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Models of true arithmetic are integer parts of models of real
exponentiation
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Abstract: Exploring further the connection between exponentiation on real closed
fields and the existence of an integer part modelling strong fragments of arithmetic,
we demonstrate that each model of true arithmetic is an integer part of a real
closed exponential field that is elementarily equivalent to the real numbers with
exponentiation and that each model of Peano arithmetic is an integer part of a real
closed field that admits an isomorphism between its ordered additive and its ordered
multiplicative group of positive elements. Under the assumption of Schanuel’s
Conjecture, we obtain further strengthenings for the last statement.
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1 Introduction

An integer part (IP) of a real closed field K is a discretely ordered subring R ⊆ K
with minimal positive element 1 such that, for any x ∈ K , there is a unique element
bxc ∈ R with bxc ≤ x < bxc + 1 (see eg Shepherdson [21]). In [4, §5], it was
shown by D’Aquino, Knight and Starchenko that a countable real closed field K has
an IP modelling PA if and only if K is recursively saturated. Marker, Schmerl and
Steinhorn [18, §1] gave a counterexample in the uncountable case: they constructed
ℵ1–saturated real closed Hahn series fields K and showed that an exponential function on
an IP of K modelling PA can be lifted to an exponential on K . Since by F.-V. Kuhlmann,
S. Kuhlmann and Shelah [14] such an exponential on K cannot exist, K does not
admit an IP modelling PA. The methods of [18] were refined in Carl, D’Aquino and
S. Kuhlmann [3] to the theorem that real closed fields with IPs modelling I∆0 + EXP
always allow a weak form of exponentiation known as ‘left-exponentiation’, that is,
an isomorphism from an additive group complement of the valuation ring for the
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natural valuation to a multiplicative group complement of the positive group of units
(see S. Kuhlmann [15, page 24]). It is then natural to ask what influence a model of
arithmetic has on the spectrum of real closed fields of which it is an IP.

We show that models of true arithmetic are always IPs of real closed fields that
are very similar to the real numbers with exponentiation in a model theoretic sense:
Namely, let us say—following the usual terminology—that a function E : K → K
on a real closed field K is an exponential if it defines an isomorphism between
(K,+, 0, <) and (K>0, ·, 1, <). The structure (K,+, ·, 0, 1, <,E) is then called a real
closed exponential field. Furthermore, let us say that a real closed exponential field
(K,+, ·, 0, 1, <,E) is a model of real exponentiation if it is elementarily equivalent
to Rexp = (R,+, ·, 0, 1, <, 2x), where 2x denotes the usual exponentiation with base
2 on the real numbers. Then each model of true arithmetic, ie of Th(N,+, ·, 0, 1, <),
is an IP of a model of real exponentiation.1 We also show that this fails if one
replaces true arithmetic with bounded arithmetic (I∆0 ). We conjecture that Peano
arithmetic is actually enough to achieve our results and obtain the following partial
result: if (M,+, ·, 0, 1, <) |= PA, then it is an IP of a real closed exponential field
(KM,+, ·, 0, 1, <, expM). Moreover, under the assumption of Schanuel’s Conjecture,
if this real closed exponential field is model complete, then it satisfies the existential
theory of Rexp .2 We do not know where the exact benchmark is.

Our result can be seen as a further variation of one direction of a well-known theorem of
Shepherdson [21], according to which each model of open induction—Peano arithmetic
with induction restricted to open (ie quantifier-free) formulas—is an IP of a real closed
field. The result of Carl, D’Aquino and S. Kuhlmann [3] mentioned above implies
that each model of I∆0 + EXP is an exponential IP of a real closed left-exponential
field. Finally, by Krapp [13, Theorem 7.26] any model of PA is an IP of a real closed
exponential field. Together with the theorems proved in this paper, we hence get the
following picture:

• M |= IOpen→ M is an IP of a real closed field.
• M |= I∆0 + EXP → M is an (exponential) IP of a real closed field admitting

left-exponentiation.
1By saying that a discretely ordered semiring M is an IP of some real closed field K , we

mean—by abuse of terminology—that the corresponding discretely ordered ring M ∪ (−M) is
an IP of K .

2Schanuel’s Conjecture is intimately linked to the decidability of the theory of real exponen-
tiation and of its existential subtheory. Macintyre [17] deals with these links and draws further
connections to computable models of real exponentiation (see [17, Section 3]). We point out
that in contrast to Macintyre’s deliberately not specified notion of computability, we deal with
reals which are arithmetically definable.
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Models of true arithmetic are integer parts of models of real exponentiation 3

• M |= PA→ M is an IP of a real closed exponential field.
• M |= Th(N)→ M is an IP of a model of real exponentiation.

Notation 1.1 We denote by N the set of natural numbers with 0. If ~v = (v1, ..., vn)
and M is a set, then ~v ∈ M means that ~v is a tuple of elements of M . The language
of Peano arithmetic is denoted by LPA and consists of the binary function symbols +

and ·, the constant symbols 0 and 1 and the binary relation symbol <. The language
Lexp of exponential rings is obtained by adding a unary function symbol E to LPA . If
no confusion is likely to arise, we denote an LPA–structure (M,+, ·, 0, 1, <) simply by
M and an Lexp –structure (K,+, ·, 0, 1, <,E) simply by (K,E). Base b exponentiation
on R is denoted by bx and the standard exponential function ex on R by exp. If M
is a commutative semiring without zero divisors, then ZM denotes −M ∪M and QM

denotes the fraction field ff(ZM). We call ZM the set of M–integers and QM the set of
M–rationals.

2 The real closed field of M–reals

We now define an analogue of the real numbers for an arbitrary model of Peano arithmetic.
In the context of second-order arithmetic and reverse mathematics, real numbers are
usually modelled as Cauchy sequences of rational numbers, see eg Simpson [22,
Chapter 1], and we follow this approach here.

