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Summary. Mining graph databases for frequent subgraphs has recently developed
into an area of intensive research. Its main goals are to reduce the execution time
of the existing basic algorithms and to enhance their capability to find meaning-
ful graph fragments. Here we present a method to achieve the former, namely an
improvement of what we called “perfect extension pruning” in an earlier paper [4].
With this method the number of generated fragments and visited search tree nodes
can be reduced, often considerably, thus accelerating the search. We describe the
method in detail and present experimental results that demonstrate its usefulness.

1 Introduction

In recent years the problem how of to find common subgraphs in a database
of (attributed) graphs, that is, subgraphs that appear with a user-specified
minimum frequency, has gained intense and still growing attention. For this
task – which has useful applications in, for example, biochemistry, web min-
ing, and program flow analysis – several algorithms have been proposed. Some
of them rely on principles from inductive logic programming and describe the
graph structure by logical expressions [7]. However, the vast majority trans-
fers techniques developed originally for frequent item set mining. Examples
include MolFea [11], FSG [12], MoSS/MoFa [3] , gSpan [16], Closegraph [17],
FFSM [9], and Gaston [14]. A related, but slightly different approach, which
is strongly geared towards graph compression, is used in Subdue [5].

The basic idea of these approaches is to grow subgraphs into the graphs
of the database, adding an edge and maybe a node in each step, counting
the number of graphs containing each grown subgraph, and eliminating infre-
quent subgraphs. Unfortunately, with this method the same subgraph can be
constructed in several ways, adding its nodes and edges in different orders.
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The predominant method to avoid the ensuing redundant search is to define
a canonical form of a graph that uniquely identifies it up to automorphisms:
together with a specific way of growing the subgraphs it enables us to deter-
mine whether a given subgraph can be pruned from the search tree (see, for
example, [1] for a family of such canonical forms and details of the procedure).
As the properties of canonical forms are widely used throughout this chapter,
we will briefly review them in Sect. 4. To further improve the algorithms one
may restrict the search to so-called closed graph fragments (Sect. 2), which
capture all information about frequent subgraphs, but lead to considerably
smaller output (in terms of the number of reported fragments). This restric-
tion also enables us to employ additional pruning techniques, one of which
is perfect extension pruning, as we called it in [4], or equivalent occurrence
pruning, as it is called in [17]. Unfortunately, neither of these approaches, in
the form in which they were described in these papers, works correctly, as
they can miss certain fragments. This flaw we fix in this paper (Sect. 3).

In addition, the approach in [4] avoided redundant search with the help of
a repository of found fragments instead of using the more elegant canonical
form pruning. As a consequence, perfect extension pruning was easier to per-
form, since it was not necessary to pay attention to the canonical form. With
canonical form pruning, part of perfect extension pruning is easy to achieve,
namely pruning the search tree branches to the right of the perfect extension
(Sect. 5). This was first shown in Closegraph [17]. In this paper we show how
one may also prune the search tree branches to the left of the perfect exten-
sion by introducing a (strictly limited) code word reorganization (Sect. 6).
We demonstrate the usefulness of the enhanced approach with experiments
on molecular data sets (Sect. 7).

2 Mining Closed Graph Fragments

The notion of a closed fragment is derived from the corresponding notion
of a closed item set, which is defined as an item set no superset of which
has the same support, i.e., is contained in the same number of transactions.
Analogously, a closed fragment is a fragment no superstructure of which has
the same support, i.e., is contained in the same number of graphs in the given
database. As an example consider the three molecules (no chemical meaning
attached – they were constructed merely for demonstration purposes) shown
in Fig. 1 as the given database of attributed graphs. A corresponding search
tree (starting from sulfur as a seed and with fragments being extended only if
they appear in at least two molecules) is shown in Fig. 2 (how the extensions of

S C N C
O

O S C N
F

O S C N
O

Fig. 1. Three simple example molecules
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fragments are chosen and ordered is explained later). The numbers below or to
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Fig. 2. Search tree for the three molecules in Fig. 1; infrequent fragments (contained
in only one molecule) are drawn in grey/light colors, closed fragments are encircled

the left/right of the fragments state their support, i.e., the number of molecules
a fragment is contained in. Infrequent fragments (i.e. with a support less than
two molecules) are drawn in grey/light colors. The encircled fragments are
closed and thus constitute the output of the search (for a minimum support
of two molecules). Note that, for example, the fragment O-S-C is not closed,
since the fragment O-S-C-N, which contains O-S-C as a proper subgraph, has
the same support (namely two molecules).

