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Abstract: This is a philosophical paper about enumerative induction, a basic rule 
of inductive or defeasible reasoning. It shows that it is almost satisfactorily ac-
counted for in probability theory and even more adequately in ranking theory. As 
such it certainly deals with the foundations of formal rationality and should be of 
interest not only to philosophers, but also to the Artificial Intelligence community, 
which is deeply engaged in inductive reasoning as well. 

 
1. Introduction 

 
Enumerative induction is a kind of inference: from “the 1st F is G, the 2nd F is G, 

…, the n-th F is G” or from “all observed F’s are G” infer “all F’s are G” or even “it’s a 
law that all F’s are G”. This is obviously not a deductively valid inference. Rather, it is 
a defeasible or nonmonotonic inference: add the premise “the n+1st or the next ob-
served F is not G”, and you would reject the conclusion. So, is it an inductively valid 
inference? Hard to say; we have no good criterion of inductive validity. For some it is 
the most basic inductive inference of all. For some it is much too primitive and not any-
thing we can rely on in our inductive practice. Still others think that it leads into contra-
dictions straightaway. 

In any case, it is a most suggestive and most venerable inductive inference rule. 
Since mankind can think, it uses this rule. We generalize all the time, we wouldn’t sur-
vive without doing so, and this finds its immediate expression in this rule. As indicated, 
the rule is contested and has been much discussed. The present situation, though, is 
strangely silenced. I guess, most philosophers think that this rule has finally found its 
Bayesian home. And even though this home may not be fully comfortable, they feel we 
need no longer be concerned. 
																																																													
1 I dedicate this paper to Gabriele Kern-Isberner. I am not well suited to grasp all the merits of her work. 
However, from my perspective I am very happy and grateful for the brilliant uses she has made of ranking 
theory invented by me in 1983, for instance in her Habilitationsschrift (1999), in Kern-Isberner (2004), 
and many papers thereafter. 
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Well, we shouldn’t take this to be the end of the story. There is at least an afterword 
to it. As this paper will explain, the ranking-theoretic home is even more adequate. We 
will find that within this framework the above inferences hold good, even with the 
stronger nomological conclusion and without danger of contradiction. The afterword 
will not be particularly complicated. In my view, it’s just a matter of an adequate con-
ceptualization – which ranking theory is able to provide. 

The plan of the paper is as follows: First, it should, and does, deliver a bit of back-
ground. Section 2 will give a very brief historical sketch of enumerative induction. This 
history is interwoven with the history of inductive skepticism, as indicated in section 3. 
Section 4 will explain how enumerative induction finally arrived at its Bayesian home, 
not without frictions, though. Whenever there is a probabilistic story, there is also an 
analogous ranking-theoretic story. This holds in the present case, too. So, section 5 will 
tell that analogous story, in which the Bayesian frictions will simply vanish. Section 6 
concludes with two observations concerning Goodman’s new riddle of induction and 
concerning the alleged apriority of the uniformity of nature. 

The Bayesians already discovered that their (slightly distorted) version of enumera-
tive induction is entailed by symmetry considerations (and minor additional premises). 
This entailment will stand out even more clearly in the ranking-theoretic story. Thus, 
enumerative induction is not a basic inductive inference, as it has seemed through cen-
turies, but is derived from even more basic features of our inductive constitution. 

 
2. A Few Historical Remarks About Enumerative Induction 

 
Human thinking generalizes. And as soon as reflection sets in, one wonders what one 

is really doing there. So it is not surprising that this generalizing inference was an im-
portant topic already in early Indian philosophy. How early is hard to say, because there 
is often a big time gap between thinking and writing down in Indian philosophy. In any 
case, there was a debate how many positive instances were required for drawing this 
inference, and there was a doctrine that one positive instance, one F that is a G, may 
suffice, at least when F and G stand for the right kind of universals. There was also a 
clear awareness of the danger of overgeneralization. The generalizations need to be 
hedged by something like varying the conditions and noting the ensuing differences. 
Only then one can hope to specify the right kind of F (which may, of course, be logical-
ly complex taking account of all the conjectured necessary and sufficient conditions).2 

																																																													
2 Cf., e.g., Smart (1967, pp. 164ff.) 
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The inference was also a concern in Greek philosophy. Aristotle discussed it in his 
Topoi and his Analytica Priora under the label epagoge. Being aware that it is not co-
gent, but only more or less persuasive, he tried to find conditions of admissibility. The 
inference was also an issue between the Epicureans and the Stoics. The more empirical-
ly inclined Epicureans tried to spell out conditions under which the inference acquires 
more certainty, while the more rationalistic Stoics emphasized its ineliminable uncer-
tainty. It’s no surprise that already the ancient Skeptics complained that the inference 
lacks any justification. We owe, by the way, the term inductio to Cicero who thus trans-
lated the Aristotelian term.3 

The rediscovery of Greek philosophy in the Middle Ages naturally led to a rich dis-
cussion of enumerative induction in Scholastic philosophy.4 Still, all those treatments 
appear quite academic. The topic acquired real methodological importance only with the 
rise of empirical science in the 16th century, and, moreover, theoretical wit with the rise 
of what can be properly called probability theory in the 17th century. And, no doubt, the 
herald of the new inductive methods was Francis Bacon. 

Bacon, particularly in his (1620), developed quite sophisticated canons of the scien-
tific method or of inductive reasoning, which served as a sort of blueprint for John Stu-
art Mill’s much more elaborate theory in his (1843, Book III, chs. 8 – 10) more than 200 
years later. One might say that Bacon’s ideas were guided by trust and mistrust in enu-
merative induction alike. Unguarded generalization would be childish. Hence, he devel-
oped what he called the Table of Affirmation, the Table of Negation, and most im-
portantly, the Table of Comparison, which Mill turned into this Method of Concomitant 
Variations. These refinements are required, since inductive generalizations are counter-
acted by eliminations through counter-instances. And this initiates a search for ever 
more detailed and accurate generalizations.5 

In modern terms, not available at those times, one might say that the conclusion of 
enumerative induction is only a ceteris paribus law: ceteris paribus, all F’s are G. And 
then Bacon’s and Mill’s sophisticated methodology might be understood as trying to 
spell out how to substantiate this sweeping reference to ceteris paribus conditions. Not 
that this remark would clarify much; all the present treatments of ceteris paribus laws 
are just as tentative as those historical inductive canons.6 It is noteworthy, though, that 
the problems addressed now and then are the same. 

