
Data-Driven Mark Orientation for Trend Estimation in

Tingting Liu
Shandong University, Qingdao, China

sduhammer@gmail.com

Michael Correll
Tableau Software, United States

mcorrell@tableau.com

Sca!erplots

Xiaotong Li
Shandong University, Qingdao, China

xiaotonglig@gmail.com

Changhe Tu
Shandong University, Qingdao, China

chtu@sdu.edu.cn

Yunhai Wang∗

Shandong University, Qingdao, China
cloudseawang@gmail.com

Chen Bao
Shandong University, Qingdao, China

baochen95@gmail.com

Oliver Deussen
University of Konstanz, Germany
oliver.deussen@uni-konstanz.de

Figure 1: The impact of mark orientation on trend estimation.When a trend in the data is unambiguous, either due to a strong

correlation (a,b) or the presence of an obviously outlying cluster irrelevant to the central trend (c,d) mark orientation does not

greatly impact the perception of trends in the data. However, when trends are ambiguous, mark orientation can introduce a

bias. By using a data-driven orientation ofmarks in such cases, we can guide viewers tomore accurate estimates of weak trends

(e,f), or trends impacted by nearby outliers (g,h). This results in estimates that are robust even for cases when assumptions

about an underlying linear modeling are violated.
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ABSTRACT

A common task for scatterplots is communicating trends in bivariate

data. However, the ability of people to visually estimate these trends

is under-explored, especially when the data violate assumptions

required for common statistical models, or visual trend estimates

are in conflict with statistical ones. In such cases, designers may

need to intervene and de-bias these estimations, or otherwise in-

form viewers about differences between statistical and visual trend

estimations. We propose data-driven mark orientation as a solution

in such cases, where the directionality of marks in the scatterplot

guide participants when visual estimation is otherwise unclear or

ambiguous. Through a set of laboratory studies, we investigate

trend estimation across a variety of data distributions and mark

directionalities, and find that data-driven mark orientation can help

resolve ambiguities in visual trend estimates.

1 INTRODUCTION

We rely on scatterplots for a variety of bi-variate tasks including

the perception of trends, correlations, and outliers [22]. Famous

examples such as Anscombe’s quartet [1] show that the visual

representation of bi-variate data can reveal patterns that would

ordinarily be hidden by common summary statistics. Likewise,

common statistical trend measures as Ordinary Least Squares (OLS)

can be simplistic and fail to accurately model data in the pres-

ence of outliers, multiple clusters, or heteroskedasticity (unequal

variance) [19]. However, it is highly unlikely that the perceptual

process by which people assess trends in scatterplots is anchored

in a viewer’s literal statistical calculations: recent evidence instead

suggests that perceptual “proxies” [14, 18] based on one or more

visual features of a scatterplot [36] drive our assessment of these

statistical properties.

This results in uncertainty about how to make use of visual per-

ception for trends estimation in scatterplots. On the one hand, we

might wish to use the power and flexibility of human judgments

to disambiguate different model spaces or select more reasonable

fits when the assumptions of particular models are violated. On the

other hand, we might want to provide guidance and feedback for

viewers when they face possible human biases or misinterpreta-

tions of trends. Striking the right balance between trust in human

visual judgments and assistance from statistical models requires a

baseline comparison of human perception and statistical models: In

which cases can we rely on humans to make sufficiently accurate

judgments about trends, when might authors or designers need to

intervene?

Initial work from Correll & Heer [7] suggests that people are

able to perform a general sort of “regression by eye” with simple

Gaussian stimuli and a single class of outliers. However, it is un-

known whether this sort of visual estimation is reliable in more

complex scenarios, or if there are strategies by which a visualization

designer can intervene in order to promote better estimates. After

studying corresponding cases, we propose the use of data-driven

mark orientations, where marks in a scatterplot are oriented into

the direction of the trend, as a potential design choice that relies on

regression by eye when the trend in the data is unambiguous and

strong, but provides useful guidance when the trend is ambiguous

or weak. Unlike a mere superposition of a trend line on top of a

scatterplot, such data-driven marks are a kind of weaker “sugges-

tion” for a trend direction, and can be ignored more easily when

unnecessary or inappropriate.

We performed three experiments to justify the use of mark ori-

entation for encoding trend information. Our research questions

for these experiments were: 1) to what degree does the orientation

of marks in a scatterplot create a bias for regression by eye? and 2)

in cases where traditional linear models like ordinary least squares

(OLS) under-perform (such as distributions with heteroskedastic-

ity or outliers), can a bias introduced by a carefully selected mark

orientation result in estimates that are more robust than OLS?