As for item sets, restricting the search for molecular fragments to closed
fragments does not lose any information: all frequent fragments (drawn in
black/dark color in Fig. 2) can be constructed from the closed ones by simply
forming all substructures of closed fragments that are not closed fragments
themselves. Knowledge of the support of a non-closed frequent fragment is
also preserved: it is simply the maximum of the support values of those closed
fragments of which it is a substructure. Consequently, restricting the search
to closed fragments is a very convenient and lossless way to reduce the size of
the output.

3 Perfect Extensions

Perfect extension pruning is based on the observation that sometimes there
is a fairly large common fragment in all currently considered molecules (that
is, in all molecules considered in a given branch of the search tree). From the
definition of a closed fragment it is clear that in such a situation, if the current
fragment is only a part of the common substructure, then any extension that
does not grow the current fragment towards the maximal common one can
be postponed until this maximal common fragment has been reached. That
is, as long as the search has not grown a fragment to the maximal common
one, it is not necessary to branch in the search tree. The reason is, obviously,
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that the maximal common fragment is part of all closed fragments that can
be found in the currently considered set of molecules. Consequently, it suffices
to follow only one path in the search tree that leads to this maximal common
fragment and to start branching only from there.

As an example consider again the set of molecules shown in Fig. 1. If
the search is seeded with a single sulfur atom, considering extensions by a
single bond starting at the sulfur atom and leading to an oxygen atom can
be postponed until the structure S-C-N common to all molecules has been
grown (provided that the extensions of this maximal common fragment are
not restricted in any way – see below).

Technically, the search tree pruning is based on the notion of a perfect
extension. An extension of a fragment, consisting of an edge and possibly a
node (if the edge does not close a ring), is called perfect if all of its embeddings
(that is, occurrences of the fragment in the database graphs) can be extended
in exactly the same way by this edge and node. (Note that there may be several
ways of extending an embedding by this edge and node; then all embeddings
of a fragment must be extendable in the same number of ways.) If there is a
perfect extension, all closed (super-)fragments can, in principle, be found by
searching only the corresponding branch.

O C S C
N

O C S C N
O

O

C S C

C S C N O C S C

2+2 embs.

1+1 embs. 1+3 embs.

Fig. 3. Example of an imperfect extension

However, when identifying perfect extensions, one has to be careful. In the
first place, it does not suffice to check whether the number of embeddings of
the extended fragment is equal to or a multiple of the number of embeddings
of the base fragment (as one may think at first sight). This is only a necessary,
but not a sufficient condition, as the example shown in Fig. 3 demonstrates.
Even though the total number of embeddings in the right branch is the same
as for the root, the extension is not perfect, because the extension can be done
only once in the left molecule, but three times in the right. The left branch
is not perfect, because the number of extended embeddings, even though the
same for each parent embedding, is reduced from the number of extensions
of its parents. Such a reduction, which also occurs in the right branch for the
left molecule, indicates that some symmetry has been destroyed by the exten-
sion, which therefore cannot be perfect. As a consequence, a test for perfect
extension actually has to count and compare the number of embeddings per
database graph.

A second problem (which was overlooked in both [17] as well as in [4])
is the behavior of rings (cycles) in the search, as we demonstrate with the
example molecules shown in Fig. 4. A search tree for these molecules (with
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Fig. 4. Rings/cycles can cause problems
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Fig. 5. Search tree for the two molecules in Fig. 4; closed fragments are encircled

only such fragments that are contained in both molecules) is shown in Fig. 5.
Here almost all extensions are perfect in the sense that they can be made
in the same way in all molecules. However, the problem becomes clear when
one considers adding a bond from the nitrogen atom to a carbon atom. This
extension rules out certain ways of reaching the carbon atom via the oxygen
atom and the rest of the ring. Hence the bond leading to the carbon atom
is only “locally” perfect, but not “globally”, that is, when the ring structure
is taken into account. As a consequence we cannot restrict the search to the
corresponding branch, since we would lose fragments. This can be seen clearly
from the location of the closed fragments in the search tree shown in Fig. 5:
there are three closed fragments (for a minimum support of 2, encircled in
grey), but we cannot reach all of them if we see adding an edge from the
nitrogen atom to a carbon atom as a perfect extension (even after the oxygen
atom has been added, which could actually be seen as a perfect extension).