																																																													
3 Cf. Ruzicka (1976, pp. 323-325).  
4 Cf. Ruzicka (1976, pp. 326f.). 
5 Cf. also Cranston (1967, pp. 238f.). 
6 See Spohn (2014) which contains a very brief critical overview of those treatments as well as my expli-
cation of ceteris paribus conditions in ranking-theoretic terms, i.e., in terms to be applied here to enu-
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The advent of probability theory definitely widened the perspective. Probabilistic in-
ference was inductive inference par excellence. And the probabilistic generalization of 
enumerative induction was straightforward. It is called the statistical inference or the 
straight rule and says: if m of the n observed F’s are G, then infer that the (statistical) 
probability of an F being G is m/n. Surely, this is beset with all the problems of enumer-
ative induction and more. 

Still, the widening of the perspective was most important. The old writings appeared 
to conceive of induction only in the form of enumerative induction. So-called elimina-
tive induction is also a very old idea, certainly to be found, e.g., already in Bacon’s and 
definitely in Mill’s methods, and gained central importance in Popper’s (1934) philoso-
phy of science. However, it is a deductive inference, a virtue Popper has continuously 
emphasized, with the merely negative conclusion that some generalizations are false. 
Thus, it was only in the 18th century, after the advent of probability theory, that meth-
odologists started clearly discerning various forms of inductive inference. Bayesian he-
gemony, though, the idea that all forms of inductive reasoning can be reduced to proba-
bilistic reasoning was a much later thought, taking shape only in the late 20th century.  

At the same time, the multitude of inductive inferences casted doubt on the role of 
enumerative induction. Maybe it is just too primitive, and there are superior inductive 
methods? For instance, Peirce started conceiving of abduction; and nowadays, many 
philosophers of science favor the idea that the inference to the best explanation (IBE = 
abduction) is such a superior inductive inference, which is characteristic of the modern 
sciences.7 Clarity about the nature of IBE is quite disproportionate, though, to this em-
phasis. Thus, calling enumerative induction primitive is at least ambiguous. It may 
mean: not sufficiently elaborated to be useful. But it may still mean: basic – so that it 
must be accounted for, before one can hope to do justice to more sophisticated forms of 
inductive inference. 

Another issue came to the fore in the vigorous debate between so-called inductivists 
and deductivists in the 19th century, apparently not only between philosophers, but also 
within the scientific disciplines themselves. Inductivists recommended enumerative 
induction or some of its sophistications as a method of generating scientific hypotheses. 
Deductivists took this to be absurd; finding hypotheses is a matter of informed imagina-
tion, in the first place, and of checking then whether the deductive consequences are the 
desired ones. Newton could never have arrived at his laws by enumerative induction! 

																																																																																																																																																																																			
merative induction as well. The paper also contains a simple learning algorithm for ceteris paribus condi-
tions, which I did not relate to the historical canons. Maybe one should. 
7 See, e.g., Lipton (1991). 
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Following Popper (1934), it was concluded in the 20th century that this debate was 
situated mainly within the context of discovery, which is the wrong context, anyway. 
The appropriate context rather is the context of justification. Induction should not be 
taken as a heuristic method; it is a matter of justifying or confirming the consequent by 
the premises. In fact, I perceive here an ambiguity in the notion of inference. Inference 
as a process might lead us to novel insights, whereas inference as a mere relation or 
connection between sentences or propositions invites us to assess the quality of that 
connection. I am entirely on the side of the latter interpretation. One must be aware, 
however, that it is quite a step to conceive of inference as confirmation. 

 
3. Brief Remarks on Inductive Skepticism 
 

The previous point reminds us of the fact that inductive inference was accompanied 
by inductive skepticism at all times. I have already mentioned the ancient Skeptics. The 
undeniable point is, simply, that the conclusion of an inductive inference might be false 
while its premises are true. This is indeed a defining characteristic of inductive or am-
pliative inference! So, what good reason is there to believe in the conclusion? 

In our modern times it was David Hume who developed inductive skepticism in so 
masterly a manner, in his Treatise (1739) as well as in his Enquiry (1748). His basic 
point again was that inductive inference cannot be deductively cogent. However, he 
made very clear that there is also no way around this basic point. There is also no induc-
tive justification of inductive inference. Such justification would just use and hence pre-
suppose the forms of inference to be justified. Causal inference, another main target of 
Hume, is no better off than inductive inference in general. 

A probabilistic interpretation of inductive inference doesn’t help, either. We might 
say that an inductive conclusion is at least very probable. But in which sense? If “very 
probable” means “high relative frequency of truth”, i.e., if “all observed F’s are G”, is to 
entail at least “most F’s are G”, this entailment is as unjustified as before. If, however, 
”very probable” signifies only our high confidence, nothing is gained; it is just the justi-
fication of this high confidence which is at issue.8 

Hume finally observed that all would be fine if we could presuppose the uniformity 
of nature as a most general law. Yet, how could we ever assume such a law? We could 
arrive at it only by a higher-order inductive generalization. This is no solution, no way 
to ground our inductive inferences. And so Hume acquiesced in his inductive skepti-

																																																													
8Cf. Salmon (1966, pp. 5ff. and pp. 48ff.) 
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cism. Inductive inferences are nothing but our habits of thought. We pursue the habits 
we have. What else could we do? But don’t ask for justification.9 

Kant tried to do better by trying to establish the uniformity of nature as an a priori 
principle of thought, without which any kind of experience would be impossible. In his 
terms this took the form of a general law of causality.10 Let’s not deepen the issue now. 
Surely, though, one might say that Hume convinced more philosophers than Kant did. 