Throughout Section 2 and Section 3, we fix a model M |= PA. We will denote the
real closed field of M–reals of which M will be an IP by KM . It is crucial to point out
that the construction of a real closed field in [22] takes place in models of second-order
arithmetic—more specifically, in models of the system ACA0 (arithmetical comprehen-
sion axiom)—rather than in first-order models of PA. However, as emphasised in [22,
Remark I.3.3], the first-order part of ACA0 is just PA. Since in our model theoretical
context it is more suitable to stay in the first-order language LPA , we apply the results
of [22] directly to M and point out where special care is needed.

Our first aim is to establish a way to quantify in M over the set of M–integers ZM

and the set of M–rationals QM , ie we want to confer meaning to expressions like
M |= (∃x ∈ QM) ϕ(x) or M |= (∀x ∈ QM)(∃y ∈ ZM) ψ(x, y), where ϕ and ψ are
LPA–formulas. This can easily be done by representing the set of M–integers and the
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set of M–rationals as follows:

ZM = {p1 − p2 : p1, p2 ∈ M}

QM =

{
p1 − p2

q1 − q2
: p1, p2, q1, q2 ∈ M, q1 − q2 6= 0

}
Hence, any M–integer associates to an equivalence class of pairs (p1, p2) ∈ M2 and any
M–rational to an equivalence class of quadruples (p1, p2, q1, q2) ∈ M4 .

Atomic formulas in LPA are equivalent over PA to formulas of the form p(~x) = q(~x)
or p(~x) < q(~x), where p and q are polynomials with coefficients in N. Moreover,
equations and inequations in ZM involving the arithmetic operation of subtraction
are always equivalent to an expression without subtraction, eg p1 − p2 < 0 can be
expressed equivalently by p1 < p2 . This way, we can confer meaning to quantification
over ZM within M (also using parameters from ZM and the arithmetic operation of
subtraction). For instance, we interpret the expression ∃(y ∈ ZM) x− y > −2x2 + xy
as the LPA–formula ∃y (2x2 + x > xy + y ∨ 2x2 + xy + x + y > 0). In a similar way,
we can quantify in M over the set of M–rationals QM and use parameters from QM by
clearing fractions in the polynomials which appear in the atomic formulas. For instance,
∃(x ∈ QM) x2 − 1

2 > x stands for ∃(a ∈ ZM)∃(b > 0) 2a2 − b2 > 2ab.

Quantification over the set of M–rationals within M lays the foundation for the notion of
rational M–Cauchy sequences we will introduce in the following. To ease the notation,
from now on we consider QM rather than M as the domain over which we work. Due to
the explanations above, for each LPA–formula ϕ(~t), there is an LPA–formula ψ(~x,~y,~u,~v)
(where all tuples ~t , ~x, ~y, ~u and ~v have the same lengths) such that for any ~q ∈ QM ,
there exist ~a,~b,~c,~d ∈ M such that:

QM |= ϕ(~q) if and only if M |= ψ(~a,~b,~c,~d)

Hence, by abuse of notation, from now on also all quantifiers are assumed to be
over QM unless they are explicitly pointed out to be over M .

Rational M–Cauchy sequences are Cauchy sequences in QM definable3 over QM . As
we pointed out at the beginning of this section, the results we apply regard second-order
models of ACA0 . These can be obtained from models of PA by restricting second-order
quantification to arithmetically definable sets (see [22, page 8]). In other words, the
results regarding ACA0 we wish to use still apply to any model of PA as long as the
sets involved are definable. Hence, we regard the set of M–reals KM as the set of
equivalence classes of Cauchy sequences in QM which are definable over QM . We
make this precise in the following.

3Throughout this paper, “definable” always means “definable with parameters”.
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A rational M–sequence is a function a : M → QM which is definable over QM . As
usual, we denote a(n) by an and a also by (an)n∈M .

Let a be a rational M–sequence. We say that a is a rational M–Cauchy sequence if
the following holds:

QM |= ∀(ε > 0) ∃(N ∈ M) ∀
(
m, n ∈ M>N) |an − am| < ε

We define an equivalence relation ∼ on the set of rational M–Cauchy sequences by
a ∼ b if the following holds:

QM |= ∀(ε > 0) ∃(N ∈ M) ∀
(
n ∈ M>N) |an − bn| < ε

The set of all equivalence classes of rational M–Cauchy sequences is denoted by KM .
We call KM the set of M–reals. We interpret the symbols of LPA in KM as follows
(where [a] stands for the ∼–equivalence class of a rational M–Cauchy sequence):

• [a] + [b] = [a + b]
• [a] · [b] = [a · b]
• [a] < [b] if QM |= ∃(δ > 0) ∃(N ∈ M) ∀

(
n ∈ M>N

)
an + δ < bn

If it is clear from the context, then we also denote an M–real [a] simply by a and a
rational M–sequence (an)n∈M by (an) or an . We also say that a rational M–Cauchy
sequence (an)n∈M converges to a if a = [(an)n∈M], and we write limn→∞ an = a.
For any q ∈ QM , we also denote the M–real given by the equivalence class of the
M–sequence which is constantly q by q. In particular, this gives suitable interpretations
of the symbols 0 and 1 in KM . By [22, Theorem II.4.5], KM is an ordered field.
Moreover, QM is an ordered subfield of KM (via the identification described above),
and thus we can also consider M and ZM as subsets of KM such that all arithmetic
operations as well as the order relation are preserved.

Since KM ranges over equivalence classes of definable functions in QM , we cannot
quantify in QM over elements of KM . However, we can confer meaning to formulas using
finitely many parameters from KM . For instance, if a, b ∈ KM , then an expression of the
form QM |= ∃x a < x stands for QM |= ∃x ∃(ε > 0) ∃(N ∈ M) ∀

(
n ∈ M>N

)
an+ε < x ,

where (an) is a rational M–sequence converging to a; and QM |= ∃x a + x = b is short
for QM |= ∃x ¬ (a + x− b)2 > 0.

Theorem 2.1 The ordered field of M–reals KM is real closed. Moreover, M is cofinal
in KM , ie for any a ∈ KM , there exists n ∈ M such that a < n.

