Exploring the Design Space of BioFabric Visualization for Multivariate Network Analysis

J. Fuchs1 F. L. Dennig1 M.-V. Heinle1 D. A. Keim1 and S. Di Bartolomeo1

1University of Konstanz, Germany

Figure 1: visualization displays the number of interactions in Game of Thrones — a multivariate network, with attributes on nodes (age of the character, number of episodes they appear in) and attributes on edges (number of interactions per season). On the visualization’s left side are five edge encodings, followed by four kinds of on-node encodings. At the bottom and right are juxtaposed visualizations for edges and nodes.

Abstract

The visual analysis of multivariate network data is a common yet difficult task in many domains. The major challenge is to visualize the network’s topology and additional attributes for entities and their connections. Although node-link diagrams and adjacency matrices are widespread, they have inherent limitations. Node-link diagrams struggle to scale effectively, while adjacency matrices can fail to represent network topologies clearly. In this paper, we delve into the design space of BioFabric, which aligns entities along rows and relationships along columns, providing a way to encapsulate multiple attributes for both. We explore how we can leverage the unique opportunities offered by BioFabric’s design space to visualize multivariate network data — focusing on three main categories: juxtaposed visualizations, embedded on-node and on-edge encoding, and transformed node and edge encoding. We complement our exploration with a quantitative assessment comparing BioFabric to adjacency matrices. We postulate that the expansive design possibilities introduced in BioFabric network visualization have the potential for the visualization of multivariate data, and we advocate for further evaluation of the associated design space. Our supplemental material is available on osf.io.

CCS Concepts

• Human-centered computing → Empirical studies in visualization; Graph drawings;

© 2024 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.

Konstanzer Online-Publikations-System (KOPS)

URL: http://nbn-resolving.de/urn:nbn:de:bsz:352-2-cs3zfbmzhwd3
1. Introduction

Network visualizations are useful for understanding and exploring relationships between real-world entities. For instance, researchers commonly utilize node-link diagrams and adjacency matrices for displaying social [ACJM03], communication [BFN04], or biological networks [BMGK08], among many others. In addition, many real-world networks contain nodes or edges with one or multiple attributes. Multivariate network visualizations are helpful for representing network topologies showing the general structure, such as densely connected groups and sparse links between entities together with associated attributes. In Biology, for instance, visualizing network topologies together with experimental multivariate data helps to understand cellular processes [PLS*12] by visualizing protein interactions, chemical reactions, and catalyzing enzymes.

A key task for multivariate network visualizations is effectively visualizing network topologies along with their node or edge attributes. In a social network, an example task can be identifying the oldest person and their longest-lasting friendship with another person. However, there is a trade-off between effectively visualizing the network topology and displaying the associated multivariate attributes. Thus, researchers proposed various tailored visualizations and encoding for displaying multivariate networks, such as node-link diagrams and matrices, where additional information is visualized alongside the basic visualizations by juxtaposing the additional attributes in a table or encoding them directly in the cells of matrices.

For a comprehensive overview of multivariate network visualization, one can refer to the work of Nobre et al. [NMSL19], which delineates these visualizations into categories such as node-link, implicit tree, and tabular layouts. Specifically, the paper points out the efficacy of tabular layouts like BioFabric [Lon12] for delineating sparse networks that are laden with a multitude of node and edge attributes, which can be cumbersome to interpret in sparse matrix forms. BioFabric itself is highlighted for its ingenuity, offering a unique method to encode attributes of both nodes and connections.

BioFabric reimagines the visualization of complex networks—imagine a fabric woven with data where each row in a grid corresponds to a network point, and each column signifies a connection. A connection is marked by a colored spot on the grid, crafting a visual fabric that simplifies the identification of patterns and relationships within the network.