Later on it became clear that even the law of the uniformity of nature wouldn’t help. 
This was the radicalization of Hume’s inductive skepticism by Goodman (1946). He 
invented unnatural generalizations like “all emeralds are grue”. His point then was that 
there are countless diverging generalizations that all agree with the observed facts. Sup-
pose that G and G' disagree only for unobserved F’s and that all observed F’s were G as 
well as G'. Hence, by enumerative induction, all F’s are G as well as G'. But this can’t 
be, provided there are F’s as yet unobserved. So, which of the two generalizations 
should we prefer? It won’t do to call G natural and G' unnatural. That’s precisely the 
issue. Thus the uniformity of nature may take countless shapes, and we have apparently 
no criterion for conjecturing rather this than that shape. In other words, not only are all 
inductive inferences deductively invalid, they all seem equally bad.11 

Goodman’s solution of his ‘new riddle of induction’ was roughly the same as 
Hume’s. He also referred to the habits of thought or rather to the entrenched social prac-
tices. The riddle provoked an intense discussion. However, I haven’t seen anything 
moving essentially beyond the original skeptical solution.12 

What’s the present status of inductive skepticism? My attitude – which seems wide-
spread, though I am perhaps overoptimistic – is this: Basically, one has to accept 
Hume’s skeptical solution. Just referring to the habits of thought, to social practice, etc. 
is, however, too psychologistic, too empirically minded, more defeatist than necessary. 
There are quite a number of normative principles or rationality postulates guiding our 
inductive behavior. And those principles have strong normative foundations; at least 
they allow for reasonable and sophisticated discussion. They need not uniquely deter-
																																																													
9 This is the quite common psychologistic interpretation of Hume. I don’t think that it is really fair to 
Hume. I rather see the exercise of reason in his ‚associations’ and ‚habits of thought’, an exercise that is 
clearly rationally reconstructible. 
10 This is the famous second analogy in Kant (1781/87, B232), which states the a priori principle: “All 
alterations take place in conformity with the law of connection of cause and effect”. This entails the uni-
formity of nature: “That which follows or happens must follow according to a universal rule from that 
which was contained in the previous state” (B245). 
11 Quine (1960, §17) and elsewhere made the insightful remark that all language use builds on a two-fold 
induction concerning nature as well as our own behavior or concerning the reference of signs and the 
signs themselves. Apply skepticism to this double induction, and you end up with meaning skepticism à 
la Kripke (1982). 
12 Freitag (2015), though, is one of the cutest recent contributions. 
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mine our inductive behavior. But they provide severe constraints, and how far-reaching 
and consequential they are is an open, fruitful, and constructive issue. I will return to 
this below. 

 
4. The Present Status of Enumerative Induction 

 
If this is really the present representative attitude concerning (skepticism about) in-

ductive inference in general, what does this specifically entail for enumerative induc-
tion? What is its present status? 

The first observation is a bit surprising, I find: The last 40 years have seen an explo-
sion of formal inductive theorizing. For centuries probability theory was the only game 
in town, and now there are default logic, belief revision theory, Dempster-Shafer belief 
functions, possibility theory, formal learning theory, ranking theory, indeed all kinds of 
defeasible or non-monotonic reasoning.13 However, to the best of my knowledge these 
theories hardly took a stance towards enumerative induction; this was simply no topic 
for them. This is a blunt contrast to the fact that in all the past centuries inductive infer-
ence was mainly about enumerative induction. 

Well, there are a few exceptions. Ranking theory is one; I’ll come to this. Pollock 
(1990) just accepted the statistical inference – as mentioned, the straightforward proba-
bilistic generalization of enumerative induction – among his representative collection of 
basic defeasible inference rules without deepening the insight in this inference. Baum-
gartner (2009) promotes a research tradition proposing algorithms for projecting causal 
structures or deterministic generalizations from singular data; this may indeed be called 
sophisticated enumerative induction.14 And most importantly, formal learning theory as 
initiated by Kevin Kelly is foremost a most elaborate account of enumerative induction; 
this is still an active research program15, which I cannot further discuss here. 

These exceptions are definitely worth attending, but they still seem minority projects. 
Therefore it is entirely appropriate, I think, to say that the present status of enumerative 
induction is represented by its Bayesian account. What is this account? Let me first in-
troduce some terminology so that we can be a bit more precise: 

Let us replace the language of first-order logic informally used so far by the set-
theoretic language of variables. Let X be some generic variable taking values in some 
range V. And Let X1, X2, … be an infinite series of possible realizations of X. Thus X1, 

																																																													
13 Halpern (2003) gives a beautiful systematization of a broad spectrum of theories, and Huber, Schmidt-
Petri (2009) provide a very useful anthology. 
14 Again, this should, but hasn’t been compared with the algorithm proposed in Spohn (2014). 
15 Cf, e.g., Kelly (2008). 



	

	
	

8 

X2, … is an infinite series of variables all taking values in V. For instance, we could 
consider an infinite series of F’s and let Xn take value 1 or 0 according to whether or not 
the n-th F is G. Or we could consider an infinite series of objects or experiments and let 
Xn take values 1, …, 4 according to whether the n-th object has, or the n-th experiment 
results in, F & G, F & non-G, non-F & G, or non-F & non-G. The generalization that 
all F’s are G then translates into the assertion that none of the variables Xn takes value 2. 
Or Xn could represent which value the n-th particle takes in some state space S or which 
trajectory in ST it takes through S during the times in T. So, we observe the behavior of 
the first n variables X1, …, Xn, and the issue of enumerative induction is what to infer 
from this concerning the behavior of the further variables Xn+1, Xn+2, … 

Now, a possible world, or a possible course of events, as far as it can be represented 
by the variables, is just a sequence of values v1, v2, … in V which the variables X1, X2, … 
might take. For convenience I shall assume that V is finite (but not a singleton, of 
course). Let N be the set of non-negative integers, N+ the set of positive integers, and N∞ 
= N  ∪  {∞}. So W = VN+

 may be taken as the set of possible worlds or possible courses 
of events. Even if V is finite, W is very rich, indeed uncountable. W may also be taken 
as the domain of the variables X1, X2, …. Then, for any v = (v1, v2, …) ∈ W, we may 
define Xn(v) = vn. Let {Xn = v} = {v ∈ W | Xn(v) = v} and {Xn ∈ U} = {v ∈ W | Xn(v) ∈ 
U}, respectively, represent the proposition that Xn takes the value v or some value in U 
⊆ V. All these atomic propositions generate a σ-algebra A of propositions over W. Our 
study of enumerative induction must hence focus on the general propositions GU = ∩n∈N+

 

{Xn ∈ U} that all variables take values in U. 
This is all the algebraic material we need. So, what is the Bayesian account of enu-

merative induction? As a first step this means to study the issue entirely in terms of sub-
jective probabilities, i.e., in terms of a (σ-additive) probability measure P on A and its 
rational behavior. I have already mentioned a second step: Within the context of justifi-
cation, inductive inference should be interpreted as confirmation. A third step then is 
Carnap’s explication of confirmation as probabilistic positive relevance.16 Thus, enu-
merative induction turns into the following claim: The proposition {X1 ∈ U} ∩ … ∩ 
{Xn ∈ U} is positively relevant to the proposition GU. 