Our experiments show that, while in most cases viewers can

accurately estimate trends regardless of mark shapes, the use of

data-driven marks with a directionality that visually reinforces a

trend direction can assist viewers in trend estimation. This assis-

tance is particularly prominent when the trend is unclear (as in

scatterplots with large amounts of dispersion) or when the trend

is ambiguous (for outlying or secondary clusters that would shift

the OLS line of best fit). This suggests that the ability to visually

estimate trends, even in the absence of an explicit line of best fit, is

robust even in cases when methods like OLS do not perform well. In

cases where the trend is uncertain or unclear, the use of data-driven

orientation as a supplemental encoding can visually reinforce trend

lines and reduce perceptual errors. Data tables, study materials and

additional analyses are included in our supplemental material and

can also be found at https://osf.io/hzdf3.

2 RELATEDWORKS

There is an extensive body of works on graphical perception tasks

in scatterplots. Rensink [20] states that, much as geneticists use

model organisms with simple genomes to model more complex

behavior, scatterplots can function as “fruit flies” for graphical

perception research questions in visualization. Scatterplots become

especially important when moving beyond atomic tasks such as

extraction and comparison of individual values that are common

in foundational graphical perception work such as Cleveland &

McGill [5] to “ensemble” tasks [27] such as the perception of average

value and variance. The assessment of a trend is such an ensemble

task, potentially requiring viewers to consider every point in the

scatterplot in a holistic way, although recent work [14, 18] suggests

that “perceptual proxies” such as point envelopes and ranges likely

guide visual statistical judgments in scatterplots rather than explicit

calculations.



Much existing work focuses on the perception of correlations

in scatterplots [12, 15, 21, 25, 32, 36], often involving pairwise com-

parisons on which of two scatterplots contain data that is more

highly correlated. The perception of a particular trend, however,

is comparatively under-explored. Correll & Heer [7] find that hu-

man estimations of trends in simple gaussian stimuli are largely

similar to the results of methods like OLS, except for biases intro-

duced by the design of a visualization or the presence of outlying

points. We reanalyze their results and discuss modifications of their

experimental methods in the following section

The choice of mark shapes in scatterplots is important and has

great impact on the discriminability of clusters [16, 29] as well

as the legibility of other encoding channels such as color [26].

Furthermore, there seems to be a qualitative difference between

closed and open shapes [4] for the assessments of similarity and

difference within classes [8]. Despite this potential impact, many (or

even most) visualizations rely on default mark shapes [2], typically

circles. Of particular interest to us is the work by Ziemkiewicz

& Kosara on the “implied dynamics” [37] of visualizations. Their

work on marks in scatterplots specifically suggests that “attractor”

points [38] can create a bias for results of graphical perception tasks

(even to the extent of irrational decision-making, as pointed out by

Dimara et al. [9, 10]).

Xiong et al. [33] show that this sort of “perceptual pull” can

influence ensemble tasks. Relying on this impact, Lu et a l. [17]

use data-driven “winglets” around marks in scatterplots to suggest

implicit clusters. Our assumption therefore is that the directionality

inherent in marks such as triangles could act as a form of implied

dynamics that subtly influences the estimation of a trend, and there-

fore act as a way of mitigating potential biases (see Wall et al. for a

discussion of the benefits and costs of bias mitigation techniques

in visualization [31]). Similar to winglets, we use orientation to

implicitly communicate structures in scatterplots. However, we

believe our work aims at solving a more general and common prob-

lem (global trend estimation versus cluster boundary identification

under uncertainty) in a more transferable way (a global, trivially

computed orientation as compared to a more complex per-mark

calculation involving uncertainty quantification).

We base our experimental methods on those employed by Correll

& Heer [7]. The authors created scatterplots based on an initial

set of Gaussian residuals of varying bandwidths (corresponding to

an increasing level of dispersion) to which a particular trend was

added, allowing orthogonal control over the slope of the trend line

and the dispersion of the points (c.f. Rensink & Balridge [21] and

Harrison et al. [12] in which correlation and slope are entangled).

Participants then manipulated a trend line with a slider until they

felt that it matched the trend in the data, with the error measured as

the difference (both absolute and signed) in the user defined trend

and the actual source trend. We extend and modify their methods

to address the specific case of marks with inherent orientations and

more complex data distributions.