Despite the promise shown by BioFabric, it remains underexplored, particularly in the breadth of design possibilities it presents for embodying multivariate attributes. Because of this grid-like structure, additional attributes for nodes and edges can be visualized on the borders of the network visualization, as visible in Figure 1. Our research seeks to bridge this gap with an in-depth exploration of the design potential within BioFabric. Examining how multivariate data is visually encoded, we intend to scrutinize the influence of different design methodologies on the interpretability of the visualization. This endeavor not only aims to affirm BioFabric’s utility but also strives to push the envelope in visualizing complex data structures. Therefore, we contribute:

- A discussion regarding how to effectively encode multivariate attributes into BioFabric visualizations.
- A quantitative comparison of BioFabric to matrix visualizations.

Our supplemental material, which includes an interactive implementation, the user study, the results from the study, the analysis and an appendix with some further observations, is available on osf.io, at https://osf.io/8j42t/?view_only=ab69785be4bc48608d64c2a0590f4b04.

It should be taken into account that the effectiveness of BioFabric is also affected by node and edge ordering [VBP*21, DBBP*22]—an aspect that is not considered in the scope of this paper. Instead, we focus on the encoding of additional data dimensions into the visualization, which can be applied to any ordering of nodes and edges.

2. Related Work

Multivariate Network Visualizations: In their survey, Nobre et al. [NMSL19] surveyed and categorized eleven multivariate network visualization approaches for displaying network topologies and their associated attributes. According to the authors, the most frequent multivariate network representations are node-link layouts, including on-node/edge encodings, attribute-driven faceting, and attribute-driven positioning. The recommended usage of multivariate node-link layouts is for small networks (<100 nodes) with a limited number of node and edge attributes, for instance, on node-encodings for social networks [ACJM03] or overlaid edge bar-charts [SSSE16]. Implicit tree layouts are useful for hierarchies, including inner nodes & leaves and leaves visualizations, such as TreeMaps [SDW09] or SunBurst [SZ00] visualizations. Yet, such implicit tree layouts do not support displaying multiple attributes simultaneously.

Tabular layouts display the network topology and the attributes in a table-based layout, encompassing adjacency matrices, quilts [BW11], massive sequence views [CHZ*07], and BioFabric [Lon12]. For instance, BioFabric visualizes nodes as horizontal rows and vertical lines (columns) representing edges between nodes. The advantage of such tabular layouts is that the row- and column-based visualizations can be easily used to depict additional attributes. Moreover, Nobre et al. discuss different view operations, describing how multiple coordinated views can be combined through juxtaposed, integrated, and overloaded views. In particular, the authors emphasize that BioFabric has a unique potential for visualizing a large set of attributes using different view operations, such as a juxtaposed view, similar to Lineage [NGCL19] and Juniper [NSL19], which leverage a Tree+Table approach for multivariate network analysis. However, up to this day, the design space for visualizing multivariate network data with BioFabric is insufficiently explored and empirically studied.

Evaluation of Multivariate Network Visualizations: There is a large body of empirical studies for network visualizations without multivariate attributes [YAD*18]. However, most empirical studies focus on the relationship between network topology and tasks. For instance, Ghoniem et al. [GFC05] compared topology-based tasks on node-link diagrams and adjacency matrices for networks with
varying sizes and densities. Only a few empirical studies investigate multivariate networks and attribute-based tasks.

First, Alper et al. [ABHR’13] investigated comparison tasks for weighted networks and showed that adjacency matrices outperform node-link diagrams for overloaded views. Next, Abuthawabeh et al. and Wybrow et al. [WEF’13,ABZD13] compared and showed that participants could identify the same graph structures for multi-type edges in adjacency matrices and parallel node-link visualizations. Schöffel et al. [SSSE16] compared node-link diagrams encoding multiple edge attributes as bar charts and partially filled bar charts, showing their usefulness for comparison tasks. In another publication by Nobre et al. [NWHL20], the authors compared node-link diagrams with on-node encodings with adjacency matrices with juxtaposed tables. Their crowd-sourced empirical study showed that both approaches perform similarly on edge attribute tasks. Moreover, the authors showed that node-link diagrams with few attributes are suitable for path- and neighbor-related tasks and that adjacency matrices help identify clusters, providing less distraction for larger sets of attributes.