At this point, an obstacle emerged: the problem of the null confirmation of laws. Un-
der the assumptions of Carnap’s so-called λ-continuum of inductive methods (which 
includes symmetry as introduced below) each infinite generalization GU (for U ⊂ V) 
provably receives probability 0.17 Hence, no proposition can be positively relevant to 
any contingent infinite generalization. 
																																																													
16 See Carnap (1950/62, chs. VI and VII). 
17 CF. Carnap (1950/62, § 110F). 
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Hintikka (1966) ingeniously circumvented this problem with his so-called two-
dimensional continuum of inductive methods. Here, universal generalizations receive a 
positive a priori probability and can thus be confirmed by positive instances.18 Some-
how, though, Hintikka’s ideas have not been well received. I am wondering why; I 
don’t know of any telling refutation. Perhaps my impression was a shared one, namely 
that Hintikka’s two-dimensional continuum was designed ad hoc in order to yield the 
intended results. Probabilities are anchored in reality in relative frequencies. So, induc-
tive probabilities are made for somehow estimating or approaching relative frequencies. 
Then, however, there does not seem to be any good reason for favoring extreme relative 
frequencies, 1 and 0, in such a way that they get a positive a priori weight, whereas oth-
erwise only intervals of relative frequencies get positive a priori weight. Granted, strict 
laws are peculiar. However, I think the specific characteristics of strict laws are better 
captured in the picture developed below. 

Perhaps, though, it was the strong conception of inductive logic in general which fell 
out of favor, and with it Hintikka’s proposal. Be this as it may, the main probabilistic 
line was simply Carnap’s: If the infinite generalization has probability 0, who cares 
about the infinite generalization? What counts are the cases within our life span or, 
simply, the next instance. Thus, in a fourth step, Carnap transformed enumerative in-
duction into his principle of positive instantial relevance: {X1 ∈ U} ∩ … ∩ {Xn ∈ U} is 
positively relevant to {Xn+1 ∈ U}. Or, more generally, however X1, …, Xn realize, {Xn+1 
∈ U} is positively relevant to {Xn+2 ∈ U}. Quite some transformation! 

Let’s be a bit more exact and distinguish various notions of instantial relevance. For 
any possible world v = (v1, v2, …) let’s abbreviate {X1 = v1} ∩ … ∩ {Xn = vn} by En(v). 
Then P satisfies PIRn (the principle of positive instantial relevance, nonconditional ver-
sion) iff for any possible evidence En(v) and any non-empty set of values U ⊂ V 

P({Xn+2 ∈ U} | {Xn+1 ∈ U} ∩ En(v)) > P({Xn+2 ∈ U} | En(v)). 

And P satisfies PIRc (the principle of positive instantial relevance, conditional version) 
iff for any such En and U 

P({Xn+2 ∈ U} | {Xn+1 ∈ U} ∩ En(v)) > P({Xn+2 ∈ U} | {Xn+1 ∉ U} ∩ En(v)). 

Clearly, in the probabilistic case PIRn and PIRc are equivalent. Still, I have introduced 
the distinction, because it will make a difference in the ranking-theoretic case. Moreo-
ver, let’s say that P satisfies NNIRn (the principle of non-negative instantial relevance, 
nonconditional version) iff P satisfies the inequality for PIRn when > is replaced by ≥. 
																																																													
18 See also Kuipers (1978) for an elaborate study of Hintikka’s theory. 
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And similarly, P satisfies NNIRc (the principle of non-negative instantial relevance, 
conditional version) iff P satisfies the inequality for PIRc when > is replaced by ≥. Fi-
nally, P satisfies IRn or, respectively, IRc (instantial relevance) iff > is replaced by ≠ in 
the relevant inequalities. 

So, the upshot of the Bayesian transformation so far is that enumerative induction is 
explicated as the probabilistic PIR (= PIRn or PIRc). The crux of the Bayesian account 
lies now in the fifth and final step: Enumerative induction need not be axiomatically 
assumed as a basic inductive rule, as it seemed all the centuries before. Rather, it is en-
tailed and hence justified by more basic assumptions. The crucial assumption is sym-
metry or exchangeability: P is symmetric (with respect to X1, X2, …) iff for any n ∈ N+, 
any permutation π of {1, …, n}, and any (not necessarily different) values v1, … vn in V  

P({Xπ(1) = v1} ∩ … ∩ {Xπ(n) = vn}) =  P({X1 = v1} ∩ … ∩ {Xn = vn}). 

According to symmetry, what counts probabilistically is only how many variables take 
which value. Which specific variables do so, does not make any probabilistic difference. 
This is extremely plausible when we miss any special information about specific varia-
bles (or the objects or experiments they represent).19 So I need not repeat here the over-
whelming credibility of this assumption.  

The first result now is that symmetry entails NNIR (= NNIRn or NNIRc). So, we may 
secondly conclude that symmetry plus IR (= IRn or IRc) entail PIR, i.e., the Bayesian 
version of enumerative induction. Why assume IR? This is overwhelmingly plausible as 
well; without IR we could not learn anything at all from our observations. However, we 
could also argue that IR is entailed by the so-called Reichenbach axiom, which says 
this: For any possible world v = (v1, v2, …) and any value v ∈ V let rf(v, v) denote the 
relative frequency with which v occurs among the first n values v1, … vn. Then 

limn→∞ [P({Xn+1 = v} | En(v)) – rf(v, v)] = 0. 

In other words, the probability that the next variable will take the value v converges to 
the relative frequency of v with increasing evidence. Again such limiting learning be-
havior seems reasonably required. For all these results see, e.g., Humburg (1971). 