Proof That KM is real closed is proved in [22, Corollary II.6.7]. The property of M to
be cofinal in KM is proved in [22, Theorem II.4.5].
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Corollary 2.2 The ring of M–integers ZM is an IP of KM . Hence, in particular, QM

is dense in KM .

Proof Let a ∈ KM . Since ZM is a discretely ordered ring with 1 as least positive
element, we only need to show that b ≤ a < b + 1 for some b ∈ ZM . By Theorem 2.1,
the definable set {n ∈ M : QM} |= |a| < n is non-empty. Thus, it must have a least
element m. We obtain m− 1 ≤ |a| < m, giving the required integer part of a.

Notation 2.3 Let ϕ(n, y,~v) be an LPA–formula and let ~p ∈ QM such that ϕ(n, y,~p)
defines an M–real4. Then this M–real is denoted by x~pϕ .

We are almost exclusively interested in arithmetical formulas ϕ(n, y,~v) that define an
M–real for every model M of PA and any tuple ~p of elements of QM , ie such that:

QM |= ∀~v ‘ϕ(n, y,~v) defines a rational M–Cauchy sequence.’

Let us call such a formula ϕ a safe formula.

In later sections, we will assume that all occurring LPA–formulas (with at least two free
variables) are of this kind, unless stated otherwise. However, we have to ensure that by
this restriction we do not lose any M–reals.

Lemma 2.4 For any LPA–formula ϕ(n, y,~v) there exists an LPA–formula ϕ′(n, y,~v)
such that the following is a theorem of PA: for every parameter ~p ∈ QM , if ϕ(n, y,~p)
defines a rational M–Cauchy sequence, then ϕ(n, y,~p) and ϕ′(n, y,~p) define the same
sequence, otherwise ϕ′(n, y,~p) defines the constant 0 function. Thus, if x is an M–real,
then there exist a safe formula ϕ and a tuple ~p ∈ QM such that x = x~pϕ .

Proof We abbreviate by conv(ϕ,~v) the LPA–formula expressing that ϕ(n, y,~v) defines
a rational Cauchy sequence (an). Now let ϕ′(n, y,~v) be the LPA–formula:

[conv(ϕ,~v)→ ϕ(n, y,~v)] ∧ [¬conv(ϕ,~v)→ y = 0]

Then for any parameter ~p, if ϕ(n, y,~p) defines a rational Cauchy sequence, then
ϕ′(n, y,~p) defines the same sequence, and otherwise ϕ′(n, y,~p) defines the function
mapping each n to 0.

4To be precise, an LPA–formula does not define an M–real but only a rational M–Cauchy
sequence representing this M–real. However, we use this abuse of terminology, as it should be
clear from the context whether an M–real or a corresponding rational M–Cauchy sequence is
meant.
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3 Analysis on KM

3.1 Definable functions

Before we introduce an exponential function, we consider general analysis on KM . To
this purpose, we need to introduce the notion of definable functions on KM . If properties
of these functions are to be preserved between fields of M–reals arising from different
models of PA, then these will have to be sufficiently explicitly definable in PA. This is
made precise in the following.

Definition 3.1 Let m ∈ N>0 and let f : Km
M → KM . Then f is M–definable if there

exist an LPA–formula ψ(n, y,~v,X1, ...,Xm) and a tuple ~p ∈ QM such that for any rational
M–Cauchy sequences a(1)

n , . . . , a(m)
n we have that

ψ
(
n, y,~p, a(1)

n , ..., a(m)
n
)

defines the M–real f
(
a(1), . . . , a(m)

)
, where a(i) = limn→∞ a(i)

n . We then say that
ψ(n, y,~p,X1, ...,Xm) defines f . Denote by Defn(M) the set of n–ary M–definable
functions and let Def(M) =

⋃
i∈N>0 Defi(M).

Proposition 3.2 The set Def(M) contains all constant functions and is closed under
composition.

Proof We prove both statements for functions f : KM → KM , as the multivariable case
works similarly. Let ϕ(n, y,~v) be a safe LPA–formula, let ~p ∈ QM and set c = x~pϕ . Then
the formula ψ(n, y,~p,X) given by n ∈ M ∧ ϕ(n, y,~p) defines f : KM → KM, u 7→ c.

Now let f , g ∈ Def1(M) and let ψf (n, y,~p,X) and ψg(n, y,~p,X) define f and g,
respectively. Define the LPA–formula ψg◦f (n, y,~v,X) as follows:

∀q
(
ψf (n, q,~v,X)→ ψg(n, y,~v, q)

)
We show that ψg◦f (n, y,~p,X) defines g ◦ f . Let a ∈ KM and let an be a rational
M–Cauchy sequence with limn→∞ an = a. Then ψf (n, y,~p, an) defines f (a). Hence,
for any n ∈ M there is a unique qn ∈ QM such that ψf (n, qn,~p, an) holds and, moreover,
limn→∞ qn = f (a). Since ψg(n, y,~p,X) defines g, we obtain that ψg(n, y,~p, qn) defines
g(f (a)), as required.

Since all ring operations, ie addition, subtraction and multiplication, are clearly M–
definable, we obtain the following corollary.
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Corollary 3.3 Let f1, ..., fn be M–definable continuous functions and let g ∈ K[x1, . . . ,

xn]. Then g(f1, ..., fn) is also M–definable and continuous.

Proof By Proposition 3.2, g(f1, ..., fn) is M–definable. Since in any ordered field the
composition of continuous functions is continuous, also g(f1, ..., fn) is continuous.

If a continuous function f is M–definable, then we can establish a way to interpret over
QM formulas in the language LPA expanded by f and with finitely many parameters
from KM . As the multivariable case works similarly, we illustrate this in the single
variable case.