The problem obviously is that there are two ways of reaching the carbon
atom that is directly connected to the nitrogen atom. Even though only one
of them is possible in both molecules, both have to be considered, because
part of the second possibility is the same in both molecules, thus leading to a
relevant frequent fragment. Unfortunately there is no way to determine this
locally, that is, by looking only at the grown fragment and its direct extension.
In order to cope with this problem we require that perfect extensions must
be bridges (that is, the extension edge must be a bridge in all embeddings
of the extended fragment). This is surely a safe (i.e., sufficient) condition as
it rules out any possibility that the destination of the perfect extension edge
can be reached in any other way, and thus fixes the flaw mentioned above.
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However, it is not a necessary condition. As a closer inspection easily reveals,
that extensions closing a ring (that is, extensions by an edge leading to a node
that is already in the base fragment) are also safe and thus can be allowed as
candidates for perfect extensions: since the destination node is already in the
fragment, there cannot be a problem with multiple ways of reaching it. Hence
we can slightly relax the constraints.

Note, however, that these relaxed constraints are still only sufficient, but
not necessary. There are other situations in which an extension can be con-
sidered perfect, even though it does not meet the abovementioned conditions.
For example, if an edge leads to a new node and is part of rings of the same
size and composition in all supporting graphs, it is harmless and thus can
be considered a perfect extension. Even the extension by a bond from the
nitrogen atom to the oxygen atom in Fig. 5 can be considered a safe perfect
extension, despite the fact that the rings have different size. Unfortunately,
checking necessary and sufficient conditions is complicated and costly and
thus we confine ourselves to the rule that an extension edge must either be a
bridge in all molecules or must close a ring (cycle) in all molecules in order to
be considered perfect.

4 Canonical Codes for Graphs

As we already mentioned in the introduction, perfect extension pruning, as it
was described in the previous section, is not a problem unless canonical forms
are used to identify redundant fragments. However, since canonical forms are
a lot more elegant than, for example, a repository of already processed frag-
ments, need less memory and make it easier to parallelize the search, it is
desirable to be able to use perfect extension pruning together with canonical
form pruning. In this section we briefly review some fundamentals of canon-
ical forms for (attributed) graphs, which are necessary to know in order to
understand the code word reorganization we discuss in Sect. 6.

The core idea of canonical forms of graphs is to describe an (attributed)
graph by a code word, which uniquely identifies it up to automorphisms, and
from which the graph can be reconstructed. The letters of such a code word
describe the edges of the graph and which nodes they connect as well as
the node and edge attributes (or labels). In order to capture the connection
structure, the nodes are numbered (or, more generally, endowed with unique
labels), since the node attributes are not enough to identify them uniquely: the
same attribute may be assigned to several nodes in a graph. Of course, there
are several possible ways of numbering the nodes, each of which gives rise to a
different code word. Generally, all of these code words are taken into account
and the lexicographically smallest (or greatest) code word is then defined to
be the canonical code word. Note, however, that due to the way in which code
words are used in the search (see below), the possible node numberings (and
thus the possible code words) one has to consider can actually be restricted to
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those compatible with traversals of spanning trees (see [1] for more extensive
explanations).

Canonical code words are used in the search as follows: during the mining
process the fragments are grown by adding an edge in each step. This edge
is characterized by the node in the fragment from which it starts, by its
attribute, and by the node it leads to. (Note that this does not mean that
the edges are directed; the “source” and “destination” node are solely defined
by how the extension is done: the node that is extended is the “source” and
the other node, the extension edge is incident to, is the “destination”). In
addition, the nodes are numbered in the order in which they are added to
the fragment. Hence the search process naturally constructs a code word for
each grown fragment, namely by simply concatenating the descriptions of the
edge extensions that led to it. Of course, there are many possible ways of
building a fragment by adding edges, each of which leads to a different code
word. However, there is obviously only one way that leads to the canonical
code word for a fragment (since a code word fixes a specific order of the
extensions). Hence we may choose to extend only those fragments that have
been built in such a way that their code word is canonical. Eliminating all
other fragments is called canonical form pruning, which obviously rules out
all redundant search: each fragment is considered at most once. Note that the
way in which the search process builds code words also explains why we can
confine ourselves to node numberings (and thus code words) compatible with
traversals of spanning trees (as mentioned above): no other code words can
be constructed by the search.