Most of the existing related work empirically investigated network topology tasks, with a few studies investigating multivariate analysis tasks on node-link diagrams and adjacency matrices. BioFabric was originally designed and evaluated in the domain of Bioinformatics through case-studies [Lon12]. Valdivia et al. used BioFabric to visualize hypergraphs and evaluated their design with a small scale usability study [VBP’21]. Until today, none of the possible alternative multivariate network visualizations described by Nobre et al. [NMSL19] have been comparatively evaluated, including BioFabric. Thus, we explore techniques to encode multivariate data with BioFabric, describing edge encodings for a high number of attributes and providing empirical guidance on the visualization design for multivariate analysis tasks.

3. Techniques to Encode Multivariate Data on BioFabric

BioFabric visualization primarily represents nodes as horizontal lines and edges as vertical line segments connecting these horizontal lines. This method was developed to help better understand and represent large-scale biological networks, as traditional node-link diagrams can become overly cluttered and challenging to interpret [Lon12]. BioFabric combines the table-line structure of adjacency matrices with the visual appearance of node-link diagrams and, thus, reads like a combination of the two. Relations are shown via edges, just like in a node-link diagram. However, horizontal lines represent nodes, allowing for a tabular arrangement like in an adjacency matrix. The combination of these techniques can offer a vast amount of opportunities to encode additional, multivariate data on the visualization.

In their survey about multivariate data visualization, Nobre et al. [NMSL19] explored a few options for this specific task — encoding multivariate data on BioFabric. In this chapter, we delve deeper and expand their proposed techniques and the affordances offered by them, categorizing the design options into three categories: embedding, transformation, and juxtaposition.
The thickness of the background lines maps to values in the attributes.

The curvature of the lines maps to values in the attributes.

(a) One node attribute is encoded using line width

(b) Multiple node attributes encoded using dashes on parallel lines in close proximity.

(c) The thickness of the background lines maps to values in the attributes.

(d) The curvature of the lines maps to values in the attributes.

Figure 3: Examples of transformed node encodings in BioFabric.

encoding is even more suitable for the adjacency matrix. Multiple edges can be represented in the same row, sharing the same baseline. This simplifies the value comparison of edge attributes when analyzing a node’s neighborhood. However, increasing the number of vertices in the adjacency matrix negatively influences the available space to display an on-edge encoding.

3.2. Transformation

Our definition of transformation is the modification of the visual appearance of edges or nodes. Attributes might alter, for example, the color, texture, thickness, or saturation of a network entity, i.e., edge or node [BDT21]. We want to highlight that their position and start and end points remain the same.

Transformed node encoding: BioFabric allows for a different set of node transformations since nodes are represented as horizontal lines. Figure 3a provides examples of the on-node encoding of one attribute. Increasing network size shrinks the visualization space for size-based encodings. Therefore, the network properties must be considered during design to allow a good differentiation of the encoded attributes. The horizontal node lines in BioFabric provide a unique possibility to visualize attribute encodings. One node attribute transforms the line by varying width, color, texture, or other visual attributes (see Figure 4). This approach can be extended to the representation of multiple attributes. In Figure 3b, we show straight parallel lines with varying dashes and differentiate them by color. Independent of its dashed texture, each bundle of lines has a noticeable distance to its neighboring node lines, allowing a clear comparison.

However, this node attribute encoding loses expressiveness with an increasing number of node attributes or nodes.

The best use of those visual variables depends on the underlying data. For example, the curvature is influenced by the number of possible values and might cause more overplotting if attributes share the same value (see node D in Figure 3d); on the other hand, texture or dashed lines are influenced by the number of attributes; and width is influenced by both the number of attributes and the possible values.

Such node transformations are also common in node-link diagrams by coloring nodes or changing their size. Varying the graphical representation of rows or columns in an adjacency matrix will negatively impact the tabular setup of the visualization. Therefore, only interactive approaches allow for a structural distortion of the matrix.