As explained there, these results ultimately ground in de Finetti’s fundamental repre-
sentation theorem from (1937), which says that any symmetric probability measure over 
A is a unique mixture of Bernoulli measures over A, according to which all variables Xn 
																																																													
19 This kind of symmetry is also assumed in all conceptions of inductive logic. Above, though, when 
saying that inductive logic fell out of favor I referred to stronger conceptions which assume symmetry not 
only with respect to objects, but also with respect to predicates, i.e., in our terminology, with respect to 
the possible values in V. This is indeed very questionable, but not relevant here. 
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have the same distribution and each variable Xn is probabilistically independent of all 
the other variables. We might conceive of such a Bernoulli measure as a statistical hy-
pothesis about the objective probabilities governing X1, X2, … In this interpretation, 
which is not de Finetti’s, the representation theorem says that our subjective assessment 
P, if symmetric, uniquely corresponds to a second order distribution over (= mixture of) 
possible statistical hypotheses. The final twist then is that we can verify from the begin-
ning whether our P has the appropriate limiting behavior as required by the Reichen-
bach axiom. That is, if the so-called carrier of that second-order distribution (= the 
smallest topologically closed set having measure 1) corresponding to P is the space of 
all Bernoulli measures over A, then P satisfies the Reichenbach axiom.20 

All in all, this is a beautiful justificatory story for the Bayesian version of enumera-
tive induction and thus indeed huge progress. In view of this story I am no longer im-
pressed by Hume’s skepticism. We have now found good reasons why we must assume 
PIR, and we may do without an argument to the effect that higher subjective probability 
somehow entails higher relative frequency of truth. And we should follow the good rea-
sons. Indeed, we even know that our probabilities will converge to the relative frequen-
cy of truth, although we must grant that at no point can we be sure where the point of 
convergence comes to lie. 

In this way, the topic seems to have come to a rest, and we may be content with the 
Bayesian account of enumerative induction. Really? 

 
5. A More Adequate Ranking-Theoretic Account 

 
I don’t think that we should be fully satisfied. We need not put up with all the Bayes-

ian transformations. In particular, with the step to PIR, positive instantial relevance, we 
have lost all reference to generality so characteristic of enumerative induction. Indeed, 
enumerative induction is originally foreign to probabilistic epistemology, and not only 
because it is much older. Its Bayesian naturalization is only due to the fact that confir-
mation theory took an exclusively probabilistic shape. This was not always so. Hempel 
(1945), the modern classic of confirmation theory, started a research program of so-
called qualitative confirmation theory. However, this program turned out to be infeasi-
ble. At least, this was the conclusion beautifully summarized in Niiniluoto (1972). 
Since, we are left with a probabilistic confirmation theory. 

I think that the abandoning of Hempel’s program was premature. Confirmation theo-
ry can also be developed within ranking theory, and this comes much closer to 

																																																													
20 For all this, see again Humburg (1971). 
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Hempel’s original intentions of a qualitative confirmation theory. There is no place here 
to develop this claim on a larger scale. Let us see, though, how enumerative induction 
fares within ranking-theoretic confirmation theory. So, we still conceive of inductive 
inference as confirmation, and we may still stick to Carnap’s explication of confirma-
tion as positive relevance. However, we now replace probabilistic by ranking-theoretic 
positive relevance. How does this work in detail? 

We deal with the same atomic propositions as before. However, we now assume A to 
be the complete algebra generated by these atomic propositions. Next, instead of the 
probability measure P we consider a negative ranking function κ on A. κ is negative 
ranking function on A iff κ is a function from A into N∞ such that for all A, B ∈ A: (a) 
κ(W) = 0 and κ(∅) = ∞, (b) κ(A ∪ B) = min {κ(A), κ(B)} (minimitivity). Moreover, let’s 
assume that κ is completely minimitive, i.e., that for all B ⊆ A κ(∪ B) = minB∈B κ(B).21 

If the algebra A were finite, there would be no point in considering complete minimi-
tivity. However, we attend to generalizations, which are infinite Boolean combinations 
of atomic propositions (and we need not restrict ourselves to countable combinations, as 
we actually do). Hence, we must take a stance on how a ranking function should behave 
vis à vis such infinite propositions. I think it is reasonable to assume complete minimi-
tivity, as I have more extensively defended in Spohn (2012, pp. 73f.).22 

The standard interpretation of a negative ranking function κ is as degrees of disbelief 
(where disbelieving means taking to be false). This is why those functions are called 
negative. They don’t take negative values, but their positive values express negative 
facts. Hence, I disbelieve A iff κ(A) > 0, and I believe A iff κ(𝐴) > 0.23 Still, my belief 
can be more or less firm, as expressed by the ranks. It is convenient to define two-sided 
ranks. The two-sided ranking function τ belonging to the negative ranking function κ is 
defined by τ(A) = κ(𝐴) – κ(A). Thus, A is taken to be true or false or neither according 
to whether τ(A) > 0 or τ(A) < 0 or = 0. 

Conditional negative ranks are defined as κ(B | A) = κ(A ∩ B) – κ(A), provided κ(A) 
< ∞. Thereby, minimitivity can be expressed as saying min {κ(A | A ∪ B), κ(B | A ∪ B)} 
= 0. This means that given the disjunction you can’t take both disjuncts to be false; this 

																																																													
21 This definition goes back to my Habilitationsschrift Spohn (1983, sect. 5.3.) Its first appearance in 
English is in Spohn (1988), where negative ranking functions were still called ordinal conditional func-
tions. Theory and applications of these functions are comprehensively presented in Spohn (2012). 
22 There would have been no point in considering σ-minimitivity, since it is equivalent to the apparently 
stronger complete minimitivity. And then it also fits better to build ranking functions on complete instead 
of σ-algebras. For all these niceties see Spohn (2012, pp. 72ff.). 
23 One may also define a stricter notion of belief by saying that A is believed iff κ(𝐴) > z for some thresh-
old z > 0. This well accounts for the vagueness of the notion of belief (or disbelief). However, whatever 
the threshold, belief is always consistent and deductively closed. See Spohn (2012, pp. 76f.) for details. 
Here, we may well neglect this point. 
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is obviously rationally mandated. In my view, this clearly extends to infinite disjunc-
tions, i.e., to complete minimitivity. Finally, conditional two-sided ranks are defined as 
τ(B | A) = κ(𝐵 | A) – κ(B | A). For all fuller explanations of the basics of ranking theory I 
must refer to Spohn (2012, ch. 5). 