For the rest of the paper we focus on code words resulting from node
numberings that are obtained by breadth-first traversals of spanning trees,
that is, the canonical form used in MoSS/MoFa [3]. Note, however, that the
described approach is also applicable for code words resulting from node num-
berings that are obtained from depth-first traversals of spanning trees, that
is, the canonical form used in gSpan [16] or Closegraph [17]. The necessary
adaptations of the procedure are straightforward and thus not described in
detail.

A breadth-first code word has the general form a (is b a id)m, where a is
node attribute, b an edge attribute, is the index (or number) of the source
node of an edge, and id the index (or number) of the destination node of an
edge (it is always is < id ). The letter m denotes the number of edges of
the fragment. Each parenthesized expression describes one edge. As an ex-
ample, consider the left molecule shown in Fig. 1. If this molecule is built
from left to right, that is, if we choose the left oxygen atom as the root of
a spanning tree, a possible code is O 0-S1 1-C2 2=O3 2-N4. As can be seen
from this code word, the bond added first is the one from the oxygen atom
(index 0) to the sulfur atom (index 1), the bond added last is the one from the
carbon atom (index 2) to the nitrogen atom (index 4). However, there is an-
other possibility of building the same fragment, which leads to the code word
O 0-S1 1-C2 2-N3 2=O4 (that is, the last two bonds are added in inverse
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order). If these two code words are compared lexicographically, the latter is
smaller than the former (assuming that single bonds are “smaller” than dou-
ble bonds, that is, - < =). Therefore we can conclude that the first code word
is not the canonical code word, but neither is the second. The canonical code
word for this molecule is actually S 0-C1 0-O2 1-N3 1=O4 (if we use the order
S < C < N < O and - < =, which we always use for all following examples).
Note, however, that the canonical code word is C 0-N1 0-S2 0=O3 2-O4 if we
use the order of the periodic table of elements (that is, C < N < O < S, and
- < =), showing that which code word is the canonical one also depends on
the order we choose for the node and edge attributes. Empirical evidence sug-
gests that it is recommendable to use an order that reflects the frequency of
the attributes in the graph database to mine (less frequent attributes should
precede more frequent ones), as this usually leads to fewer generated frag-
ments and thus shorter search times. Note also that (canonical) code words
for graph fragments provide a natural way of ordering the fragments in the
search tree: the children of a search tree node are listed from left to right in the
order of lexicographically increasing code words. This makes precise what we
mean by “to the left” and “to the right” of a search tree branch: “to the left”
are fragments with smaller, “to the right” fragments with greater (canonical)
code words.

Checking whether a given code word is canonical usually requires testing
all possible code words for a fragment (at least w.r.t. all possible node num-
berings resulting from traversals of spanning trees) and thus has essentially
the same complexity as a graph isomorphism test. (Pseudo-code for such a
canonical form check can be found, for example, in [1].) Nevertheless, canon-
ical code words are very effective in pruning the search tree, because they
use “global” information in contrast to only “local” rules, as they were used
originally in [3]. These “local” or “simple” rules, however, can still be applied
to support canonical form pruning, as they specify necessary (though not suf-
ficient) prerequisites for code words to be canonical, which can be tested very
efficiently and help to avoid a costly canonical form test in many cases. For
example, if we use a breadth-first canonical form (as it was described above),
one may not extend a node that has an index smaller than another node in the
fragment, which has already been extended (maximum source extension: only
nodes with an index no less than the maximum source index may be extended).
The reason is that an extension violating this rule necessarily leads to a non-
canonical code word, as can easily be checked with a spanning tree rooted at
the same node. As an example consider the fragment S-C-N in the search tree
in Fig. 2: this fragment may not be extended by an edge from the sulfur atom
(index 0) to an oxygen atom, because an atom with a higher index, namely
the carbon atom (index 1), has already been extended. Indeed, if we add such
an edge, the code word of the resulting fragment is S 0-C1 1-N2 0-O3, while
the canonical code word for this fragment is S 0-C1 0-O2 1-N3 (using again
the order S < C < N < O). More details on canonical forms and the “local”
or “simple” rules, which result from them and restrict the possible extensions,
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can be found in [1]. Of course, there are “local” or “simple” rules not only for
breadth-first, but also for depth-first code words, which specify a restricted set
of extensions known as rightmost path extensions. However, for the discussion
in this paper it suffices to know that regardless of the canonical form used the
“local” or “simple” rules basically state that extensions that generated the
sibling nodes to the left of a search tree branch may not be done in the search
tree branch itself or in branches to the right of it.