Transformed edge encoding: Edges have a high visual impact in node-link approaches. Many applications using node-link diagrams transform the visual appearance of edge lines to communicate additional information like direction [vdEvW14], uncertainty [GHL15], or dynamic changes [ABHR13]. These design variations can be adopted since BioFabric also communicates relations via vertical lines. Different design alternatives can be seen in Figure 1 or Figure 4. Since edges may vary in length, a color encoding might be perceived differently due to the strong interplay between color and size.

3.3. Juxtaposition

We define the juxtaposition of attribute visualizations as a combination of displaying the network topology and an accompanying attribute visualization with an unambiguous alignment of node and edge representations and their respective attributes. Since BioFabric enforces a tabular layout on networks, it offers the opportunity to juxtapose more visualizations right next to the network topology. Therefore, we can separate the network topology from the multivariate attributes with juxtaposed views. The usefulness of this approach has already been shown with adjacency matrices representing addi-
 Impossible in node-link diagrams, such as juxtaposition with transformation or embedding and transfigure, the perception of network topology in BioFabric, there is the or- dering of the nodes and edges. The problem has been mentioned — although without proposed solutions — already in previous re- search [VBP’21, DBPB’22]. Indeed, the superficial and inattentive combination of the order of the two sets of network elements can produce unnecessarily longer, harder-to-track edges — while, con- versely, using clever sorting strategies might create structures in the visualization that can help highlight topological features, such as the staircase pattern shown in Figure 6. While we believe that BioFabric could benefit from many matrix reordered strategies, it is important to consider the unique properties of the visualization at hand, and we believe that this task would require its own in-depth paper. For this reason, we deem this to be future work.

Space Considerations In a comprehensive discussion about design decisions related to BioFabric, it would also be important to consider
We transferred this approach to visualization techniques. We considered the factors various encodings. For instance, the number of edges and nodes to be displayed will determine the maximum size allowed for embedded and transformed encodings, which can influence the separability of their colors and/or shapes [SS19].

4. Quantitative Evaluation

We conducted a quantitative user study to reveal the strengths and weaknesses of BioFabric for multivariate network analysis. Our inspiration was drawn from Nobre et al.’s survey, which emphasized the unexplored potential of utilizing BioFabric for displaying edge attributes with juxtaposed views [NMSL19]. For the experiment design, we took inspiration from the most recent experiments about node-link diagrams and adjacency matrices from Nobre et al. [NWHL20]. We partially replicated their evaluation by transferring the visual encodings to an adjacency matrix and BioFabric. Since we see the high potential of BioFabric in communicating multiple edge attributes, we focused solely on this aspect in our experiment. Furthermore, interaction techniques were not supported since the ability to highlight the network topology would considerably reduce the difficulty of completing analysis tasks.

4.1. Experiment Factors

We considered the factors visualization technique, task, size and density of a network. Based on the recent experiment conducted by Nobre et al. [NWHL20], we chose the adjacency matrix (AM) and BioFabric (BF) due to their similar tabular structure avoiding overplotting. The authors used a bar chart to visualize node attributes in the node-link diagram. This representation can be replicated as an edge encoding for AM. We embedded a chart within the intersection cell to visualize multiple edge attributes. Nobre et al. further aligned a table to the rows of AM to represent node attributes. We transferred this approach to BF and visualized each edge attribute in a separate column of a juxtaposed table. Figure 8 illustrates an example of both techniques from our study.

For each task, the visualization was drawn at a resolution of 2050 × 1300 pixels. The juxtaposed table for visualizing edge attributes in BF occupied one-third of the provided space. We refrained from visualizing attributes when the analysis did not involve the inspection of attributes. In both techniques, we designed the representations of the network topology to remain monochrome. This allows the use of color for the visualization of edge attributes. We employed a qualitative color map from ColorBrewer [BH] to differentiate the attributes within an edge.

4.1.1. Tasks

In our experiment, we aimed to analyze various attributes within a network. As such, we narrowed down our task selection to those focusing on attribute-based analysis [LPP06, PPS14]. While earlier user studies mainly focused on analyzing node attributes or a limited set of edge attributes, we focused on multiple edge attributes.