3 METHODS

Expanding and extending the work of Correll & Heer [7], we per-

formed a set of three in-person experiments focusing on two open

points: the effect ofmark orientation and the effect of the internal

distribution of the data points such as outliers and non-uniform

densities on the visual estimation of trends in scatterplots, with

an explicit interest in the interaction between mark type and scat-

terplots with complex or ambiguous trends. With the belief that

certain mark orientations could guide (or mislead) the viewer, our

experiments investigated the accuracy or precision of trends that

were estimated using regression by eye for various scatterplots that

meet the OLS assumptions (Experiment 1) or violate them due to

outliers (Experiment 2) or non-uniform data densities (Experiment

3).

We explore pre-defined as well as data-driven mark orientations,

which are determined by analyzing trends in the data. When the

internal distributions of the data violate the assumptions of the

OLS model, we expected to find systematic differences between

model and visual estimations. We focused on linear trends in this

experiment for the ease of modeling but also because there are

general similarities in human performance between linear and non-

linear trends as observed by Correll & Heer [7].

We chose synthetic stimuli to be able to compare our work with

prior approaches such as [7, 12, 18, 21], which in most cases use

synthetic stimuli. A second reason was to have precise control over

the features in the scatterplots. This allows us to directly assess our

research questions (which primarily dealt with the robustness and

feasibility of data-driven marks under specific conditions).

Mark Shape and Orientation. While there exists a vast palette

of potential mark shape options for which we would anticipate

differing patterns of perceptual judgments [8], we focus on triangles

and circles, which are the most widely used marks. For example,

over 97% of all single-class scatterplots in the VizNet [13] dataset

use one of those two mark types. Besides a default upward oriented

orientation, we test triangles rotated using data-driven factors, with

circles as a default option without inherent orientation. We also

found that most triangle marks in VizNet [13] dataset are equilateral

triangles; thus, while isosceles triangles have less ambiguity in their

encoding of orientation, we use equilateral triangles. Additionally,

unlike isosceles triangles, the exact center of equilateral triangles

is easier to estimate, which might have benefits for distributional

estimation tasks.

Although other shapes can also be used such as diamonds,

squares or even arrows, we omitted them for the sake of exper-

imental parsimony. In terms of statistical power, we anticipated

significant inter-participant variances and relatively small effect

sizes, therefore we aimed at keeping all factors within-subjects

while maintaining a reasonable task time to avoid participant fa-

tigue.

Baseline Stimuli. We adapted the data generation of Correll &

Heer [7] to create the stimuli. To have independent control over

the relevant statistics, we generated the distributions based on the

standard linear regression model:

y = α + βx + ε, (1)

where ε follows the Gaussian distribution N (0,σ ). Here, α is the

intercept, β is the slope and the bandwidth σ controls the dispersion

of the points. Larger values ofσ result in larger residuals andweaker

trend lines, and this way act as a control over the task difficulty.

We synthesize each baseline distribution by uniformly sampling

100 points along a trend in the x direction and then adjusting these



Figure 2: Comparison of point sets generated by adding

Gaussian residuals along the vertical direction in
(a,c) and orthogonal direction in purple (b,d) to the trend

line (shown in orange).

points with the Gaussian residual. Note that we alleviate the effect

of overplotting by requiring the points to have a minimal amount of

occlusion.We explored more complex data models and distributions

in experiments described later.

However, perturbing the points sampled from a trend line y (see

Eq.(1)) along the vertical direction might result in an incorrect trend

estimation. The reason for this is the “sine illusion” [30]; humans

appear to have a preference for assessing a line width based on

its orthogonal rather than its vertical width. Fig. 2 shows that a

scatterplot with a small slope (a) has a larger apparent residual

bandwidth (purple line) than for a larger slope (c). In other words,

the residual bandwidth attached to a large trend slope seems to be

smaller, which could impact our estimation task.

We re-analyzed the data in Correll & Heer [7] and identified an

interaction between trend slope and residual bandwidth consistent

with this illusion, as shown in Fig. 3. To account for this effect, we

inject the residuals in the orthogonal direction to the trend line

instead of the vertical direction. Fig. 2 shows a comparison of the

baseline distributions generated by these two methods using the

same residual bandwidth σ . The bandwidths of the scatterplots

in Figs. 2(b,d) seem to have a larger variance than the ones in

Figs. 2(a,c).

Figure 3: Joint analysis of estimation error resulted by resid-

ual bandwidth and trend slope. (a) resulting error (point

size) in relation to absolute slope and residual bandwidth;

(b) mean values and errors (shown as 95% confidence inter-

vals (CI)) of the estimated slope for different given slopes

when the residual bandwidth is 0.2.