5 Partial Perfect Extension Pruning

If one wants to combine perfect extension pruning with canonical form pruning
as it was described above, the following problem has to be solved: growing the
maximal common fragment can interfere with canonical form pruning and
in particular the extension restrictions resulting from it (note that this was
no problem in [4] due to the use of a repository of found fragments to avoid
redundant search). However, perfect extensions should not lead to such a
restriction, because otherwise search results may be lost. Even the fact that
the code word of a fragment, as it is built by the search, is not canonical is
not sufficient to prune it.

As an example consider again the search tree shown in Fig. 2. If we simply
confined the search to the sub-tree rooted at the fragment S-C-N, we would lose
the fragment O-S-C-N in the leftmost branch. The reason is that the extension
of S-C to S-C-N, due to canonical form restricted extensions, prevents an
extension of the sulfur atom in this sub-tree (as described in the preceding
section), because an atom with a higher number, namely the carbon atom,
has already been extended in the preceding step.

S

S C

O S C S C N

O S C N S C N
O

S F S O

S C O

O S C
O

S C N C

O S C N
O

S C N C
O

Fig. 6. Search tree for the three molecules in Fig. 1 with partial perfect extension
pruning (crossed out branches are pruned)

Fortunately, this only affects search tree branches to the left of the per-
fect extension branch, since the corresponding extensions are ruled out by the
perfect extension and the “local” or “simple” rules (see above). All extensions
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corresponding to branches to the right of the perfect extension are still possi-
ble for the fragment reached by the perfect extension. Therefore branches to
the right can be pruned immediately without any loss: they cannot contain
any closed fragment, because the perfect extension cannot be done in them
without violating canonical form, but has to be done in order to reach a closed
fragment. This type of pruning we call partial perfect extension pruning (be-
cause it prunes only part of the branches aside from the perfect extension
one). Note that Closegraph [17] uses only this form of pruning.

How partial perfect extension pruning changes the search tree for the
molecules in Fig. 1 is shown in Fig. 6. Note that only non-closed fragments are
removed from the search tree (compare to Fig. 2, in which the closed fragments
are highlighted). The gains consist in the fact that the two pruned fragments
need not be processed: neither do they have to be checked for canonical form
nor do we have to consider possible extensions of them.

6 Full Perfect Extension Pruning

Although partial perfect extension pruning is already highly effective, it is
desirable to prune also the search tree branches to the left of the perfect
extension, thus completing partial perfect extension pruning into full perfect
extension pruning. In order to do so, we must not restrict the extensions of
the fragment that resulted from a perfect extension as it would be required
by canonical form pruning (with or without the “local” or “simple” rules).
Otherwise we would lose fragments, as we demonstrated above. In other words,
we would like to have a search tree like the one shown in Fig. 7 for the
molecules in Fig. 1.

S

S C

S C N

O S C N S C N
O

S F S O

O S C S C O

S C N C

O S C N
O

S C N C
O

Fig. 7. Search tree for the three molecules in Fig. 1 with full perfect extension
pruning (crossed out branches are pruned)

The core problem with this is how we can avoid that the fragment O-S-C-N
is pruned as non-canonic. The breadth-first search canonical code word for this
fragment is S 0-C1 0-O2 1-N3. However, with the search tree in Fig. 7 it is
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assigned the code word S 0-C1 1-N2 0-O3, because this reflects the order in
which the bonds have been added. Since this code word is not canonical, the
fragment would be pruned and neither extended nor reported.

In order to avoid this, we allow for a (strictly limited) reorganization of
code words as they result from a search tree, which takes care of the fact
that perfect extension edges may have been added earlier than required by
the canonical form. We split the code word into two parts: The first, fixed
part consists of the (possibly empty) prefix up to and including the last edge
that was added by a non-perfect extension or by a perfect extension with no
search tree branches to the left of it. The second, volatile part consists of the
remaining suffix of the code word, which is made up only of perfect extensions
edges, which had search tree branches to the left of it. Note that we can check
for the existence of branches to the left of a perfect extension branch after
minimum support pruning, that is, after eliminating all fragments that occur
in less than the user-specified minimum number of database graphs. The rea-
son is that we can be sure that extensions leading to infrequent fragments in
branches to the left will also lead to infrequent fragments in the perfect exten-
sion branch or in branches to the right of it and thus need not be considered
in these branches.

