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Abstract. The inverse problem of fractal compression amounts to determining a 
contractive operator such that the corresponding fixed point approximates a given 
target function. The standard method based on the collage coding strategy is known 
to represent a suboptimal method. Why does one not search for optimal fractal 
codes? We will prove that optimal fractal coding, when considered as a discrete 
optimization problem, constitutes an NP-hard problem, Le., it cannot be solved 
in a practical amount of time. Nevertheless, when the fractal code parameters are 
allowed to vary continuously, we show that one is able to improve on collage coding 
by fine-tuning some of the fractal code parameters with the help of differentiable 
methods. The differentiability of the attractor as a function of its luminance pa­
ranleters is established. We also comment on the approximating behavior of collage 
coding, state a lower bound for the optimal attractor error, and outline an annealing 
scheme for improved fractal coding. 

1 Introduction 

Fractal compression seeks to approximate a target function f with a function 
Ip which is the fixed point, or attractor, of a 'simple' contractive operator 
Tp that acts on a suitable metric space (F, dF) of functions. The parame­
ter vector p (also called the fractal code) that defines Tp (also called fractal 
transform operator) is then used as a (lossy) representation of the target 
function f. The fixed point Ip is generated by iterating the operator Tp on 
an arbitrary function of the space J=; this is the decoding step. The encoding 
problem of fractal compression lies in finding in a suitable class of operators 
the one whose corresponding fixed point gives the best approximation of the 
target function. Of course, the class of operators considered for fractal cod­
ing purposes has to be constrained to 'simple' operators that can be coded 
compactly in order to lead to data compression. The encoding problem is 
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Fig. 1. Schematic presentation of the relationship between the target f, an optimal 
collage Tpc f, the fixed point fpc = Tpc fpc corresponding to Tpc, as well as the 
collage Tp. f of an optimal fractal code and the corresponding optimal fixed point 
Jp. = Tp. fp •. The boldfaced arc indicates the upper bound on the feasible attractor 
error provided by the collage theorem while the dotted arc indicates a lower bound 
on the optimal attractor error. This lower bound is given in Section 5. Clearly, a 
collage optimal fractal code does not in general coincide with an optimal fractal 
code. 

also called the inverse problem of fractal compression since it involves the 
determination of 'causes', i.e., the determination of the operator parameters, 
based on a desired 'effect', i.e., the desired fixed point. 

In practice, fractal coding algorithms rely upon the method of collage 
coding. Given a target function f and a suitable pararncter space P one de­
termines a fractal transform operator Tpc, pC E P, that minimizes the collage 
error d:F(f, Tf). This procedure is motivated by the collage theorem [1,3], a 
corollary of the contraction mapping principle. The collage theorem states 
that the attractor error d:F(f, fpc) is bounded from above by a multiple of 
the collage error d:F(/, Tpcf). Thus, with the collage coding method one min­
imizes a bound on the actual attractor error. However, with this approach 
one generally does not find an optimal fractal code for the target function 
/, i.e., a fractal code p* E P such that d:F(f, !p.) = minpE'P d:F(j, Jp) (see 
Figure 1). 

It is, therefore, natural to address the question: why docs one not search 
for an optimal fractal code? In this paper we will show the following result: 
Optimal fractal coding is NP-hard. Thus, fractal coding -when considered 
as an optimization problem- represents an intractable problem, i.e., it is the 
computational complexity that prevents us from determining optimal fractal 
codes. 
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Given that optimal fractal coding is intractable, can one at least improve 
upon collage coding or is collage coding essentially the best one can do? 'Ve 
will show that one is able to improve on collage coding by fine-tuning some 
of the fractal code parameters with the help of differentiable methods. 