Let f : KM → KM be continuous and defined by ψ(n, y,~p,X) for some ~p ∈ QM . Let
c ∈ QM . Then ψ(n, y,~p, c) defines f (c). Hence, we have that f (c) > 0 if and only if
the following holds in QM :

∃(ε > 0) ∃(N ∈ M) ∀
(
n ∈ M>N) ∀q (ψ(n, q,~p, c)→ q > ε)

Now let c ∈ KM be arbitrary and let cn be a rational M–Cauchy sequence with
limn→∞ cn = c. Then f (c) > 0 if and only if

QM |= ∃(ε > 0) ∃(N ∈ M) ∀
(
n ∈ M>N) f (cn) > ε.

This equivalence follows directly from the continuity of f . Finally, f (c) = 0 holds if
and only if QM |= ¬ (f (c))2 > 0.

We have thus overall established a meaningful interpretation of expressions of the form
QM |= ϕ(~a), where ϕ(~x) is a formula in LPA expanded by continuous M–definable
functions, with quantification over M , ZM as well as QM , and ~a is a tuple in KM .

3.2 Exponentiation on KM

The main purpose of this subsection is to introduce an exponential expM on KM , ie
an isomorphism from (KM,+, 0, <) to (K>0

M , ·, 1, <). Moreover, we establish some
analytic results that enable us to quantify in M over Lexp –formulas.

Recall that over PA, the binary exponentiation function (m, n) 7→ mn is definable. We
are interested in base 2 exponentiation, ie the function 2x on M . In the following, we
extend 2x to an exponential expM with domain KM .

For any n, b, c ∈ M>0 , consider the set B =
{

m ∈ M : mc ≤ 2nc+b
}

. Since 1 ∈ B,
this set is non-empty. Moreover, since B is definable in M and has an upper bound
2n+b , by overspill we obtain that B has a maximum in M . We define:

appr(n, b, c) = max B

Journal of Logic & Analysis 13:3 (2021)
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Let a ∈ K>0
M and let bn and cn be M–sequences in M>0 such that an = bn/cn and

a = limn→∞ an . For any n ∈ M>0 , let dn = appr(n, bn, cn). We define expM(a) as:

expM(a) = lim
n→∞

dn

2n

Moreover, we set expM(0) = 1, and for a ∈ K<0
M , we set expM(a) = expM(−a)−1 .

Note that dn is the unique element of M satisfying:
dcn

n

2ncn
≤ 2bn <

(dn + 1)cn

2ncn

Hence, for each n ∈ M>0 , the M–rational dn/2n is supposed to approximate the value
of 2bn/cn with an error of at most 1/2n .

In order to show that expM is well-defined, one has to verify that for each positive
M–real a as above, the sequence dn/2n is a rational M–Cauchy sequence, and that two
equivalent rational M–Cauchy sequences (an) and (a′n) produce equivalent rational
M–Cauchy sequences dn/2n and d′n/2n . To establish that expM is indeed an exponential,
one has to check the properties of isomorphy from (KM,+, 0, <) to (K>0

M , ·, 1, <). All
these properties of expM can be verified by simple analytic arguments. However, since
this is a rather tedious exercise and not very insightful, we refer the reader to Krapp [13,
Section 7.2], where all steps of the proof of the following theorem are presented in
detail (see [13, Lemma 7.20 and Theorem 7.26]).

Theorem 3.4 The function expM defines an exponential on KM . Moreover, expM
extends base 2 exponentiation on M , ie expM(n) = 2n for any n ∈ M .

Remark 3.5 Note that by construction of expM via limits of rational M–Cauchy
sequences, clearly it is M–definable.

Theorem 3.4 enables us to consider expM as base 2 exponentiation on KM . We thus
denote expM(x) from now on also by 2x .

Since 2x defines an exponential on KM , it is, in particular, a continuous map, as
the preimage of any open interval in KM under 2x is an open subset of KM . An
exponential polynomial p with integer coefficients is an expression of the form
p(x1, . . . , xn) = r(x1, . . . , xn, 2x1 , . . . , 2xn) for some r(~x,~y) ∈ Z[~x,~y]. Note that by
Corollary 3.3, any exponential polynomial over (KM, 2x) is continuous and M–definable.
Hence, by the conventions introduced at the end of Section 3.1, we can make sense
of expressions of the form QM |= ϕ(~a), where ~a ∈ KM and ϕ is an arbitrary Lexp –
formula with quantification over M , ZM as well as QM . Note that by the conventions
we established, for any quantifier-free Lexp –formula ϕ and any ~a ∈ KM , we have
QM |= ϕ(~a) if and only if (KM, 2x) |= ϕ(~a).

Journal of Logic & Analysis 13:3 (2021)
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4 Model theoretic properties

In the previous sections, we fixed a model M |= PA and constructed an M–definable
exponential 2x on KM . In this section, we first consider models of true arithmetic and
prove our main result (see Theorem 4.5), then turn to models of Peano arithmetic and
obtain partial results regarding Conjecture 4.6 and finally show that bounded arithmetic
does not suffice for our construction of an exponential.

4.1 True arithmetic

It was first shown by Wilkie [23] that the theory of real exponentiation Th(Rexp) is
model complete. As a consequence, Th(Rexp) is axiomatised by all its ∀2 –sentences5

(see eg Hodges [9, Theorem 8.3.3]). Due to the following lemma (see eg Macintyre [17,
Section 2.5] or Krapp [13, Lemma 4.3]), an Lexp –structure is a model of Th(Rexp) if
and only if it satisfies all sentences in Th(Rexp) which are of the form ∀~x∃~y p(~x,~y) = 0
for some exponential polynomial p.

Lemma 4.1 Let ϕ(~u,~y) = ϕ(u1, . . . , um,~y) be a quantifier-free Lexp –formula. Then
for any real closed exponential field (K,E), the formula ∃~u ϕ(~u,~y) is equivalent over
(K,E) to a formula of the form ∃~x p(~x,~y) = 0 for some exponential polynomial
p(~x,~y) = p(x1, . . . , xn,~y) with integer coefficients (where possibly n 6= m) .