The construction of the code word of a fragment is then modified as follows:
instead of always simply appending the description of the extension edge to
the end of a code word, the description of the new edge may now be inserted
anywhere in or even before the volatile part, but not in the fixed part. We may
imagine this as first appending the new edge description and then shifting it
to the left, as long as this makes the code word lexicographically smaller, but
the new edge description does not enter the fixed part.

Note, however, that “shifting” an edge in the code word can make it nec-
essary to renumber the nodes. For example, if in the fragment O-S-C-N the
bond added last in the search (that is, the bond from the sulfur atom to the
oxygen atom) is shifted left past the perfect extension bond (that is, the bond
from the carbon atom to the nitrogen atom), the oxygen and the nitrogen
atom get new indices. The reason is that the nodes must be numbered in the
order in which they would be added if the edges were added in the order in
which their descriptions are listed in the (reorganized) code word (see Fig. 8).

1. Base fragment: S-C-N canonical code: S 0-C1 1-N2

2. Extension to O-S-C-N code: S 0-C1 1-N2 0-O3 (not canonical!)
3. Shift the non-perfect extension code: S 0-C1 0-O3 1-N2

4. Renumber nodes canonical code: S 0-C1 0-O2 1-N3

Fig. 8. Fixing a fragments code by shifting a non-canonical extension over perfect
extensions (marked in gray) to the proper place

Technically, we achieve this renumbering as follows: instead of actually
shifting the extension edge from right to left, we rebuild the code word from
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left to right. First we traverse the fixed part, numbering all nodes in the order
in which they are met. Then we continue with the volatile part until at least
one of the two nodes incident to the new edge is numbered. Note that this
may already be the case before the first edge in the volatile part is considered.
In this case no edge of the volatile part is processed in this step.

Finally we traverse the (remaining) volatile part edge by edge, each time
comparing the next edge to the new edge. If the new edge (w.r.t. source and –
possibly still to be assigned – destination index and edge and destination node
attribute) is lexicographically smaller, it is inserted at the current position in
the volatile part and the rest of the volatile part is appended (renumbering
nodes as needed). Otherwise any unnumbered node incident to the current
volatile edge is numbered and the next volatile edge is considered. If all volatile
edges have been traversed and the new edge has not been inserted, it is simply
appended at the end of the code word.

To make the process clearer, we execute it step by step for the example
shown in Fig. 8. The root node (here the sulfur atom) is, of course, always in
the fixed part. Hence it receives the initial node index, that is, 0. Since the next
edge is already in the volatile part, this finishes processing the fixed part. Since
by assigning the index 0 to the sulfur atom, one node incident to the new edge
(sulfur to oxygen) is thus already numbered, we have to start immediately to
compare edge descriptions. We compare two possibilities, namely appending
the description of the new edge, which assigns the node index 1 to the oxygen
atom, or appending the already present first perfect extension edge (sulfur
to carbon), which assigns the node index 1 to the carbon atom. This yields
two possible code word prefixes, namely S 0-O1 and S 0-C1. Since the latter
is smaller (as C < O), it is fixed (that is, the new edge is not yet inserted)
and we move to the next position. Here we compare the code word prefixes
S 0-C1 0-O2 and S 0-C1 1-N2. Since the former is smaller (as O < N), the
position of the new edge has been found and we fix the first prefix. In a
final step, the remaining perfect extension edge is appended, assigning the
node index 3 to the nitrogen atom. Note that the fixed part of the resulting
code word now contains not only the root atom, but two bonds: the first
perfect extension bond, which is rendered fixed by the fact that a non-perfect
extension was inserted after it, and the new bond, which is fixed, simply
because it is not a perfect extension. The volatile part contains only the second
perfect extension (the bond from the carbon to the nitrogen atom).