Now we are prepared to study enumerative induction in ranking-theoretic terms.24 
Again, I assume that we only deal with symmetric ranking functions, for the same 
overwhelming reasons as in the probabilistic case. κ is symmetric iff κ satisfies the 
above symmetry condition with κ replacing P, i.e., if for any n ∈ N+, any permutation π 
of {1, …, n}, and any values v1, … vn in V 

κ({Xπ(1) = v1} ∩ … ∩ {Xπ(n) = vn}) =  κ({X1 = v1} ∩ … ∩ {Xn = vn}). 

Then we have a first nice surprise: the credibility of a generalization is the very same 
as that of its instances. More formally, if κ is symmetric, then τ(GU) = τ(Xn ∈ U) for all 
n ∈ N+. This is a direct consequence of complete minimitivity. Or more generally: if 
G>n,U = ∩k>n {Xk ∈ U} is the relevant generalization restricted to the future and if En(v) is 
any evidence about the first n variables, then τ(G>n,U | En(v)) = τ(Xk ∈ U | En(v)) for all k 
> n.25 Of course, this holds not only for the ranks specified, but also for rank compari-
sons as required for confirmatory relations. Sloppily stated, this means that generaliza-
tion is automatically built in into symmetric ranking functions as a consequence of the 
basic rationality postulates of ranking theory. Hence, we need not despair of the ‘null 
confirmation’ of laws, we need not take Carnap’s escape route to instantial relevance, 
and we need not choose ad hoc measures à la Hintikka (1966). I take this to be a first 
important advantage of the ranking-theoretic account. 

The next surprise, however, is less pleasant. We can transfer all the above notions of 
(positive, non-negative) instantial relevance in the nonconditional or the conditional 
version to ranking theory simply by substituting the two-sided ranking function τ (not 
the negative ranking function κ) for P in the defining conditions above. (Relevance is 
more succinctly expressible in terms of τ.) So, we know what PIRn, PIRc, NNIRn, and 
NNIRc mean in ranking theoretic terms. Let us also assume that our ranking function κ 
is regular in the sense that κ(En(v)) < ∞ for all n ∈ N+ and v ∈ W. So, ranks conditional 
on En(v) are always defined. Only then are we guaranteed to be able to learn from any 
kind of evidence. Then we have first to observe that, in contrast to the probabilistic 
																																																													
24 The basic reason why the ranking-theoretic story will be similar to the Bayesian story is quite obvious 
from the axioms, according to which the minimum, the sum, and the difference of ranks, respectively, 
roughly correspond to the sum, the product, and the quotient of probabilities. For the precise formal rela-
tion between ranks and probabilities see Theorem 10.1 in Spohn (2012, pp. 203f.) which explains the 
formal similarities as well as the subtle formal differences between the two theories. 
25 For the simple proof see Spohn (2012, p. 282). 
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case, the conditional and nonconditional versions of these notions are not equivalent. 
Rather, PIRn entails PIRc, and NNIRc entails NNIRn, but the reverse entailments do not 
hold. So, we have to make a choice. As I have argued extensively in Spohn (2012, pp. 
106f.), confirmation (or the reason relation, as I call it there) is more adequately cap-
tured by the conditional versions. So, is PIRc ranking-theoretically entailed by sym-
metry, as it is probabilistically? If so, the above extension to future generalizations G>n,U 
would already conclude our business? 

On the contrary; this is the unpleasant surprise. We have the following theorem: 
There is no regular symmetric ranking function on A satisfying PIRc.26 We might settle 
for the weaker NNIRc, which is satisfiable by regular symmetric ranking functions. 
However, this doesn’t look attractive. NNIRc looks too weak; instantial irrelevance most 
of the time wasn’t what we expected to get. Moreover, in contrast to the probabilistic 
case, NNIRc is not entailed by ranking-theoretic symmetry; we would have to addition-
ally stipulate it. 

Something seems to have gone badly wrong. The solution I have pursued in Spohn 
(2012, sect. 12.4 – 5) is to sharply distinguish between generalizations and laws. Gener-
alizations or regularities are simply propositions, members of the propositional algebra, 
of the form GU or G>n,U. Laws, by contrast, are something entirely different. The issue is 
embedded in a large issue of philosophy of science. There are mere regularities like “all 
gold spheres are smaller than one mile in diameter” (which may well be true) and true 
laws like “all uranium spheres are smaller than one mile in diameter”.27 What distin-
guishes lawlike sentences from mere generalizations (whether true or false)?28 This has 
proved to be a remarkably recalcitrant problem. Early attempts at this distinction all 
failed. Thus, it has become apparent that lawlikeness or nomicity is connected with ex-
planatory force, with entailing counterfactual conditionals, and with inductive behavior 
– three very soft topics in philosophy of science. It is a huge task to sort out all these 
connections. For us, only the last point is relevant. Somehow, it seems that enumerative 
induction doesn’t extend to all generalizations whatsoever, but applies only to laws or 
potential laws. This is certainly what all philosophers from earlier centuries would have 
said who were not aware of the intricacies of that distinction. 

So, it seems that we have made a mistake so far by trying to ranking-theoretically re-
construct enumerative induction for generalizations. We should restrict it to laws. But 
what are laws? We can’t evade engaging into this distinction. However, here I have to 

																																																													
26 This is Theorem 12.9 of Spohn (2012, p. 283). It is not trivial at all. For a proof see there p. 298. 
27 The example is from van Fraassen (1989, p. 27), who attributes it to the philosophy of science folklore 
of the 1960s. 
28 For an in-depth discussion of the issue see, e.g., Lange (2000). 
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cut a long story short.29 The fundamental point is that laws are not propositions at all, 
contrary to what the mainstream concerning the issue has taken for granted! Laws do 
not make assertions and do not have truth conditions. This seems to be a bizarre claim; 
no wonder that the mainstream has not taken it seriously. Still, the claim has respectable 
philosophical precedence starting with Ramsey (1929).30 