Participants andApparatus. Sincewewere showing participants

stimuli which could violate the assumptions of the OLS model, we

wanted a pool of study participants with at least some data science

expertise and thus did not perform an online study. For the three

experiments we recruited 88 participants (41 female and 47 male)

from undergraduate and master students of the schools of computer

science and information engineering from our university (average

age 23.6, median age 25), where the numbers of participants for

experiment 1, 2 and 3 were 67 (27 female and 40 male), 73 (37

female and 36 male), and 69 (28 female and 41 male), respectively.

Since it is not easy to find many participants with experience in

reading scatterplots, we allowed participants from experiment 1 to

participate in experiment 2 or 3. Although this might introduce a

possible learning effect, we alleviated the effect by having a large

time interval (more than one week) between the two experiments.

Each experiment lasted 30 minutes on average and the students

were compensated with $8.00 USD. The study was conducted on a

desktop machine with a 3.4GHz Intel i7-6700 CPU, 8 GB of RAM,

Windows 10 operating system using a 24-inch LCD display with a

resolution of 1920 x 1080 pixels, and the Logitech M510 Wireless

Computer Mouse.

Interface and Measures. We used an interface similar to the one

used in Correll & Heer [7] that presented participants with a scat-

terplot and asked them to interactively adjust a trend line to fit

the data best. Our interface required users to adjust the orientation

of the trend line and the y-intercept (the intersection point of the

line and the y-axis) with two independent sliders. Note that instead

of manipulating the slope directly (in direct coefficients from say

[-1,1]), the participants manipulated the orientation of the line, in

degrees. Slope and orientation are related by the non-linear arctan

function, and Talbot et al. [28] suggest that human judgments are

more closely connected to the orientation of the line rather than its

slope. As such, in our experimental apparatus, users alter the orien-

tation of their estimated line rather than the slope, and we measure

error in terms of degrees of difference between the participant line

and the source trend.



After adjusting both sliders, participants had to confirm their

estimated trend line before proceeding to the next trial. Before start-

ing each experiment, we explained the concept of trend estimation

to each participant using three examples and then conducted a

training session with 8 trials. To avoid the influence of mark orien-

tation, all training examples used circle marks. In all experiments,

we did not tell participants about the meaning of oriented triangles

and also did not tell them that there were outliers and that they

should exclude outliers from the trend estimation in Experiment 2.

For each trial, we measured the errors in orientation (in degrees)

with respect to the slope, value with respect to the y-intercept, as

well as the per-trial response time (in milliseconds). We rejected

all trials from participants with high average orientation errors

(≥20 degrees). This amounted to 0/67, 2/73, 1/69 of participants for

experiments 1, 2, and 3, respectively. Our figures report all measures

with 95% t-confidence intervals. Raw data tables, stimuli, additional

analyses and figures are available in our supplemental material at

https://osf.io/hzdf3.

Interview. After completion of each experiment, we conducted a

short interview with the participants in which we asked them three

questions:

• Q1:“How might visual marks affect your trend estimation, if

at all?”;

• Q2:“How do you estimate trends?”; and

• Q3: “Which marks do you prefer?”.

Since Experiment 2 focuses on the influence of outliers, we change

Q2 to the following one:

• Q2:“How might outliers affect your trend estimation, if at

all?”.

We report the interview results for each experiment below.

4 EXPERIMENT 1: BASELINE DATA

Our first experiment studies investigated three independent vari-

ables and their interaction with trend estimation: trend slope, resid-

ual bandwidth, and mark orientation.

4.1 Data Generation

We synthesized 32 distributions with 8 slopes β =

±{0.1, 0.2, 0.4, 0.8} and 4 bandwidths of Gaussian residuals

σ = {0.05, 0.1, 0.15, 0.2} based on Eq. 1. For each distribution, we

selected five types of visual marks: two kinds of statically oriented

marks: circles, upward triangles (denoted as Tri-Up), and three

triangle forms with data-driven, dynamic orientations. Data-driven

marks are either informative (when pointing in the same direction

as the trend) or biasing (when pointing in a direction away from

the intended trend line). We refer to these conditions as Tri-0,

Tri-20 and Tri-40, where the number indicates the orientation of

the mark (in angles) away from the trend line. Although clockwise

or counterclockwise rotation was taken randomly for each stimuli,

overall there was about the same number of participants assigned

to clockwise and counterclockwise orientations. The first two mark

shapes, circle and Tri-Up, are commonly used marks [8]. While

a circle does not have any specific orientation, the Tri-Up has a

fixed orientation and therefore might amplify a steep trend line or

suppress a more horizontal one, see an example stimuli in Fig. 4.