T1 - Neighborhood Inspection: Given the visualized network, participants are asked to select all adjacent nodes of a target node. This task involves identifying the target node, scanning all outgoing edges, and retrieving the source nodes.
Figure 9: Interface of our user study. The panel on the left provides the task description, legend, and answer field. The visualization of the network is displayed to the right. In this example, participants on the BF condition had to solve task 3 on a network with 50 nodes and 10% density. The correct answer is selected on the left.

T2 - Extreme Value Detection: Given the visualized network, participants have to select the adjacent node of a target node with the second highest data value for a specified attribute. After identifying the target node, this task requires comparing the target attribute value across all adjacent edges of the target node. The values are judged based on the length of the corresponding vertical bar. Then, the source node has to be selected. As identifying the highest value is trivial on BF when the edges are ordered accordingly, we refrained from using that task.

T3 - Within-Edge Comparison: Given the visualized network, we ask participants to select all adjacent nodes of a target node whose edge has a higher value in a first specified attribute than in a second specified attribute. Similar to task 1, all outgoing edges of the target node must be scanned, but the node selection includes comparing the attribute values based on the lengths of the bars.

4.1.2. Network Size & Density

We created synthetic data of undirected networks without self-loops using Python’s networkX package [HSS08]. To test the scalability of each visualization technique, we used network data of varying sizes and densities. We selected network properties according to both a comprehensive survey on network visualization [YAD*18] and our experimental limitations. Since interaction or aggregation techniques were not allowed, we came up with 20 nodes for the small network, 50 for a medium-sized network, and 80 for the largest network. In our experiment, density is defined as \[d = \frac{e}{n(n-1)} \] where \(n \) denotes the number of nodes, and \(e \) is the number of edges [YAD*18]. Given previous studies on attribute-based tasks, we chose a minimal density of 2.5%, a medium density of 6.25%, and a maximum density of 10% [NWHL20, CBDM17].

4.2. Experiment Design

We used a split-plot design with the variable visualization technique as the between-subject to directly compare the designs (i.e., AM and BF) on the same tasks. The within-group design was applied to the independent variables task, size, and density. The dependent variables were the measured accuracy and completion time.

4.2.1. Hypotheses

Based on experience, previous pilot studies, and literature [Lon12, NMSL19, NWHL20], we derived the following hypotheses:

H1 - Scalability Hypothesis: BF is more scalable concerning the size and density of the network than AM. This hypothesis is based on Longabaugh’s work, which introduced BF to address scalability issues of networks [Lon12]. Adding an edge to a visualized network does not decrease the quality of the existing topological structures. Thus, the authors describe BF as a precise technique for displaying networks apart from their scale. In direct contrast, they mention that visualization space in AM increases quadratically with the number of nodes. As most networks are relatively sparse, this space usage is considered less efficient.

H2 - Neighborhood Hypothesis: AM outperforms BF in accuracy and completion time on the neighbor search when no edge attributes

resent networks of friendships. A person in this network is illustrated as a node. An edge represents the friendship between two persons. Each friendship is described by four edge attributes (i.e., years of friendship, distance, interactions per week, and common hobbies) whose values were assigned randomly. We chose a number equal to the numerical node attributes evaluated in Nobre et al. to allow the hypothetical transfer of results [NWHL20]. Like in related experiments, we varied the attribute values between 6 levels [ABHR*13, CBDM17].
are involved. Although both techniques allow for a systematic approach to scan adjacent edges, we expect BF to be more error-prone and take more time to retrieve a neighbor as multiple lines with changing directions must be followed. Nobre et al. share the same assumption in their extensive survey about multivariate network visualization [NMSL19].

H3 - Edge Sorting Hypothesis: The judgment on attribute values on BF results in a better accuracy and completion time than in AM. The topological structure of BF benefits from sorting the edges by attribute values. Also, the separate view provides more space to visualize attributes. Compared to embedded bar charts, the sorted table representing node attributes is strongly favored when searching for an extreme value [NWHL20].