Note that generally, provided the new edge is not a perfect extension itself,
this edge is recorded for the restricted extensions as required by the “local” or
“simple” rules of maximum source extensions (that is, extensions preceding
this edge are ruled out). In other words, if the new edge is not a perfect
extension, the place at which it is inserted is the new end of the fixed part of
the code word (as described above). Note also that the resulting code word
still has to be checked for canonical form. Since the reorganization is strictly
limited, the resulting code word may not be canonical. For example, the new
edge may actually have to be inserted into the fixed part in order to make the
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code word canonical. In this case the fragment must not be adapted, so that
the code word becomes canonical, but has to be pruned.

S
C C

CC
O

CCC
C

C

Fig. 9. Example molecule used to demonstrate full perfect extension pruning

To further illustrate the process described above, we study another com-
plete example, which also shows the different cases that can occur. Consider
the molecule shown in Fig. 9. Our goal is to build this molecule using full per-
fect extension pruning3. As the order of the elements we use again the order
S < C < O, which is in line with the order used in the preceding example. As
a consequence the search has to start at the sulfur atom, because all other
starting points obviously lead to non-canonical code words (as even the first
letter is greater for them). Three extensions of this one-node fragment (code
word: S) are possible: we may add one of the two ring bonds to carbon atoms
(which lead to the same fragment S-C) or we may add the bond to the oxygen
atom. Without perfect extension pruning, both child fragments (S-C and S-O)
would have to be considered. However, the bond to the oxygen atom occurs in
all molecules (only one in this example) and the number of embeddings of the
extended fragment is the same as for the single sulfur atom. Hence adding this
bond is a perfect extension, while the bond to a carbon atom is not eligible as
a perfect extension, since it is a ring bond (and thus no bridge, see Sect. 3).
This leads to the code word S 0-O1 . The extension is marked as perfect, and
the volatile part of the code word starts directly after the oxygen atom (in-
dicated by a grey background). Note that the other extension (leading to the
fragment S-C) would have to be considered if we only used partial perfect ex-
tension pruning, since its code word, that is, S 0-C1, is smaller than S 0-O1.
Only full perfect extension pruning allows us to eliminate this fragment from
the search.

In the next step, all possible extensions are considered (no restriction by
“local” or “simple” rules), which are the two ring bonds (again leading to
the same fragment, now O-S-C) and the bond from the oxygen atom to the
next carbon in the chain atom. The latter is a perfect extension and thus the
other two extensions are pruned, resulting in the code word S 0-O1 1-C2 .
Since the new edge is a perfect extension, the volatile part grows to two edge
descriptions (grey background). In the third step, the two ring bonds incident
to the sulfur atom are again eliminated due to the perfect extension to the
next carbon atom in the chain, which is in the left ring: S 0-O1 1-C2 2-C3 .

3 Mining only one molecule is, of course, not very sensible in practice, but it keeps
the example simple and the process is the same as when mining a larger number
of molecules.
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Now there are no perfect extensions left, because all remaining bonds are part
of rings (and thus no bridges). It should be noted that the maximum source
index is still 0 (sulfur atom), because all extensions made so far were perfect
and thus their source indices are not counted for the “local” or “simple” rules
characterizing maximum source extensions. Without this special handling, we
would not be allowed to add any of the bonds of the right ring. But since
the sulfur atom is still extendable, we add, in the next step, one of the two
ring bonds to it, which results in the code word S 0-O1 1-C2 2-C3 0-C4. As
one can immediately see from the source index 0 in the last bond, this code
word is not canonical. Therefore we have to start the process of rebuilding
the code word. First, the sulfur atom is numbered 0 and this already deter-
mines three of the four parts of the description of the newly added bond from
the sulfur to the carbon atom, namely 0-C (the still to be assigned desti-
nation index is replaced by an underscore; alternatively it may be set to the
next free node index, which is 1 in this case, as we did it before). This “in-
complete” extension is compared to the first perfect extension in the volatile
part. Since the incomplete description 0-O of this extension is greater (as
carbon precedes oxygen), the position of the new edge has been found and
the description of this edge is appended. Therefore we have as a code word
prefix S 0-C1, which forms the new fixed part of the code word. The three
perfect extensions in the volatile part are renumbered accordingly (the indices
of the destination nodes are increased by one) and their descriptions are ap-
pended, yielding the code word S 0-C1 0-O2 2-C3 3-C4 . The next extension
adds the other ring bond from the sulfur atom to a nitrogen atom: we reorga-
nize from S 0-C1 0-O2 2-C3 3-C4 0-C5 to S 0-C1 0-C2 0-O3 3-C4 4-C5 .
The sixth extension adds another ring bond, yielding – before reorganization
– the code word S 0-C1 0-C2 0-O3 3-C4 4-C5 1-C6. This time, the new
edge description is not inserted before all perfect extensions, but after the
first, because its source node index is greater than that of the first perfect
extension: S 0-C1 0-C2 0-O3 1-C4 3-C5 5-C6 . This has two effects: in the
first place, the volatile part now consists of only the last two perfect exten-
sions (as the insertion of a non-perfect extension edge after the first perfect
extension renders the first perfect extension edge fixed). Secondly, the atom
with the maximum source index (from which on extension are still allowed)
is now the one with index 1, namely the source atom of the added edge.