Figure 4: Scatterplots with five different marks explored in

Experiment 1: (a) circle; (b) Tri-Up; (c) Tri-0, (d) Tri-20, and

(e) Tri-40.

Participants saw one example of each combination of mark shape

and data distribution and 4 additional validation stimuli for atten-

tion check, in total 32 × 5 + 4 = 164 trials. We did not impose any

time constraints for the trials, but almost all participants completed

their trials in less than 30 minutes. We recorded the response time,

the estimated trend orientation, and the estimated intercept for

each trial.

4.2 Hypotheses

For this experiment, our major goal was to investigate how mark

orientation would affect trend estimation. Thus we had three hy-

potheses:

(1) Mark orientation would have a strong effect on trend

estimation: an orientation consistent with the trend direc-

tion results in a higher accuracy. In other words, we expect

mark shapes to guide or bias the estimates of the partic-

ipants. Prior work indicates that carefully designed mark

orientation can direct the perception of cluster structures in

scatterplots [3, 17].

(2) The effect of mark orientation on trend accuracy

would be most pronounced when residual bandwidth

was large: that is, a small bandwidth would result in sim-

ilar accuracy for different marks, while a large bandwidth

would result in large differences in accuracy across different

marks. Prior work [7, 21] shows that the dispersion of points

influences accuracy in trend and correlation judgments, with

very high accuracy when dispersion from the trend is small.

Insofar as we anticipated that mark orientation would guide

or bias participants in their estimates, we suspected that the

impact of this guidance would be less pronounced for stimuli

where the dispersion is low and so accuracy is high in any

event.

(3) Trend slope would not have a significant effect on

trend estimation. In Correll & Heer [7], there was not sig-

nificantly different accuracy in trend estimation across dif-

ferent trend slopes. We believed that this finding would also

hold in our setting.



Figure 5: Results of Hypothesis 1 in Experiment 1: effect of

mark orientation on the accuracy of estimating trend orien-

tation (a) and trend intercept (b). Trianglemarks with an ori-

entation consistent with the actual trend result in the small-

est error, while Tri-40 results in the largest errors.

4.3 Results

We performed a three-way repeated measures analysis of variance

(rANOVA) of the effects produced by trend slope, residual band-

width and mark type for trend estimation. Estimation accuracy

was measured by orientation error and intercept error, which were

defined as the absolute difference between the measured estimates

and the OLS trend orientation/intercept. Note that the OLS trend is

almost the same as the ground truth, since the data agrees with the

assumptions of the OLS model.

Mark Orientation. Mark orientation had a significant effect on

the orientation estimation error (F (4, 264) = 10.437;p < .0001) and

trend intercept (F (4, 264) = 11.725;p < .0001), but there was no

significant effect on response time (F (4, 264) = 1.08;p > .05). As

shown in Fig. 5, Tri-0 results in the smallest error for the estimated

trend orientation and Tri-40 in the largest error, with the interquar-

tile means of the absolute errors being 6.17 and 7.11. We performed

a post-hoc Tukey’s Honest Significant Difference (HSD) test to ex-

amine pairwise difference and we were able to confirm that there

are significant differences between Tri-Up/Tri-40 and other mark

shapes (p < 0.05), but not between the other mark shapes.

Residual Bandwidth. The residual bandwidth also had a sig-

nificant effect on the estimation accuracy of trend orientation

(F (3, 198) = 399.64;p < .0001) and trend intercept (F (3, 198) =

377.92;p < .0001). Fig. 6(a) shows that the interquartile mean of

the absolute trend orientation error increases monotonically with

the bandwidth, from 2 degrees when the bandwidth is 0.05 to 12

degrees for a width of 0.2. Similar results for the intercept error

can be found in the supplemental material. Note that the residual

bandwidth also does not have a significant effect on the response

time for trend estimation (F (3, 198) = 0.54,p = .66).

There was also a significant interaction effect between mark

orientation and residual bandwidth on trend estimation accuracy

(F (12, 792) = 4.83,p < .0001). To further investigate this interaction,

we show the interquartile mean of orientation errors for different

marks at different bandwidths in Fig. 6(b). When the bandwidth is

0.15 or less, all marks result in similar orientation errors. For exam-

ple, when the bandwidth is 0.05, mark orientation does not have any

effect on trend estimation (F (4, 264) = 1.92,p = .11). By contrast,

mark orientation has a significant effect(F (4, 264) = 9.64,p < .0001)

when the residual bandwidth was 0.2. Different marks have differ-

ent interquartile means: Tri-0 has the smallest error while Tri-40

has the largest, similar to Tri-Up. This observation is consistent

with the one shown in Fig. 5.