H4 - Within-Edge Comparison Hypothesis: For tasks involving the comparison of attributes within individual edges, AM is more accurate and requires less completion time than BF. The bar chart in the cells of AM supports a direct comparison of multiple attributes as the bars are arranged beside each other and use the same baseline. In BF, we expect the effect of sorting the edges on multiple attributes to be outweighed by the juxtaposed layout of the edge attribute visualizations. This hypothesis is based on previous research on embedded bar charts that resulted in better performance when comparing attributes of neighbors [NWHL20].

Participants: We recruited 28 volunteers from our local student population to participate in our study. 17 identified themselves as male, 11 as female. All participants had normal or corrected-to-normal vision and did not report color weakness. Their ages ranged from 20 to 31 years (M: 22.56, SD: 2.56). Most participants finished high school. Only four had obtained their Bachelor’s, and one participant had a Master’s degree. 13 participants were currently engaged in the field of computer science. The others represented diverse academic backgrounds (biology, economics, law, mathematics, sports, and psychology). Based on a self-assessment, almost all participants were generally familiar with computers (M: 4.04, SD: 0.96, on a range where 1 means not familiar at all, and 5 means very familiar). However, fewer participants had experience with data visualization (M: 2.57, SD: 1.26). While our recruitment process favored university students, we aimed to balance their academic backgrounds and prioritize individuals with strong computer knowledge but limited experience in data visualization, representing a broader population.

Procedure: The study was conducted in a quiet setting at our university. The participant sat in front of a 27 inch display of 2560 x 1440 pixels. At approximately 60 cm distance, participants interacted with a web-based application (Figure 9) using a mouse. The experimenter guided the participants through an introduction, introducing them to the dataset. This structured approach allowed for intermediate examples of identifying nodes, tracing edges, and assessing edge attributes. In the condition of BF, the experimenter additionally drew the participants’ attention to the ordering of edges, which we took advantage of in the study.

After this introduction, the experimenter explained the structure of the study. We divided the experiment into three sessions, each presenting a different task type. We began with the topology-based task, continued with the task on one attribute, and finished with comparing two attributes. Each session started with an introduction to the task in the web-based application, giving caution to possible misunderstanding. Nevertheless, the experimenter was present throughout the participation and encouraged participants to ask questions if a task was unclear. The participants got familiar with the task type by solving three training tasks on networks of 20 nodes and a density of 2.5%. These tasks were designed to train them on the technique and become comfortable with this study’s interface. To ensure their understanding, participants had to answer at least two of the training tasks correctly to proceed with the study. After the training, nine tasks of the same type were presented in increasing order of difficulty. We first increased the density on a fixed-sized network, then continued with the next larger size. Overall, this resulted in 36 trials. Finally, a form collected demographic information and feedback on the study anonymously. We compensated each volunteer with 10€ for one hour. We estimated the completion based on pilot experiments.

5. Results

This section reports significant results ($p < .05$) from our quantitative analysis. We recorded the performance in terms of accuracy and completion time. The accuracy was calculated by summing the number of correctly selected nodes, subtracting the number of falsely selected nodes, and dividing by the total number of correct nodes. We report mean values (M) for both measures with a 95% bootstrapped confidence interval (CI). We use the format $[LL, UL]$ where LL is the lower limit, and UL is the upper limit of the interval.

As assessed by Levene’s [Lev60] and Shapiro-Wilk [SW65] tests (with $p < .05$), the data on accuracy and completion time is non-parametric. Thus, we used Spearman’s rank correlation coefficient [Dan87] to explore the relation of the performance to size and density. Since the tasks varied in purpose and accomplishment, we analyzed the differences between the visualization techniques within each task independently. We based our analysis on Mann-Whitney U tests [MW47] and reported U statistics, p-values, and the Common Language Effect Size [MW92]. Detailed results are reported and discussed in Table 1.

