495.

Wentura, D., & Rothermund, K. (2007). Paradigms we live by: A plea

for more basic research on the IAT. In B. Wittenbrink & N.

Schwarz (eds.), Implicit measures of attitudes (pp. 195–215).

New York: Guilford Press.

631