For the next lemma, recall that by the conventions established in Section 3 we have that
M–reals can also be defined by Lexp –formulas and that, in this regard, by Lemma 2.4
we may assume that all occurring Lexp –formulas are safe formulas.

Lemma 4.2 Let M |= PA and let r(x1, ..., xk, y1, ..., ym) be an exponential polynomial
with integer coefficients. Moreover, let ϕi(n, y,~v) be Lexp –formulas. Then there
exist Lexp –formulas ψi(n, y,~v) such that for any ~p ∈ QM , we have (KM, 2x) |=
∃~y r(x~pϕ1 , ..., x

~p
ϕk ,~y) = 0 if and only if:

QM |= r
(

x~pϕ1
, ..., x~pϕk

, x~pψ1
, ..., x~pψm

)
= 0

Proof We first assume that k = m = 1. Let ~p ∈ QM such that (KM, 2x) |= ∃y r(x0, y) =

0, where x0 = x~pϕ1 . Since r is continuous and QM is dense in KM , we obtain that

QM |= ∀(ε > 0) ∃(δ > 0) ∀t (|t − y0| < δ → |r(x0, t)| < ε)(4–1)

5An ∀2 –formula is of the form ∀~x ∃~y ϕ(~x,~y,~v), where ϕ is quantifier-free (see [9, page 47f]).
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where y0 ∈ KM with r(x0, y0) = 0. Now consider the formula α(~p,L, k, `) given by:

∀(ε > 0)∃q1, q2

(
L +

k
2`
≤ q1 < q2 ≤ L +

k + 1
2`
∧ ∀(t ∈ [q1, q2]) |r(x0, t)| < ε

)
By (4–1) and density of QM in KM , the set

A =
{

L ∈ ZM : QM |= ∀(` ∈ M)∃
(

k ∈ M<2`
)
α(~p,L, k, `)

}
which is definable over QM , is non-empty. (For instance, by0c ∈ A.) Hence, we can
choose L0 ∈ ZM such that |L0| is minimal. By definition of A, for any n ∈ M we can
choose the least k(n) ∈ M with k < 2n such that QM |= α(~p,L0, k(n), n). Hence, for
any n ∈ M

QM |= ∀(ε > 0) ∃q1, q2(
L0 +

k(n)
2n ≤ q1 < q2 ≤ L0 +

k(n) + 1
2n ∧ ∀(t ∈ [q1, q2]) |r(x0, t)| < ε

)
and k(n) is least with that property. By choice of k(n), we have that an = L0 + k(n)/2n

is a rational M–Cauchy sequence, as |an − an+1| ≤ 1/2n . Moreover, the M–real
a = limn→∞ an satisfies r(x0, a) = 0, as for any ε ∈ Q>0

M we have |r(x0, a)| < ε.
Finally, let ψ(n, y,~v) be the safe formula given by Lemma 2.4 such that ψ(n, y,~p)
defines the M–sequence an . Then QM |= r(x0, x

~p
ψ) = 0, as required.

Note that the construction of ψ did not depend on the tuple ~p. Hence, if ~p ∈ QM such
that (KM, 2x) |= ∀y |r(x0, y)| > 0, then the set A in the construction above is empty. By
Lemma 2.4, we obtain that x~pψ = 0. Thus, QM |= |r(x0, x

~p
ψ)| > 0, yielding the required

result.

The general case, ie the case that k,m ≥ 1, works in an analogous way: the absolute
values in each formula above can be replaced by an appropriate norm such as the
maximum norm. In order to construct a tuple of sequences (k1(n), . . . , km(n)) ∈ Mm ,
one can choose the least element of Mm , with respect to the lexicographic ordering,
satisfying a multivariable version of the formula α .

We call the formulas (ψ1, ..., ψm) in Lemma 4.2 the uniformising formulas for
(ϕ1, ..., ϕk) in r . Lemma 4.2 immediately implies the following.

Lemma 4.3 (∀2 –Uniformisation) Let M |= PA and let r(x1, ..., xn, y1, ..., ym) be an
exponential polynomial with integer coefficients such that (KM, 2x) |= ∀~x ∃~y r(~x,~y) = 0.
Then for every n–tuple (ϕ1, ..., ϕn) of Lexp –formulas, the corresponding m–tuple
(ψ1, ..., ψm) of uniformising Lexp –formulas satisfies:

QM |= ∀~v r
(

x~vϕ1
, ..., x~vϕn

, x~vψ1
, ..., x~vψm

)
= 0

Journal of Logic & Analysis 13:3 (2021)
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We now specialise to models of true arithmetic and start with the standard model N.

Lemma 4.4 The real closed exponential field (KN, 2x) is a model of real exponentiation.

Proof By Lemma 4.1, it suffices to show that any ∀2 –sentence in Th(Rexp) whose
quantifier-free part is an exponential polynomial equation holds in (KN, 2x). Again, we
assume for the sake of simplicity that any such formula consists of one universal and
one existential quantifier. Let ∀x∃y r(x, y) = 0 ∈ Th(Rexp) where r is an exponential
polynomial with integer coefficients. Moreover, let ϕ(n, y,~v) be an Lexp –formula and
let ~p ∈ N. As Theorem 3.4 implies that (KN, 2x) is a substructure of Rexp , we obtain
Rexp |= ∃y r(x~pϕ, y) = 0. Since QN = Q is dense in R, we can follow the same steps as
in the proof of Lemma 4.2 and obtain that the resulting uniformising formula ψ for ϕ
satisfies (KN, 2x) |= r(x~pϕ, x

~p
ψ) = 0.

Theorem 4.5 Let M |= Th(N). Then (KM, 2x) is a model of real exponentiation.