The above short outline of the results indicates that we tackle the inverse 
problem of fractal compre~~ion froln two different directions using two dif­
ferent mathematical methodologies. For the NP-hardness proof we consider 
fractal coding as a discrete optimization problem, whereas for the improve­
ments over collage coding some of the parameters are assumed to be con­
tinuous. Since it is easier to state the discrete problem by reference to the 
'continuous' problem, the first part of the paper will deal with the question 
of how to improve on collage coding with the use of differentiable methods, 
while the second part presents the NP-hardness result -in contrast to the 
'logical' order of arguments. This paper summarizes the main results from 
our conference publications [27,28]. 

The use of contractive transforms and their corresponding attractors for 
the compression of signals and images was proposed by Barnsley and Jacquin 
in the late 19808 [2,19]. Before the birth of fractal compression and with­
out technical applications in mind, \Villiams [29] and Hutchinson [18] had 
published mathematical studies of compositions of contractions and iterated 
function system. During the last 10 years about 400 papers were published 
in the field of fractal compression, as well as four books [4,10,20,11]. Several 
studies have attempted to find attractor functions 1 that are better approxi­
mations to a target f than the "collage attractors" fpc. Indeed, these studies 
have typically employed the collage attractor fpc as a starting point .. For ex­
ample, Barthel [5] and then Lu [20} have devised "annealing schemes" that 
produce sequences ~f attractors f(n) that are then used to "collage" the target 
f. The sequences j(n) are observed to provide better approximations to the 
target. However, there is still no rigorous theoretical basis for this method. 
On the other hand, Dudbridge and Fisher [9], using the NeIder-Mead simplex 
algorithm, searched the fractal code space P in the vicinity of the collage at­
tractor to locate (local) minima of the approximation error dF(j, f). Their 
method was applied to a restricted class of (separable) fractal transforms, in 
which four 4 x 4 pixel range blocks shared a common domain block [22]. \Vith­
ers [30] has derived differentiability properties of Iterated Functions Systems 
with probabilities whose attractors model graphs of ID functions. Newton's 
method is used to compute parameters. 

The paper is organized as follows: below notations and basic definitions 
are introduced. In Section 3 the differentiability of the attractor functions 
with respect to the luminance parameters is proven and results obtained by 
using gradient methods are presented. In Section 4, the problem of optimal 
fractal coding is stated as an combinatorial problem, and the computational 
complexity of this problem is analyzed. Further results are surveyed in Sec-

tion 5. 
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2 Mathematical and Notational Preliminaries 

\Vhat is the form of a fractal transform operator T? Let (X, d) denote the 
support or base space, assumed to be a metric space, e.g. X = [0, 1) or 
X = [0, 1)2. Let F(X) = {f : X --t JR} denote a suitable complete space of 
functions with metric d:F. Now let Rk C X, k = 1,2, ... ,nR, denote a set of 
range blocks that partition X, Le., (1) U~~l Rk = X and (2) Ri n R j = 0 for 
i =1= j. With each range block are associated the following: 

1. a domain block Dk C X and a one-to-one contraction map Wk : Dk ---t Rk 
with a contraction factor Ck E [0, 1). 

2. an affine map 4> : IR --t IR, cPk(t) = Skt + Ok, where Sk, Ok E ~. 

In the language of [13], the above ingredients comprise an (affine) nn-map 
Iterated Function System with Grey Level Maps (IFSM). The fractal trans­
form operator T : F(X) ---t F(X) associated with such a (nonoverlapping) 
IFSM is defined as follows. Given a function f E F(X) then for all x E Rk, 
k=1,2, ... ,N, 

(Tf)(x) = cPk(f(w;l(x») 

= skf(w;l(X» + Ok- (1) 

The maps Wk incorporate some form of self-reference. When considering the 
function values f(x) as luminance values one can view the parameters Sk 

and Ok as control parameters for contrast and brightness (8 stands for scaling 
factor, 0 for offset). They are also called luminance parameters. Figure 2 
illustrates a fractal transform operator for the case of image coding. 