So, if laws are not propositions, what are they? The general, though obscure slogan 
is: laws rather are inference tickets. (And here you may again read “inference” as “con-
firmation”!). What is my ranking-theoretic translation of that slogan and the Ramsey 
quote? Basically, the idea is very simple: We mentioned above that in the probabilistic 
case statistical laws or hypotheses for A are represented by Bernoulli measures for A. 
Each single case is characterized by a certain (objective) probability distribution, and 
this is turned into a law in the independent, identically distributed repetition of the si-
ingle case as represented by the corresponding Bernoulli measure. So, correspondingly, 
what is a deterministic law? Just the corresponding ranking-theoretic notion. That is, I 
explicate that the (negative) ranking-function λ is a subjective law for A iff all variables 
Xn have the same distribution (in terms of ranks) and each variable Xn is ranking-theo-
retically independent of all the other variables according to λ. (The latter boils down to 
instantial irrelevance: for all n and v, given En(v) Xn+1 is irrelevant to Xn+2.) The analogy 
to statistical laws is charming; for a philosophical defense of this explication I have to 
refer to Spohn (2012, sect. 12.4).31 

Subjective laws are related to generalizations. Let λ be such a law and define U = {v | 
λ(Xn = v) = 0}. Then λ contains the belief in the generalization GU and in no stronger 
generalization; that is, U is the largest subset of V such that λ(𝐺!) > 0. But of course 
this belief may be realized in ranking functions in many different ways. Hence, laws 
represent a very specific attitude towards generalizations. 

I have used a disturbing term by calling such a λ a subjective law. This is owed to the 
fact that ranking functions still represent only the epistemic state of some epistemic sub-
ject. So, such a law λ is just an epistemic attitude, too. There are ways, though, to objec-
tivize this notion and to turn some subjective laws into objective ones. However, this 
remark can only be clarified by engaging into what I call the objectivization theory for 

																																																													
29 The longer story is told in Spohn (2012, sect. 12.4). 
30 My key witness are the following quotes from Ramsey (1929): “Many sentences express cognitive 
attitudes without being propositions; and the difference between saying yes or no to them is not the dif-
ference between saying yes or no to a proposition” (pp. 135f.). “Laws are not either” (namely proposi-
tions) (p. 150). Rather “the general belief consists in (a) A general enunciation, (b) A habit of singular 
belief” (p. 136). 
31 Clearly, though, the independent, identically distributed repetition may be taken as a mathematical 
explication of Ramsey’s ‘habit of singular belief’. 
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ranking functions, which I develop in Spohn (2012, ch. 15). Here, we better leave this 
issue aside and go along with the notion of a subjective law. 

Now we can proceed as in the probabilistic case by transferring de Finetti’s represen-
tation theorem to ranking theory and getting all its benefits. Let me mention first the 
positive results and then the caveats.32 We can indeed prove that each regular symmetric 
ranking function is a unique mixture of subjective laws. Well, roughly; for the caveats 
see below. That is, if Λ is the set of regular subjective laws for A and ρ is any ranking 
function for Λ, then the mixture κ of Λ by ρ is a regular symmetric ranking function for 
A, where this mixture is defined by κ(A) = min {λ(A) + ρ(λ) | λ ∈ Λ} for all A ∈ A. I 
call ρ an impact function, since it tells which impact each subjective law has on the mix-
ture. And reversely – that’s the difficult part – if κ is a regular symmetric ranking func-
tion for A, then there is a unique impact function ρ such that κ is the mixture of Λ by ρ. 

The next point in my dialectics is this: So far, we have notions of relevance and con-
firmation only for propositions; evidence may or may not confirm generalizations. 
However, if laws are not propositions, these notions cannot be applied to laws. The im-
pact functions fill the gap: Let our initial symmetric κ be represented by the impact 
function ρ. We learn by observing the first n variables and conditionalizing our κ on 
those observations. The conditionalized κ – let’s call it κ' – will no longer be symmetric 
concerning the first n variables, but it will stay symmetric with respect to all future vari-
ables Xn+1, Xn+2, … The point now is that κ' will be represented by a different impact 
function ρ'. Thus, the impact of a subjective law λ will change or possibly stay the same 
from ρ to ρ', and accordingly we can say that λ has been confirmed or disconfirmed or 
neither. 

More precisely, we find this: Let κn be the ranking function reached after observing 
the first n variables. Now we observe Xn+1 to take the value v and thus move to κn+1. Let 
the corresponding impact functions be ρn and ρn+1. Then for any subjective law λ we 
have: 

ρn+1(λ) – ρn(λ) = λ(Xn+1 = v) – κn(Xn+1 = v).33 

That is, the impact of λ is upgraded or downgraded precisely to the extent to which the 
credibility it gives to the observed value of Xn+1 deviates from the credibility this value 
has according to κn. 

This is my ranking-theoretic account of enumerative induction. It does not refer to 
the next single case, as did the Bayesian account. It even does not refer to generaliza-
																																																													
32 The full story is mathematically involved. Together with all the proofs it is presented in Spohn (2012, 
sect. 12.5). 
33 This is Theorem 12.22 of Spohn (2012, p. 299). 
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tions as such. It does refer specifically to (subjective) laws, as originally intended, and 
indeed in an even quantitatively appealing way. In this way it improves upon the Bayes-
ian account. And it preserves the virtues of the Bayesian account, by not just postulating 
enumerative induction as a basic inductive inference rule, but by essentially deriving it 
from the more basic epistemic rationality postulates of regularity and symmetry. In this 
way, enumerative induction seems to have finally found an even more comfortable 
home. 

Now to the caveats: So far, I have not told the full truth about my ranking-theoretic 
duplication of de Finetti’s representation theorem. Things are more complicated. A first 
qualification is mathematically interesting, but philosophically neutral, as far as I see. It 
is not true that each regular symmetric κ is the mixture result of exactly one impact 
function ρ. We must more cautiously define the notion of what I call a minimal mixture, 
and this in fact turns out to be unique. The second qualification is less harmless. Regu-
larity and symmetry alone do not suffice for representation. We also have to assume that 
κ is concave in a mathematically well-specifiable sense. The problem here is that con-
cavity is required for mathematical reasons, although I can so far not present good phil-
osophical or normative reasons why our ranking function should be concave. I am op-
timistic; but the case is mathematically intricate. This is presently just an open flank of 
my argument. In this respect, the Bayesian account does better, since it relies only on 
well-justifiable features of our subjective probabilities.34 So, to be precise, the ranking-
theoretic representation theorem says: A ranking function κ for A is regular, symmetric, 
and concave if and only if there is a unique impact function ρ for Λ such that κ is the 
minimal mixture of Λ by ρ.35 This displays the two qualifications. 