5.1. Scalability

Figure 10 illustrates the effect of network size and density on each technique’s performance. Independent of the task type, the performance of BF seems less scalable with respect to network size than AM. The accuracy of participants working with BF decreased drastically when the network size was increased from 50 to 80 nodes. The computed Spearman’s ρ revealed that size and accuracy had a moderate correlation ($ρ = −0.41$, $p < .0001$). Further, Figure 10 indicates a linear relationship between the network size and completion time on BF. These factors correlated strongly ($ρ = 0.59$, $p < .0001$). For AM, the accuracy and the network size correlated only weakly ($ρ = −0.15$, $p = .003$). However, the increase in network size led to increasing completion time. We identified an even stronger correlation compared to BF ($ρ = 0.74$, $p < .0001$).

BF was also more affected by network density than AM. Participants working with BF were less accurate and required more time when the density was increased. Tests revealed that the number of edges correlated weakly with accuracy ($ρ = −0.27$, $p < .0001$) and time ($ρ = 0.25$, $p < .0001$). AM was less affected in the completion time ($ρ = 0.14$, $p = .0067$).
Figure 10: Effect of network size and density on the performance independent of the task. The error bars are confidence intervals.

Figure 11: Experiment results regarding accuracy and completion time for all three tasks. The mean is encoded as a point, and the error bars indicate confidence intervals.

Table 1: Accuracy and completion time for each task split by network size and density. Significant results are highlighted in bold font.
6. Discussion

H1 - Scalability Hypothesis: We conjectured that BF is more scalable with respect to network size and density than AM. However, the analysis revealed that working with BF led to more error-prone results on complex networks than AM. Representing nodes as horizontal lines instead of points was new to all participants and added additional difficulty to accomplishing the analysis tasks. Also, participants had problems following individual edges. Increasing network size and density shrank the space between the node and edge lines, significantly impacting the visualization. Most participants commented on losing the focus of the target node. They proposed interactive highlighting or alternating colors for the edge lines as a solution. However, this approach requires careful consideration for the color encoding of additional attributes, especially when interactive highlighting is available. Although BF uses the visualization space more efficiently compared to AM in terms of the number of nodes, it does not preserve the legibility of complex graphs well. This result contrasts the objective of Longabaugh to address the scalability issue [Lon12]. Thus, we cannot confirm H1.

H2 - Neighborhood Hypothesis: Our results of task 1 support the recommendation of Nobre et al. on the neighborhood inspection [NMSL19]. When no edge attributes are involved, AM outperforms BF. We believe retrieving a neighbor in BF is impeded because the alignment of multiple lines to trace might change. As some participants mentioned, this is not true for the edges of the upper nodes. In this case, the representation of adjacent edges resembled a waterfall pattern, so a longer edge connects the next neighbor to the right. To reveal these kinds of patterns for all nodes, Longabaugh introduces shadow links [Lon12], which duplicate the number of edges, jeopardizing scalability. In AM, the aligned headers help keep track of inspected neighbors. Some participants working with AM tried to minimize the error by memorizing the number of cells between multiple adjacent edges and retrieving corresponding neighbors in the header simultaneously. This approach is not possible with BF. For small networks, BF provides an overview as good as AM. Overall, AM has a better performance. Therefore, we confirm our hypothesis H2.

H3 - Edge Sorting Hypothesis: Across all networks, we could not identify differences in performance between AM and BF for task 2. This is surprising since participants using BF perceived the ordering of edges as helpful for detecting an extreme value. Also, Nobre et al. identified the ordering of attributes as highly beneficial for nodes in AM [NWHL20]. Thus, we explain the discrepancy in our findings due to the erroneous differentiation of lines during neighbor retrieval. As the juxtaposed table covered one-third of the visualization space for BF, differentiating between node lines was even more challenging than in task 1. Further, we believe that the spatial separation of the edges and their attributes hampered their correct association (see the gap between the topology view and the corresponding attributes Figure 9). Again, an interactive highlighting might help to connect edges with their corresponding attributes better. The integrated approach in AM provided more accurate results on large networks and significantly decreased the time for identifying attributes in dense networks. Based on this, we cannot confirm H3.