It is wel1 known that if ISkl < 1, 1 ~ -k < nn, then the operator T is 
contractive in the complete metric space of functions C,OO(X). In the complete 
metric space of functions C,2(X), a straightforward calcu1ation shows that 

where 
n"R 

C= LCklski. (2) 
k=l 

Therefore, the condition C < 1 is sufficient (but not necessary) for contrac­
tivity of T in (,2 (X). An example of the iterative application of an contractive 
fractal transform operator is given in Figure 3. 

In the first part of this paper, we assume that one is given a target func­
tion, a range partition as well as a range-domain assignment. Then we exam­
ine a systematic method to perform attractor optimization using the partial 
derivatives of attractor functions with respect to the luminance parameters, 
8/p/8sk,8/p/8ok,k = 1,2, ... ,nn.. To this end, we use .F(X) = £2(X), the 
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Fig. 2. A screenshot of the Fractal Code Visualizer (a Java applet) that is avail­
able from http://vvv.informatik.uni-leipzig.de/cgip/. As input the visualizer 
takes an original inlage and a fractal code thereof. By moving the mouse pointer 
over the image, the borders of the range to which one is pointing are drawn as well 
as the borders of the corresponding domain. To the right the selected range and 
domain are depicted; here, the (reflected) domain is viewed with the corresponding 
1 uminance transformation 4> applied. 
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(a) (b) 

(c) (d) 

Fig. 3. Decoding of a fractal code for the standard test irnage 'Boat'. ( a) Range 
partition, (b) first iteration, i.e., the operator applied to an all-black hnage, (c) third 
iteration, (d) 10th iteration. 

space of square integrable functions on X with the usual metric, and set the 
parameter space to 

pO = {p = (( S 1, 01), ... , (Sn'R , OnR.)) lSi, 0i E JR., 1 ~ i ~ nn, 
S.t. Tp is contractive in .c2 (X)}. 

'\le first establish the existence of these derivatives and show that they are 
attractor functions of "vector fractal transform" operators (in the sense of 
hierarchical IFS [25, Chapter 5]). A knowledge of these derivatives permits 
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the computation of the gradient vector of the error function d:F(/, Ip) which, 
in turn, allows the use of gradient descent algorithms. 

For the second part, we assume that one is given a target function and a 
range partition but no range-domain assignments. \Ve now view the problem 
of optimal fractal coding as a combinatorial optimization problem, i.e., we 
model the space of feasible fractal codes via 

p1 = {p = ((Zl,Sl,Ol), ... , (zn'R,Sn'R.,on'R))ll < Zi < nD, 

Si E Q(8), 0i E Q(o), 1 < i < n'R}. 

Here, each Zi represents an address for a domain block and nv gives the 
(finite) number of domain choices per range. The sets Q(8) and Q(o) rep­
resent finite sets of feasible values for the scaling parameters and offsets, 
respectively. For practical applications one can assume that one is acting 
on a function space that is a finite-dimensional vector space. Thus, in or­
der to guarantee convergence of the sequence of iterates Ti j, the constraint 
ISkl < 1, 1 ~ k < nR, can be employed. We will show that the problem of 
determining in the parameter space a fractal code whose corresponding frac­
tal transform operator gives the minimal attractor error is NP-hard, and, 
therefore, it cannot be solved in a practical amount of time. 

3 Direct Attractor Optimization Based 
on Gradient Methods 

3.1 Partial Derivatives of IFSM Attractor Functions 
with Respect to Luminance Parameters 

Let us aSSUIne that the range partition and the range-domain assignments 
are given, i.e., the IFS maps wi,l < i < nn, are fixed. Thus, the corre­
sponding fractal transform operators T that are contractive in the space 
:F(X) = .c2 (X) are para~eterized via pO. We now consider the correspond­
iiIg attractor functions fp as functions not _only of position ~ut also of the 
luminance parameters p, i.e., we will \\~rite f(x,p) instead of Jp. 