The next edge that is added is another ring bond and it is inserted be-
fore the volatile part, since its source index is smaller than the source index of
the next perfect extension bond: S 0-C1 0-C2 0-O3 1-C4 2-C5 3-C6 6-C7 .
The next bond closes the right ring and it is inserted in the middle of
the volatile part: S 0-C1 0-C2 0-O3 1-C4 2-C5 3-C6 4-C5 6-C7 (since its
source node index is larger than that of the first perfect extension bond in the
volatile part, but smaller than that of the second perfect extension). The last
three edges, that is, the three bonds of the left ring (3 carbons), are added in
the normal order (after the volatile part, or actually simply by appending to
a fixed code word, since adding the first bond of the left ring renders the last
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perfect extension fixed). No code word reorganization is necessary any more.
The final code word is:
S 0-C1 0-C2 0-O3 1-C4 2-C5 3-C6 4-C5 6-C7 7-C8 7-C9 8-C9.

7 Experiments

In order to test full perfect extension pruning, we implemented it as an ex-
tension of the MoSS program4, which is written in Java. As the test dataset
we used the well-known subset of the Index Chemicus 1993 [10] and a small
dataset of 17 steroids. The results on these datasets with different search
modes are shown in Fig. 10, Fig. 11, and Fig. 12, which display the number of
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Fig. 10. Experimental results on the IC93 data without ring mining (pure single
bond extensions)
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Fig. 11. Experimental results on the IC93 data with ring mining (complete ring
extensions)
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Fig. 12. Experimental results on the steroids data with ring mining (complete ring
extensions)

4 MoSS is available for free download under the GNU Lesser (Library) Public Li-
cense at http://www.borgelt.net/moss.html.
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search tree nodes (left), created fragments (middle), and created embeddings
(right). The horizontal axis shows the minimal support in percent (IC93) or as
an absolute number (steroids). For the experiments of Fig. 11 and Fig. 12 we
used ring mining, which means that rings in a user-defined size range (here: 5
to 6 bonds) are not built edge by edge, but added in one step. The technique
underlying such ring mining was introduced in [8] for a repository of processed
fragments to avoid redundant search, but later extended in [2] to work with
perfect extension pruning (using a reorganization technique similar to the one
presented in this paper).

In each diagram the dashed grey line refers to the basic algorithm without
any perfect extension pruning, the grey solid line to partial perfect exten-
sion pruning and the black solid line to full perfect extension pruning. These
results show that full perfect extension pruning indeed leads to some non-
negligible gains (in the order of about 5 to 10%) over partial perfect extension
pruning, even though the main gains clearly result from partial perfect exten-
sion pruning. Tests we ran during the development of the program indicated
that relaxing the constraints for perfect extensions (that is, also edges clos-
ing rings/cycles are allowed as perfect extensions instead of only bridges)
improved performance by up to an additional 3%.

8 Conclusions

In this paper we fixed the flaw of the original descriptions of perfect extension
pruning by requiring that perfect extensions must be bridges, but still allowing
edges that close rings/cycles apart from bridges. In addition, we introduced
full perfect extension pruning, which consists in pruning not only the search
tree branches to the right (partial perfect extension pruning as it is used in
Closegraph [17]), but also those to the left of the perfect extension branch. To
make this possible in combination with canonical form pruning, we allowed
for a (strictly limited) reorganization of code words as they result from the
search. The experimental results show that this method can actually further
reduce the complexity of the search, although the main improvement comes
from partial perfect extension pruning. Future work is directed at combining
sibling perfect extensions into one extension, so that perfect extensions, once
found, need not be rediscovered and reprocessed.
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