Trend Slope. Contrary to our expectations, trend slope also had

a significant effect on trend estimation accuracy (F (7, 462) =

16.71;p < .0001) as well as on estimating the trend intercept

(F (7, 462) = 48.75;p < .0001). Fig. 7 shows that the interquartile

mean of trend orientation errors is heavily influenced. For posi-

tive trends, the trend orientation is overestimated, while the trend

intercept is underestimated.For negative trends, the trend orien-

tation is underestimated and the trend intercept is overestimated.

For both, positive and negative trends, the absolute intercept error

monotonically increases with the absolute trend slope from 0.1 to

0.8.

4.4 Post-Task Interviews

Q1. 74% of participants claimed that their estimates were influenced

by the mark type; for instance: i)“The visual mark has less effect for

scatterplots with less dispersions, but I’d like to rotate the trend line

along the mark orientation for the scatterplots with more dispersions;”

and ii)“the mark orientation assists me to do fine-tuning when it is

close to my estimation; but otherwise it might be misleading.” By

contrast, the remaining participants stated that visual marks did

not affect their trend estimation. The participants explained: “I

completely did not notice the difference of visual marks;” and “I mainly

examined data distribution and visual marks have less influence

especially for scatterplots with clear trends.”

Q2. By analyzing the answers of the participants, we found three

typical procedures for performing regression by eye. The majority

(63/67) first examined the bounding box of all points and then fine-

tuned the line to bisect the bounding box. Besides, three participants

said “find a line so that half of points are above it and half of them

are below it” and one participant mentioned that “find a line that

minimizes the distances from all points to it.” Since points were

symmetrically distributed along the trend line, taking the bounding

box as a visual proxy was reasonable for trend estimation.

Q3. The participants (74%) whose trend estimation were influenced

by mark orientation preferred Tri-0, as it provides direct informa-

tion about the trend, especially when dispersion was large. The

remaining participants preferred circles, because they were more

familiar with circles and assumed that visual marks would not

negatively impact their estimates.

5 EXPERIMENT 2: OUTLIERS

Correll & Heer [7] explore a single class of outliers, defined as

points in the top 10% or bottom 10% of the graph (whichever is

furthest away from the intended trend). We wanted to include a

more general class of secondary point clusters not generated by the

same Gaussian process as the main cluster, with variable distances

to the main points. Therefore, we expanded their outlier definition.

Our objective with this experiment was to see if these outlying

clusters would bias the trend estimation in proportion to their

distance from the main cluster, and if the influence of mark shapes



Figure 6: Results of Hypothesis 2 in Experiment 1: (a) Effect of residual bandwidth on accuracy of estimating trend orientation.

The absolute orientation error increases monotonically as the bandwidth increases. (b) Effect of residual bandwidth andmark

orientation on estimating trend orientation.

Figure 7: Results of Hypothesis 3 in Experiment 1: (a) Effect

of trend slope on the accuracy of trend orientation estima-

tion. A negative slope results in underestimation of the ori-

entation, while a positive slope results in overestimation. (b)

Effect of trend slope on the accuracy of trend intercept esti-

mation. A negative slope results in an overestimation of the

intercept, while a positive slope results in underestimation.

observed in the prior experiment would furthermore attenuate this

bias.

5.1 Data Generation

Similar to our other experiments, we generated an initial

set of points using the following parameters: 8 slopes β =

±{0.1, 0.2, 0.4, 0.8} with 4 bandwidths of Gaussian residuals σ =

{0.05, 0.1, 0.15, 0.2}. We then generated a secondary cluster via

a Gaussian distribution and adjusted its density and distance in

correspondence to the main cluster, see Fig. 8 for examples.

Outlier Position. We randomly placed the x position of the outlier

cluster centered around the beginning, first third or the end of the

major point set. The cluster was randomly placed on the Top or

Bottom relative to the main cluster, with the central y position

determined by:
{

(h − (α + βx))γ + α + βx , on the Top,
y = (2)

(α + βx)(1 − γ ), on the Bottom

where α and β are the parameters for generating the main cluster

(see Eq. 1) and h is the canvas height. The weight γ determines the

distance and was set to {0.25, 0.50, 0.75}. Figs. 8(a,b,c) show three

examples of outlying clusters with different γ values.