Then, from Eq. (1) and with p = (81,01, •.• , Snn' On'R,) E pO, 

- - 1 
f(x,p) = skf(w"k (x),p) + Ok, X E Rk. (3) 

Proposition 1. The attractor 1 is continuous w. r. t. the fractal parameters 

S l, Ol, I = 1, 2, .. · , nn,. 

The continuity of IFSM attractors with respect to grey level maps ¢l was 
proved in [12], using the methods described in [6]. It is straightforward to 
establish the continuity in terms of the luminance parameters Sl and 01. 

Proposition 2. The set pO is open. 
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Proof. \Ve prove that po = ]R2n'R, - po is clos(~d. L(~t pen) E P, n = 1,2, .. "' 
be a convergent sequence (in the topology of JR.2nR) with linlit p. Each (in­
feasible) fractal code vector p(n) E po defines a noneontractive fractal trans­
form operator T(n) : .c2 (X) --i' C2 (X) with associated factor (cf. Eq. (2)) 

c(n) = L~:l cklsin)l. Now, for each operator T(n), define its "optimal" Lip­
schitz factor as follows, 

( ) II T(n)Yl - T(n)Y2 112 
L n = sup . 

Yl~Y2 II Yl - Y2 112 
(4) 

From this definition and the noncontractivity of the T(n), it follows that 
1 S; L(n) < c(n) for all n. From the convergence of the code vectors p(n), it 
also follows that limn --..oo c(n) = C ~ 1. So, from Proposition 1, the fractal 
transform T defined by the limit code vector p has asso(~iated factor C and 
Lipschitz factor L ~ 1. Therefore T is not contractive, iInp1ying that p ¢ pO. 
Thus po is closed, proving the proposition. 0 

Theorem 3. The partial derivatives of the attractor f UJith respect to the 
fractal parameters Sl, 0l, 1 = 1, 2, ... , nn, exi.~t at any point p E pO. 

In the proof we need a special type of IFS~I/fraetal transform that in­
volves "condensation" [21]. For a function f E F(X), define Tf as follows: 
For all x E Rk, k = 1,2, ... , n'R, 

(5) 

The functions (Jk(X) are known as condensation functions. Note that conden­
sation functions do not affect the contractivity of T. The following result, 
which establishes the continuity of attractor fllll(~tions \\'ith respect to con­
densation functions, is a simple conscqucnee of Proposition 1. 

Proposition 4. Let Tl and T2 be contracti1Je nn -1TUJ,P IFSM o1)erators as 
in Eq. 5, with condensation functions (J{l)(X) and O(2)(x), respectively, and 
identical scaling parameters Sk. Let f(l) and 1(2), resp(~ctively, denote the 
fixed points of these operators. Then given an l > 0, there exists a 6 > 0 such 
that II (J(t) - ()(2) 112< d implies that II j(l) - 1(2) 112< f. 

Proof of Theorem 3: For any p E pO, the associated fractal transform T 
is contractive. This implies that for any 1(0) E [,2, the sequence of functions 
defined by I(n+l) = T fen) converges to 1, that is, II f(n) -1 112-+ 0 as n -+ 00. 

Let 1(0) = (), where 
n1l 

()(x) = LOkIRk(x) (6) 
k=l 

and Is(x) is the characteristic function of a subset SeX. Then, for AI > 0, 
f(M) = ToM 1(0) is given by 

M 

f(M)(x,p) = O(x) + L (7) 
n=l h .... ,in =1 
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with the standard convention that O( wil 0 .. • 0 w;-l (x)) equals zero if w;-l 0 
n ~l ·n 

••• 0 W~l (x) does not exist. The j(M) are partial sums of an infinite series 
that converge, in the £2 metric, to J. Thus we can write 

00 

J(x,p) == O(x) + L Si ••• s; () (w ~ 1 
0 • • e w:- 1 (x)) 