Proof By Lemma 4.4, it suffices to prove that (KM, 2x) ≡ (KN, 2x) and in this
regard to show that any ∀2 –sentence in Th(KN, 2x) also holds in (KM, 2x). Let
r(x1, ..., xn, y1, ..., ym) be an exponential polynomial with integer coefficients such
that (KN, 2x) |= ∀~x ∃~y r(~x,~y) = 0. Let (ϕ1, ..., ϕn) be a tuple of Lexp –formulas
and let (ψ1, ..., ψm) be their uniformising formulas as in Lemma 4.3. Then Q |=
∀~v r(x~vϕ1

, ..., x~vϕn
, x~vψ1

, ..., x~vψm
) = 0. By elementary equivalence, we obtain that for any

~p ∈ M ,
QM |= r

(
x~pϕ1

, ..., x~pϕn
, x~pψ1

, ..., x~pψm

)
= 0

yielding the required conclusion.

4.2 Peano arithmetic

As mentioned in the introduction, it is possible that Theorem 4.5 already holds for
models of PA.We highlight this as the following conjecture.

Conjecture 4.6 Let M |= PA. Then (KM, 2x) is a model of real exponentiation.

In the following, we show that under the assumption of Real Schanuel’s Conjecture (SC),
any model complete real closed exponential field (KM, 2x), where M |= PA, satisfies
the existential theory Th∃(Rexp) of real exponentiation.6 This conjecture is tightly

6We thank an anonymous referee for suggesting to study this question under the assumption
of Schanuel’s Conjecture.
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connected to the decidability of the complete theory Th(Rexp) of Rexp : Macintyre
and Wilkie [16] proved that Th(Rexp) is decidable if and only if its existential theory
Th∃(Rexp) is recursively axiomatisable. Moreover, they showed that the latter holds if
one assumes (SC).7

Real Schanuel’s Conjecture (SC) Let α1, . . . , αn ∈ R be linearly independent over
Q. Then the transcendence degree of Q(α1, . . . , αn, eα1 , . . . , eαn) over Q is at least n.

For the remainder of this section, fix a model M |= PA. Recall that we denote the
standard base e exponential on R by exp. We first show that whenever (KM, 2x) is
model complete, it is definably complete, ie any non-empty Lexp –definable subset of
KM which is bounded from below has an infimum in KM .

Lemma 4.7 Let A ⊆ QM be non-empty and bounded from below and suppose that
there is some Lexp –formula ψ(x,~z) and some ~b ∈ KM such that for any a ∈ QM , we
have a ∈ A if and only if QM |= ψ(a,~b). Then A has an infimum in KM .

Proof Let q0 ∈ QM be a lower bound of A and let ψ′(x,~b, q0) be the formula
∃y (ψ(y,~b)∧ x > y− q0). Denote by A′ the set defined by ψ′(x,~b, q0), ie q ∈ A′ if and
only if QM |= ψ′(q,~b, q0). Note that all elements of A′ are strictly positive and A′ is an
upward closed subset of QM . It suffices to find an infimum α′ of A′ in KM , as then
α′ + q0 is an infimum of A. Define the rational M–sequence cn/dn , where each pair
(cn, dn) ∈ M2 is the least pair, ordered lexicographically, satisfying

QM |= ψ′
(

cn

dn
,~b, q0

)
∧ ¬ψ′

(
cn

dn
− 1

n
,~b, q0

)
ie cn/dn ∈ A′ and cn/dn − 1/n /∈ A′ . This sequence converges to the M–real which is
the infimum of A′ in KM .

Proposition 4.8 Suppose that (KM, 2x) is model complete. Then it is definably
complete.

Proof Let A ⊆ KM be a non-empty Lexp –definable set which is bounded from below.
By passing to {x ∈ KM : ∃(y ∈ A) x ≥ y} if necessary (which is definable when A is),
we may assume that A is upward closed. Let A′ = A ∩ QM . Since QM is dense in
KM , the infimum of A′ in KM is also the infimum of A. By Lemma 4.7, it suffices to

7Macintyre and Wilkie’s results are actually on the real exponential field with base e
exponentiation, but they hold independently of the base to which exponentiation is carried out.
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14 M Carl and L S Krapp

show that there is an Lexp –formula ψ(x) (with parameters from KM ) such that for any
q ∈ QM we have q ∈ A′ if and only if QM |= ψ(q).

Due to the model completeness of (KM, 2x) and Lemma 4.1, there is an exponential poly-
nomial with integer coefficients r(x1, . . . , xk, y1, . . . , ym) such that ∃~y r(x1, b2, . . . , bk,~y)
= 0 defines A for some b2, . . . , bk ∈ KM . Let ϕi(n, y, v0, . . . , v`) be Lexp –formulas
and let p1, . . . , p` ∈ QM such that for any p0 ∈ QM and any i ∈ {2, . . . , k} we have
bi = x(p0,...,p`)

ϕi . (For instance, one can choose formulas ϕi(n, y, v0, . . . , v`) in which v0

does not appear as a free variable.) Moreover, let ϕ1(n, y, v0, . . . , v`) be the formula
y = v0 . Note that for any ~q = (q0, . . . , q`) ∈ QM we have x~qϕ1 = q0 . Finally, let
(ψ1, ..., ψm) be the uniformising formulas for (ϕ1, ..., ϕk) in r . Then for any p0 ∈ QM

we have (KM, 2x) |= ∃~y r(p0, b2, . . . , bk,~y) = 0 if and only if:

QM |= r
(

x~pϕ1
, ..., x~pϕk

, x~pψ1
, ..., x~pψm

)
= 0

Hence, the formula

r
(

x(p0,...,p`)
ϕ1

, ..., x(p0,...,p`)
ϕk

, x(p0,...,p`)
ψ1

, ..., x(p0,...,p`)
ψm

)
= 0

where p0 is considered as the free variable, defines A′ in QM .

Next we show unconditionally that expM(x) = 2x satisfies a differential equation
exp′M = a expM for some a ∈ K>0

M , ie that the following holds in (KM, 2x):

∀(ε > 0) ∃(δ > 0) ∀h
(

0 < |h| < δ →
∣∣∣∣expM(x + h)− expM(x)

h
− a
∣∣∣∣ < ε

)
In order to do so, it is useful to have an element in KM behaving like Euler’s number.
Consider the sequences:

an =

(
1 +

1
n

)n

and bn =

(
1 +

1
n

)n+1

By an easy inductive argument using Bernoulli’s inequality, we have that an is strictly
increasing, bn is strictly decreasing and bn − an < 1/n for any n ∈ M>0 . Hence, we
can define eM as eM = limn→∞ an .