 
6. Two Concluding Observations 

 
The ranking-theoretic representation theorem and the confirmation of laws entailed 

by it have various consequences. Let me finally mention two of them. 
First, we may observe that Goodman’s new riddle of induction partially evaporates. 

Our above equation for ρn+1(λ) – ρn(λ) entails that each subjective law λ for which the 
observed Xn+1 taking the value v is a positive instance, i.e., for which λ(Xn+1 = v) = 0, is 
thereby confirmed. So, if {Xn+1 = v} represents that the n+1st emerald is green, crazy 
hypotheses like “all emeralds are grue” are thereby just as well confirmed as plausible 
laws like “all emeralds are green”. We may well grant this; there is no reason to be 
scared by this observation. Indeed, there is no contradiction; in the positive relevance 
																																																													
34 For a formal explanation of these differences see footnote 24. 
35 Cf. Theorems 12.14 and 12.18 in Spohn (2012, p. 293 and p. 296). 
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sense incompatible laws may be simultaneously confirmed. It is only that not all laws 
can be confirmed. There also are many potential laws that get disconfirmed, natural 
ones like “all emeralds are blue” and crazy ones like “all emeralds are bleen”. If all goes 
well, “all emeralds are grue” will get disconfirmed soon enough. But, of course, we 
never know. 

By no means may we conclude that all the incompatible hypotheses would be equally 
good. On the contrary, the a priori impact of the crazy hypotheses is so terribly low that 
it will stay low even after many confirmations. However, it is not infinitely low, and 
this is only reasonable. Why should we not be able to discover in the end that there is a 
hidden connection between the color of an emerald and the time of its first observation 
(or some other apparently entirely unrelated feature)? However, why should the a priori 
impact of gruesome hypotheses be very low? That’s the snag. I have not given any rea-
son for this. Impacts are just subjectively chosen, and our choice is clear, whereas the 
defenders of the grue hypothesis choose entirely different initial impacts. This is why I 
have said that Goodman’s new riddle evaporates only partially. We might have ex-
pected a rationalization of our a priori impacts, which, however, I cannot provide. Still, 
my point stands. There is not any paradox in the fact that many incompatible hypotheses 
are simultaneously confirmed.36 

The same point could have been made within a Bayesian framework, however less 
comfortably. In a Bayesian framework we would have to give non-zero initial weights 
to all the crazy hypotheses (in order to possibly confirm them), and it matters to our 
probabilities for the factual propositions which weights we choose. This is the so-called 
problem of the catch-all hypothesis which some take to be a severe objection to Bayesi-
anism.37 By contrast, in the ranking-theoretic framework very low impacts of crazy hy-
potheses need not surface in the ranks for factual propositions. This is what I have 
called the innocence of the worst explanation in Spohn (2012, sect. 14.15). Hence, my 
partial response to Goodman’s new riddle is more easily maintained in ranking-theoretic 
terms. 

The second and final observation concerns the so-called law of the uniformity of na-
ture: Just as in the probabilistic case we may, somewhat sloppily, say that the ranking-
theoretic representation theorem shows that our symmetric (and concave) epistemic 
state is always a mixture of (subjective) laws. We are bound to think in laws! Now, this 
overstates the case a little bit. Formally, λ0 defined by λ0(A) = 0 for all A ∈ A is also a 
subjective law. However, it rather represents the belief in complete lawlessness instead 

																																																													
36 I neglect here the extension of Goodman’s new riddle to meaning skepticism according to which it is 
unclear whether “all emeralds are green” really means this or actually means “all emeralds are grue”. 
37 See, e.g., Earman (1992, sect. 7.2). 
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of belief in a specific law. (Recall my above remark about which generalizations are 
believed to hold in subjective laws; λ0 only contains the belief in the empty or tautologi-
cal generalization.) Still, all the other subjective laws have substantial content. 

The more precise statement now is this. Let the regular, symmetric and concave κ be 
a mixture of Λ by the impact function ρ. Does the mixture contain λ0? Maybe. Define 
sup κ = sup {κ(A) | A ∈ A}. sup κ may be 0, positive, but finite, or ∞. Note that regular-
ity requires only that κ(En(v)) < ∞ for all n and v. But this is compatible with the 
κ(En(v)) having no upper bound and even compatible with κ(A) = ∞ for some infinitary 
proposition A. So sup κ = ∞ is a possibility as well. Now the formal observation is that 
ρ(λ0) = sup κ.38 What does this mean? 

sup κ = 0 means that κ(A) = 0 for all A ∈ A. Such a κ is incapable of any inductive 
inference, and we may well exclude it as a totally unreasonable epistemic state. sup κ = 
∞ means that ρ(λ0) = ∞, i.e., a maximal denial of λ0; and it entails that λ0 remains max-
imally excluded after arbitrary amounts of evidence. (Infinite ranks cannot change.) So, 
whatever the evidence, we stick to the firm belief that some substantial law will hold. 
This may well be called an unrevisably a priori belief in lawfulness or the uniformity of 
nature. The third case is that sup κ = s for some finite s > 0. This means that ρ(λ0) = s > 
0, and since ρ is a negative ranking function, this means disbelief in λ0. Again, this may 
be called an a priori belief in the uniformity of nature. But it is not unrevisable; it may 
be defeated. We may (but need not) receive bewildering evidence that ever more up-
grades the impact of λ0, possibly up to 0. Then we would have reached a state of total 
perplexity in which we do not dare projecting any substantial law into the future. The 
last two cases may be actually hard to decide; sup κ may be finite, but so large, and 
hence the impact of λ0 so low, that we never actually reach the point of despair. 

In any case, this observation shows that the belief in the uniformity of nature need 
not be as unjustified as Hume has thought. It is rationally required (as much as regulari-
ty, symmetry and concavity are rationally required). So, Kant may have been right with 
his a priori claims. At the same time, though, the remarks show that we have to differen-
tiate. Belief in lawfulness or the uniformity of nature may be unrevisably or defeasibly a 
priori. And Kant was certainly not aware of the latter possibility. 
 
 
  

																																																													
38 See Spohn (2012, p. 301). 
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