1 ·n 1n 11 ' 
(8) 

n=l it , ... ,in=l 

where the equation is understood in the £,2 sense. 
Now consider an x E Rk for some k E {I, 2, ... , nR}. Then the index i l 

in Eq. (7) must equal k (in order for W~l(x) to be defined}. Therefore, Eq. 
(7) becomes 

f(M)(x,p) = ()(x) + skf(M-l)(Wk
1(X),P), x E Rk. (9) 

For a given l E {1, 2, ... , nn}, we partially differentiate the terms in this 
equation with respect to Sl: 

oj(M) [8 j (M-l) ] 
--(x,p) == Sk a (w;l(x),p) + [f(M-l)(wk1(x),p)lokl. (10) 

OSi 8l 

Define the following n'R,-map IFSM operator T, with condensation: 

(11) 

where ek(X) = [I( W;:l (x) )]8kl with 8kl = 1 if k = l and zero otherwise. Since T 
is contractive, it follows that 1l is contractive in [,2. (T and Tl have identical 
IFS maps and fractal parameters Sk.) Let 131 denote the fixed point of Tt e 

From Propositions 1 and 2, Vi is continuous with respect to the parameters 
Sk, in particular, 8l· We now show that Vl = a!/OSl. (In what follows, for 
simplicity of notation, only x and Sl will be written explicitly in the list of 
independent variables.) 

Note that Eq. (10) does not correspond to a single IFSM operator with 
condensation. However, since the functions j(M) converge to J, it follows, 
from Proposition 4, that the sequence of functions 8j(M) /8S1 converges to 
VI. That is, for a given p E pO and €1 > 0, there exists an Ml > 0 such that 

8j(M) _ 
{) (x, S/) - v(x, S/) < ell 

Sl 2 
(12) 

It is convenient to denote our reference point as 

Let Nl(t5), t5 > 0, be a restricted neighborhood of the point pO in which only 
the element Sl is allowed to vary, i.e., Sl E If, = (s? - 6, s? + 8J, such that the 
corresponding vectors p lie in pO. (The existence of such a neighborhood is 
guaranteed since pO is open.) Let h E ~, with \hl < 8. Then for each x E X 
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there exists, by the Mean Value Theorem, a ,(M) E 1h = [s? - h, s? + h], such 
that 

8j(M) 
j(M)(x, s? + h) - j(M)(X, s?) = {) (x, "'I(M»h. (13) 

Sl 

Therefore, 

2 

< h II {)~~7) (x, "'I(M» - v(x, "'I(M» 12 

+ h II vex, ,,(AI») - v(x, s?) 112 

8j(M) 
< h {) (x, "'I(M» - v(x, ,),(M» 

Sl 2 

+ max h " v(x, Sl) - v(x, s?) 112 · 
slE1h 

(14) 

Since 16 is closed, there exists an Al > 0 such that the inequality in (12) 
is satisfied for all AI > Al at all p E N1(8). Therefore, for a fixed h E (-6,8), 
we may take the limit AI --t 00 on both sides of (14) to yield 

1

-0 - 0 f(x, sl + h) - J(x, sl) 0 0 
h - v(x, Sl) < max II v(x, Sl) - v(x, Sl) 112. (15) 

2 sLE1h 

Since v is continuous with respect to Sl, the right side term may be made 
arbitrarily small by choosing h sufficiently small, thus estab1ishing the differ­
entiability of 1 with respect to Sl at pO. 

The differentiability of 1 with respect to the 0l may be derived in a similar 
fashion. 0 

Remark: From Eq. (10) (and its analogue for differentiation with respect to 
Ol), the partial derivatives of 1 with respect to the fractal parameters Sl and 
Ol may be obtained by formally differentiating both sides of Eq. (3). For a 
fixed x E Rk : 

(16) 

(17) 

Eqs. (3), (16) and (17) may be considered to define a (2n'R + 1 )-component 
"vector IFSM with condensation" that may be written in the following com­
pact form: 

f = Tf, (18) 
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where - - t 
- [- af af ] f(x,p) = f(x,p), 7}(x,p), ... , a (x,p). 