H4 - Within-Edge Comparison Hypothesis: The embedded bar chart in the matrix cells is more amenable when multiple attributes need to be inspected. AM showed better performance in task 3 than BF. These results are in line with recent research [NWHL20]. For BF, the juxtaposed view counteracted the benefit of sorting the edges on multiple attributes. On large and dense networks, participants were uncertain when following edges at the boundaries of the attribute value ranges. Also, comparing attributes over adjacent rows took longer and resulted in less accurate answers. In AM, the encoding as a bar chart made it possible to spot the difference between the target values easily due to the identical baseline. Thus, we can confirm our hypothesis H4.

7. Design Considerations

We propose the following design considerations based on our design space exploration, user experiment results, and discussion.

For assessing a node’s neighborhood, analysts should consider AM. Although BF and AM share an overall high accuracy, the results of task 1 indicate that AM scales better for network size and density. When analyzing few edge attributes, AM should be preferred. Participants performed better when working with AM. This is true for all network sizes and densities. For small network sizes and densities, both visualization techniques can safely be used. Participants performed equally well with both visualization techniques in all three tasks.

When there is sufficient space, designers should introduce shadow links for BF. Qualitative feedback has shown that participants prefer a staircase pattern for neighborhood inspection. The grouping of related edges facilitates reading neighborhoods. With an increasing number of attributes, juxtaposed views might be preferable. Overplotting becomes more likely when many attributes are visualized using embedded or transformed views, irrespective of the chosen visualization technique (AM or BF).

Independent of the visualization technique, interactive highlighting should be implemented. In the qualitative assessment, participants commented on the usefulness of interactive highlighting to avoid losing track of following individual edges.

8. Conclusion & Limitations

In this paper, we explored the design space of BioFabric for multivariate network analysis. We conducted an experiment with 28 participants to assess the performance of BioFabric for edge attribute-based analysis tasks compared to the well-established adjacency matrix. The results show that the adjacency matrix is more scalable and better suited for adjacency tasks with and without additional edge attributes. However, both visualizations achieved an overall high accuracy. From our qualitative feedback, the ordering of edges in BioFabric was helpful for the inspection of attributes. However, the benefits of juxtaposed tables proved in other studies did not prevail in our experiment. Therefore, our results did not support the potential ascribed to BioFabric [NMSL19].

Our design exploration offers various visual encoding and arrangement possibilities for BioFabric. Although previous experiments inspired our designs, alternative design considerations could produce different results. This is especially true for double encodings, which profit from redundant mappings [Kop79], or sorting the nodes and edges differently. In our experiment, the chosen tasks focused only...
on edge attributes. In multivariate network analysis, node attributes and the combination of the two might also be interesting. Especially for the latter use case, BioFabric might profit from the possibility of sorting two juxtaposed tables (i.e., nodes and edge attributes). The underlying data in our user study contained up to four edge attributes. However, when increasing the number of attributes, we expect the juxtaposed tables used in BioFabric to profit from their aspect ratio. At the same time, integrated representations like the bar charts in adjacency matrices would drastically decline in visual quality. In other visualizations, interaction techniques are helpful for different tasks. Thus, we suggest the integration of interaction possibilities like visual highlighting are provided.

In the future, we want to investigate the performance of BioFabric in other topology- and attribute-based tasks when increasing the number of attributes and testing alternative design variations. The application of edge- and node-sorting algorithms, as already discussed for Massive Sequence Views [EHBBw14, vEHBBw13] also seems promising. This study complements the multivariate network analysis research field with the first quantitative evaluation of BioFabric and a set of design considerations for practitioners.

Acknowledgement

This work was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy – EXC 2117 – 422037984 and TRR 161 (Project A03) – Project-ID 251654562. Open Access funding enabled and organized by Projekt DEAL.

References

2470654.2470724. 3, 4, 7

2013.650530. 3

1471-2105-7-109. 3

10711379023001100. 10