Lemma 4.9 The inverse functions logM of expM is differentiable in 1 with log′M(1) =

logM(eM).

Proof Consider the sequence in KM :

cn = logM(an) =
logM

(
1 + 1

n

)
1
n

By the remarks above, (cn) is strictly decreasing and converges to logM(eM), as
required.
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Lemma 4.10 The exponential expM is differentiable in 0 with exp′M(0) = 1
logM(eM) .

Proof By Lemma 4.9, the inverse function of expM is differentiable in expM(0) with
derivative logM(eM). We obtain that exp′M(0) = 1

logM(eM) .

One can now easily deduce that expM is differentiable everywhere with exp′M =

exp′M(0) expM (see eg Krapp [13, Proposition 2.13]). Set E(x) = expM(logM(eM)x).
Then E satisfies the differential equation E′ = E with initial condition E(0) = 1. We
abbreviate this differential equation by EXP and consider E as base eM exponentiation.

The above results can be used to show that whenever (KM, expM) is model complete, it
is o-minimal. A linearly ordered structure is called o-minimal if any definable subset is
a finite union of intervals and points. The study of o-minimal exponential fields whose
exponential satisfies EXP has strong links to the decidability of Th(Rexp), as described
in Krapp [11].

Proposition 4.11 Suppose that (KM, expM) is model complete. Then it is o-minimal.

Proof By Proposition 4.8, (KM, expM) is definably complete, and by the remarks
above, E satisfies EXP. Hence, by Fornasiero and Servi [6] and Hieronymi [8], this
implies that (KM,E) is o-minimal (see Krapp [12, page 7] or [13, Corollary 4.23] for
details). Since expM is definable in (KM,E), also (KM, expM) is o-minimal.

Corollary 4.12 Assume (SC) and suppose that (KM, expM) is model complete. Then
it satisfies Th∃(Rexp).

Proof By Servi [20, page 108] under the assumption of (SC), any o-minimal exponential
field satisfying EXP is a model of Th∃(R, exp). Thus, (KM,E) |= Th∃(R, exp) by
Proposition 4.11. By change of base of exponentiation, we obtain (KM, expM) |=
Th∃(Rexp).

4.3 A counterexample for bounded arithmetic

The results of Section 4.1 and Section 4.2 about true arithmetic and Peano arithmetic
stand in sharp contrast with the situation for the weaker fragment of bounded arithmetic
(I∆0 ). In this case, already quite weak notions of exponentials may fail to occur. The
following definition comes from S. Kuhlmann [15, page 33].
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16 M Carl and L S Krapp

Definition 4.13 Let K be a real closed field. An exponential E on K is a GA-
exponential (where ‘GA’ stands for ‘growth axiom’) if, for all a ∈ K and n ∈ N>0 ,
we have that a ≥ n2 implies E(a) > an .

Recall that a non-standard model M of I∆0 is bounded if there exists a non-standard
element a ∈ M such that {ai : i ∈ N} is cofinal in M . By the remarks at the
beginning of Kaye [10, Chapter 6], such a model can be obtained by taking the set
{x ∈ N : ∃(i ∈ N) x < ai}, where N is a non-standard model of PA and a is a
non-standard element of N .

Theorem 4.14 For any bounded non-standard model M of I∆0 and any real closed
field K which has M as an IP, K does not admit a GA-exponential. In particular, no
real closed field K which has M as an IP admits a function g : K → K such that
(K, g) ≡ Rexp .

Proof Let M be a bounded non-standard model of I∆0 , and let a ∈ M such that
{ai : i ∈ N} is cofinal in M . Assume that g were a GA-exponential on K . As a is
non-standard, we have a > n2 for all n ∈ N. Hence, we have g(a) > an for every
n ∈ N. Since M is an IP of KM , this implies that g(a) is strictly greater than every
element of KM , a contradiction.

The second claim is now immediate, as exp is a GA-exponential on R.

5 Real closures and M–compatible exponentials

In this section, we demonstrate that real closures of models of true arithmetic never
support a ‘real-like’ exponential. This gives an upper limit for the effect that even an IP
modelling true arithmetic has on a real closed field. Note that this is not quite surprising,
as even considering the standard model N, we get Qrc as the real closure of its fraction
field, which does not admit an exponential.

Definition 5.1 Let M |= PA and let K be a real closed field such that M is an IP of K .
Then an exponential E on K is M–compatible if E|M is the usual base 2 exponential
on M .

Remark 5.2 (1) For any M |= PA, the only M–compatible exponential on KM is
expM . Indeed, for any M–compatible exponential E on KM , since expM and E
agree on M , by isomorphism properties they agree on QM . By continuity of
exponentials and density of QM in KM , they also agree on KM .
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(2) For any M |= PA, any M–definable exponential E on KM with E(1) = 2 is
M–compatible: By isomorphism properties we have E(n) = 2n for any n ∈ N.
Since E is M–definable, one can then show by induction that E coincides with
the standard base 2 exponential on M .

To study real closures of models M of Th(N), we consider how the real closure Qrc
M of

QM is coded in M .

Definition 5.3 Let M |= PA. An algebraic M–real is an M–real r such that, for some
p ∈ QM[X], we have p(r) = 0.

Lemma 5.4 For any d ∈ N and any i ∈ N>0 , there exists an LPA–formula
rooti(n, y, v0, . . . , vd) such that, for every M |= PA and any a0, . . . , ad ∈ QM such that
f (X) = adXd + . . .+ a1X + a0 has at least i distinct zeros in KM , the following holds:
If ad 6= 0, then rooti(n, y,~a) defines an M–real r = x~arooti such that f (r) = 0 and there
are exactly i− 1 many M–reals below r which are a zero of f .