~1 P2nR 
(19) 

Now define the space F2nn+l(X) = {f = (11,/2, ... , 12nn+l) , Ij E 

.r(X)} with associated metric d;:2n'R+l (f, g) = maXl~j~2n'R+l d;:(fj, gj). 
Then T : .r2nn+l(X) -+ F2n'R+l(X}. For an f E .r2nR+1(X), 

(Tf)(x) = skf(w;l(x)) + ek' f(w;1(x)) + 8 k (x), x E Rk • (20) 

The vector [ek]t = (0,0, ... ,1, ... ,0), where the "1" occurs in the (k + l}st 
entry, represents the only ''mixing'' of components of r under the action of T. 
The function 8k(X) represents a condensation vector composed of constant 
functions: [Bk(X)]t = (Ok, 0, 0, .... , 1, .... ,0), where the "I" occurs in the (nn + 
1 + k )th entry. 

Proposition 5. Suppose that T is contractive in (:r(X), dF). Then T is 
contractive in F2nR.+l(X). Its fixed point f is given by Eq. (19), where f is 
the fixed point of T, see Eq. (3). 

From Banach's Fixed Point Theorem, contractivity of T allows the com­
putation of its fixed point function 1 by means of iteration. The above propo­
sition implies that all partial derivatives 8 f /8Pl may also be computed by 
iteration: Begin with a "seed" reO) E y:2n'R+1 (X) and construct the sequence 
of vector functions f(n+1) = Tf(n), n > O. The calculations are very complex: 
Except in special cases, f and its partial derivatives will have to be computed 
for all x EX. This will be discussed in more detail below. 

3.2 Experimental Image Coding Results 

Let 1 E C2(X) again denote the target function we seek to approximate. For 
a given fractal code p E pO we will consider the squared £2 error 

We now employ the attractor !p, in particular the attractor fpc where pC again 
denotes a collage error optimal fractal code, as a starting point and vary the 
fractal code parameters p in an attempt to decrease the error function E(p) 
as much as possible. This was also the strategy of Dudbridge and Fisher [9], 
who employed the Nelder-Mead simplex algorithm. In their scheme, the error 
function E(p} is computed at strategic points. 

A knowledge of the partial derivatives of /p with respect to the fractal 
parameters p permits the computation of elements of the gradient vector of 

E: 
aE(p) = -2 /_/ _ alp 2 

api p 8Pl 2' 
l = 1, 2, ..... ,2nn. (21) 
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This allows us to employ gradient-descent and related methods to search for 
local minima. 

Practically speaking, however, the partial derivatives 8!/8Pl(X,P) must 
be computed at all points (pixels) x EX. In addition to an n x n matrix 
required to store an image, an additional 2nn. n x n matrices are needed, in 
general, to store the derivatives at all pixels. Borrowing from the terminology 
of quantum chemists, this ''full configuration interaction" will compute the 
total rate of change of the attractor - hence the approximation error - with 
respect to changes in all fractal parameters PI for a fixed set of domain-range 
pair assignments. When applying a gradient descent method to minimize 
the error function E less storage is required. It suffices to provide one addi­
tional n x n matrix to sequentially compute each component of the gradient 
(8Ej8Pl, ... ,8E/8P2nR)· 

\Ve apply our method to the fractal transform scheme examined by Dud­
bridge and Fisher [9], designed to mininlize the interdependency of range 
blocks. The following four 512 x 512 pixel images (8 bpp), used in [9], were 
also used in this study: Lena, Boat, Mandrill and Peppers.! Each image was 
partitioned into 4 x 4 pixel range blocks, with four neighboring range blocks 
sharing a common 8 x 8 pixel dornain block, nalnely the one that consists of 
the four ranges. Therefore, for each image, the inverse problem separates into 
642 independent problems, each involving an 8 x 8 pixel image with four range 
blocks Rk, hence 8 fractal parameters (four scaling and four offset values). 