While in practice the distance of an outlying cluster to the ma-

jority of points defining the trend line is influenced by the slope,

bandwidth, and γ , we define the distance as the vertical distance

from the center of the outlier cluster to the robust trend line, as

illustrated by the dashed line in Fig. 8.

Outlier Density. Once the residual bandwidth σ of the major clus-

ter is selected, we generate the outlier cluster by using a Gaussian

distribution with the same bandwidth σ . To create stimuli with

varying outlier densities, we introduce a random factor δ from the

set {0.5, 1, 2} which we use to re-scale the positions of the points

in the outlying cluster:

x = (x − xc )δ + xc , (3)

y = (y − yc )δ + yc , (4)

where (xc ,yc ) is outlying cluster center. Figs. 8(d,e,f) show three

examples where the outliers have different densities, resulting from

different values of δ .

Mark Orientation. In accordance to the first experiment, we use

two mark types with static orientation (circle and Tri-Up) as well

as data-driven triangle marks. In this experiment, however, we

calculate two orientations, based on either the slope of the robust

trend line (the fit which ignores the outlying cluster) or the standard

OLS trend line (based on all points). Since the main cluster meets

the assumptions of OLS, the robust tend line is directly defined

by α and β . We refer to the two resulting triangle marks with the

orientations of the robust and OLS trend lines as Tri-R (robust) and

Tri-O (OLS), respectively. Fig. 9 shows example stimuli for all four

different mark types.



Figure 8: Three examples for outlier clusters with different distances (a,b,c) to the major cluster in y direction (distance indi-

cated by the red dashed line) and three examples of outliers with different densities (d,e,f). The green line shows the robust

trend line fitted only to themajor cluster, while the orange line indicates the OLS trend line fitted to all points in both clusters.

Figure 9: Scatterplots with four different marks explored in

Experiment 2: (a) Circle; (b) Tri-Up; (c) Tri-R, and (d) Tri-O.

Stimuli Generation. Since the effect of the slope in trend estima-

tion is mainly determined by its sign (Experiment 1), we did not

show every trend slope to our participants. To maintain a man-

ageable number of stimuli, we kept cluster density δ , the number

of outlier points, and the x position of the outlying clusters as

random factors, while guaranteeing an equal distribution over all

Figure 10: Results of Hypothesis 1 in Experiment 2: effect of

mark orientation on the accuracy of trend estimation. The

estimated trends are closer to the robust trend than the OLS

trend. Tri-R andTri-O yield less errors in terms of the robust

trend and OLS trend, respectively, while Circle and Tri-Up

perform similarly.

participants. Participants saw for all of the following factors one of

each level: four marks, slopes of two different signs, four residual

bandwidths, and three distance parameters, which summed up to a

total of 4× 2× 4× 3 = 96 stimuli plus 4 additional validation stimuli

synthesized by Eq. 1 as attention checks.



Figure 11: Results ofHypothesis 2 in Experiment 2: (a) Effect of outlier distance on the accuracy of trend orientation estimation;

(b) interaction effect between outlier distance and mark orientation on the accuracy of trend orientation estimation.

5.2 Hypotheses

We had three main hypotheses for this experiment:

(1) Mark orientation would affect trend estimation: we be-

lieved that a mark orientation consistent with the robust

trend line would encourage participants to ignore or oth-

erwise downweight outliers. As with the prior experiment

an prior work [3, 17], we anticipated that marks orientation

might bias or guide judgments.

(2) The distance between outliers and the major cluster

would affect trend estimation: as the distance between

outlier cluster and major point cluster centroids increased,

we anticipated that participants would downweight the out-

lying clusters when making their estimates. Prior work

shows that participants downweight (but did not entirely

discount) outliers when performing trend estimation [7],

although only with very distance outliers. We wanted to

explore the placement of outliers in greater detail.

(3) The density difference between outliers and major

trend has a significant effect: with increasing density

difference between main trend and outliers, participants

would more easily ignore outliers. Previous research indi-

cates that density difference affects human judgments in

visual clustering [23].

5.3 Results

We performed a repeated measures rANOVA analysis for under-

standing five factors: number of outliers, mark shape, outlier dis-

tance to the major cluster, outlier location, as well as outlier density.

For analyzing the effect of the outlier distance, we computed all

stimuli and then quantized them into five nonuniform groups based

on the ratio of cluster centroid distance and the correlation of main

cluster. In the supplementary materials we discuss other factors for

which we did not have strong or relevant hypotheses.