Proof The formula rooti(n, y,~a) is obtained by first finding L,U ∈ ZM such that
f is positive and increasing or negative and decreasing beyond U and negative and
increasing or positive and decreasing before L. Note that since QM is dense in KM

and f is continuous, this can be described by an LPA–formula with quantification over
QM . Moreover, by picking L and U such that |L|, |U| ∈ M are least with that property,
L and U are definable over M . Now the possible zeros of f must lie in the interval
(L,U) in KM . By modifying the arguments used in the proof of Lemma 4.2, we can
now define exactly the i–th zero of f in this interval.

Let us recall the Gelfond–Schneider Theorem (see eg Baker [1, page 10f]).

Theorem 5.5 Let α, β ∈ R be algebraic such that α /∈ {0, 1} and β /∈ Q. Then αβ

is transcendental.

Theorem 5.6 Let M |= Th(N). Then Qrc
M does not admit an M–compatible exponential.

Proof Let R = Qrc
M . Assume that E : R→ R were an M–compatible exponential on

R. Arguing as in Remark 5.2, we obtain E = expM|R .

By Lemma 5.4, the formula root2(n, y,−2, 0, 1) defines the positive zero
√

2 of X2 − 2
both in KN and KM . Since s = expM(

√
2) is an algebraic M–real, we have

QM |= ∃b0, . . . , b` (b` 6= 0 ∧ b`s` + . . .+ b1s + b0 = 0).
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18 M Carl and L S Krapp

By elementary equivalence, we obtain that there exists a non-zero polynomial p(X) ∈
Q[X] such that p(expN(

√
2)) = 0, ie that 2

√
2 is algebraic. This contradicts the

Gelfond–Schneider Theorem.

We conjecture that the assumptions of Theorem 5.6 can be weakened to M |= PA;
naturally, our argument depends on whether or not the Gelfond–Schneider Theorem
is provable in PA. The question arises whether it is possible for Qrc

M to admit an
exponential which is not necessarily M–compatible. In the following, we demonstrate
that this is, indeed, the case if M is a countable model of PA. We do so by going
through a construction via middle exponentials.

The definition of middle exponentials in ordered fields K is given in S. Kuhlmann [15,
Remark 1.20]. For our purposes it is enough to point out that any exponential on the
residue field K under the natural valuation (ie the finest convex valuation on K ) induces
a middle exponential on K . Moreover, an exponential on a field K can be constructed
by “gluing” a left-, middle- and right-exponential together (see [15, Lemma 1.21]).

Theorem 5.7 Let K be a non-archimedean ordered field and suppose that K has an IP
M modelling PA. Then K admits a middle exponential.

Proof By the remarks above, we need to show that the residue field K of K under the
natural valuation admits an exponential. Since M is an integer part of K , we obtain
that QM is dense in K . Hence, the residue fields of QM and K coincide. As QM is
also dense in KM , the residue fields of K and KM coincide. Finally, as KM admits an
exponential with expM(1) = 2, this induces an exponential on its residue field (see [15,
Lemma 1.17]).

Theorem 5.7 gives a positive answer to Berarducci, Ehrlich and S. Kuhlmann [2,
page 3316, Question 10] in the countable case. We state it as the following corollary.

Corollary 5.8 Let K be a countable non-archimedean real closed field which has an
IP M modelling PA. Then K admits an exponential.

Proof K admits a left-exponential by Carl, D’Aquino and S. Kuhlmann [3], a middle-
exponential by Theorem 5.7, and a right-exponential by [15, Corollary 1.39].

We conclude this section by presenting an example showing that models of real
exponentiation with IPs modelling true arithmetic do not necessarily have an M–
compatible exponential.
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Example 5.9 Let M |= Th(N) be non-standard and consider the model of real
exponentiation (KM, expM). For this model, expM|M is the standard base 2 exponential
on M . By the work of Ressayre [19], for any GA-exponential E on KM which
agrees with expM on the interval [0, 1] in KM , we have that (KM,E) is also a model
of real exponentiation. It is now a standard procedure to define a GA-exponential
E which agrees with expM on the convex hull of Z in KM (see S. Kuhlmann [15,
Section 1.4] and Krapp [13, Section 4] for details): Let O be the convex hull of Z in
KM and let A be an ordered group complement to O in KM , ie KM = A⊕O and any
element in A has a non-standard integer part. We define an exponential E on KM by
E(a + b) = expM(2a) expM(b) for any a ∈ A and b ∈ O . Then for any non-standard
element m ∈ M we have that E(m) 6= expM(m) = 2m . Thus, E is not M–compatible.
Since E(x) ≥ expM(x) for any x ∈ K>0

M , we obtain by Ressayre’s axiomatisation that
(KM,E) ≡ Rexp .

6 Further work

We conclude this work by motivating and collecting some open questions. Many of the
arguments from Section 3 can be extended to any functions that are M–definable and
preserve the model completeness of KM . In particular, it is tempting to apply Gabrièlov’s
result on the model completeness of the reals with restricted analytic functions (see [7])
and Wilkie’s extensions thereof (see [23]).

Question 6.1 Let M |= Th(N). Under what conditions does KM admit restricted
analytic functions (fi) such that (KM, (fi), expM) is elementarily equivalent to Ran,exp

(the ordered field of real numbers expanded by all restricted analytic functions as well
as exponentiation)?

In Corollary 4.12, we have given a partial answer to Conjecture 4.6. Also in relation
to Question 6.1 we would obtain a further strengthening if the assumption of model
completeness could be dropped. Again, it may be possible to prove this in a similar way
as the model completeness of Rexp is proved in [23] or van den Dries and Miller [5].

Question 6.2 Let M |= PA. Is (KM, expM) model complete?

Furthermore, the general picture regarding subtheories of true arithmetic is still quite
rough; it would be nice to refine it by considering further fragments of arithmetic and
the impact they have on possible exponentials of real closed fields containing models
thereof as IPs.
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