As in [9], for each test image we first used collage coding to determine 
a fractal code pC that minirnizes the collage error. \Ve then used this code 
as a starting point for a gradient-descent rncthod. The NAG [23] subroutine 
E04DKF, which performs a quasi-Newton conjugate gradient minimization, 
was used. It was also desirable to COIn pare these results with the non-gradient 
calculations of [9). However, since SOIne of our collage error results differed 
from those of [9], we have independently carried out attractor optimization 
using the Ncldcr-~1ead simplex algorithrn. The NAG subroutine E04CCF was 
used. 

In all cases, the sirnplcx and gradient nH~thods yielded alnlost identical 
improvements. A cornparison with (9) reveals SOIne nonr}(~gligible differences, 
not only in the collage errors but also in the bn provcnl(~nts obtained by the 
simplex method. In all cases, we irnproved on the results of (9]. In both the 
simplex as well as the gradient algorithrns', the results are quite sensitive to 
the settings of the tolerance/accuracy parameters as well as the maximum 
number of iterations ("taxiter) allow(~d. Generally the best performance was 
obtained when the tolerance paranletcrs for the sirnplcx and gradient sub­
routines were set to 10-5 and 10-6 , respeetively. The pararnctcr rnaxiter was 
set to 2000, which is virtually infinity. 

1 These 512 x 512 iInages nlay be retrieved by anonytnous ftp frorn the \Vaterloo 
Fractal Cornpression Project site links. uvaterloo. ca in the appropriate subdi­
rectories located in ftp/pub/BragZone/GreySet2. 
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In Table 1 we present the peak-signal-to-noise-ratio (PSNR) values asso­
ciated with collage coding and subsequent simplex and gradient optimized 
attractor coding, along with the improvements in PSNR. The numbers in 
brackets represent the CPU time required for each calculation. (We empha­
size that these numbers are presented for the purpose of comparison, since 
the computer codes themselves are not optimized.) 

Table 1. Results of (a) collage coding and attractor optimization using (b) simplex 
and ( c) gradient methods, the latter two using collage coding as a starting point. All 
results are expressed in PSNR (dB). The final two columns list the improvement 
in PSNR achieved by the simplex method obtained in this study and Ref. (9), 
respectively. 

Collage Attractor optimization L\PSNR LlPSNR [9] 
attractor Simplex Gradient 

Lena 29.25 29.87 (301) 29.87 (229) 0.62 0.35 
Boat 26.66 27.42 (300) 27.42 (299) 0.56 0.41 
Mandrill 21.52 22.11 (532) 22.08 (1500) 0.59 0.33 
Peppers 29.34 30.02 (277) 29.94 (591) 0.68 0.33 

In an attempt to understand how good the initial estimate provided by col­
lage coding actually is, we have performed simplex and gradient optimization 
calculations for another set of initial conditions, namely, piecewise constant 
approximations to the images. In this case, all Sl are initially set to zero and 
the Ot are simply the mean values of the range block. (Of course, in more 
general problems than the one studied here, there would remain the problem 
of assigning a domain block to each range block.) In Table 2, we present the 
results of these calculations. The first column gives the error associated with 
the initial piecewise constant approximation. The next two columns list the 
PSNR values of the optimized attractors obtained from the simplex and gra­
dient methods along with the CPU times. The final column gives the PSNR 
improvement yielded by the better of the two methods. 

Table 2. Results of (a) piecewise constant approximation (peA) and attractor 
optimization using (b) simplex and (c) gradient methods, the latter two using the 
peA as a starting point. All results are expressed in PSNR (dB). The final column 
lists the improvement in PSNR achieved by the better of methods (b) and (c). 

peA Simplex Gradient LlPSNR 
Lena 26.93 29.73 (421) 29.74 (288) 2.81 
Boat 25.08 27.30 (452) 27.32 (618) 2.24 
Mandrill 20.85 22.00 (663) 21.97 (3333) 1.15 
Peppers 25.97 29.76 (420) 29.56 (2888) 1.79 








