Mark Orientation. In accordance to our hypothesis, mark orien-

tation had a significant effect on the accuracy of the estimations

for trend orientation (F (3, 210) = 5.06,p < .05) and trend intercept

(F (3, 216) = 5.86,p < .001). As shown in Fig. 10, marks pointing

towards the direction of the robust trend (Tri-R) created less error

with respect to the robust trend. Similarly, marks pointing towards

the full OLS line (Tri-O) produced less error with respect to this

line, while the other two marks perform similarly. Our results also

support the finding of Correll & Heer [7] that participants down-

weighted outlying points when making trend estimates. For the

following analyses we therefore used the robust trend line as our

basis of comparison. Results for estimating intercepts can be found

in the supplemental materials.

Outlier Distance. Corresponding to our hypothesis, outlying clus-

ters further away from the remaining points were considered less

important for trend estimation. With increasing distance of the

outlying cluster our participants produced estimations closer to

the robust trend line. We observed that the distance had an ex-

tremely significant effect on the estimation accuracy with respect

to the robust trend orientation (F (4, 284) = 27.94,p < .0001) and

the intercept (F (4, 293) = 29.03,p < .0001). Fig. 11(a) shows that

the absolute orientation error drops rapidly from 9 to 2 when the

outlier distance changes from the smallest to the largest values.

To learn how mark orientation interacts with outlier distance,

Fig. 11(b) shows the CI error bars for different marks. Tri-R marks

have the smallest error when the distance is small, while Tri-Up

marks have the largest error. Since the outlier distance is associ-

ated with how ambiguous a trend is perceived, all marks result

in smaller errors with increasing outlier distance. Similar to the

prior experiment, mark orientation seems to have the strong impact

when trends are otherwise ambiguous, see examples in Fig. 1.

Outlier Density. Our results do not support our hypothesis of

differences in estimation error across cluster densities. Fig. 12(a)

shows the CI error bars for the different outlier density groups in

trend estimation, where three groups have similar errors.



Figure 12: Results of Hypothesis 3 in Experiment 2: effect

of outlier cluster density on estimating trend orientation (a)

and intercept (b).

Our ANOVAs show that the density difference between the ma-

jority of points and the outlier cluster does not have a significant ef-

fect on the estimation accuracy of trend slope (F (2, 140) = 1.88,p >

0.05) and trend intercept (F (2, 144) = 2.90,p > 0.05). However,

Tukey’s HSD Post Hoc Test only identifies the dense group have a

significant interaction with the other groups in trend estimation

(see Fig. 12(b)), while the sparse group does not have a significant

difference compared to the other groups.

5.4 Post-Task Interviews

Q1. 57% of our participants mentioned that mark orientation had

an influence on their estimates. For instance, participants stated

that “if the mark has an orientation, I first rotate the trend line to

align the mark orientation and then fine-tune the line based on data

distribution;” “I rotate the line along the mark orientation when the

scatterplots have a higher amount of dispersion,” and “when the mark

orientation is close to my estimation, it provides a reference for me to

quickly fine-tune the trend line.”

Q2. Regarding visual proxies, around 89% of the participants be-

lieved that their estimations were heavily influenced by distance

of the outliers to the majority of points; 72% of the participants

believed that density differences would also have an effect. Repre-

sentative statements include that “if the outlier cluster is compact or

far from the major cluster, it can be ignored, otherwise it might have

an influence;” and “if the number of points in the outlier cluster is

large, I will move the trend line towards it.”

Q3. Around 65% of participants preferred Tri-R and Tri-O marks.

Some participants cited the ability of these data-driven marks to

speed up decision-making and estimation. For example, the par-

ticipants mentioned that “when I am uncertain, I’d like to adjust

trend line along the mark orientation.” The rest preferred standard

circle marks; some claimed that the inherent directionality in trian-

gular marks had the potential to be misleading. For example, one

participant stated that “I am not sure whether the triangle orienta-

tion is correct and thus I am worried if the orientation misguide my

estimation.”

6 EXPERIMENT 3: NON-UNIFORM DENSITY

Local cluster density heavily influences the quality of the regression

model [24]. On the other hand, non-uniform densities will result in

heteroskedasticity, violating the assumptions of OLS and generating

poor fits. We speculated that local density might also impact visual

estimate of trends. Furthermore, as in our previous experiments,

mark shapes with data-driven orientations could guide or bias the

estimates for ambiguous stimuli. In this experiment we investigate

how the regression by eye works for non-uniform data and identify

the potential effects from local densities and mark orientations.

6.1 Data Generation

To generate scatterplots with varying densities, we fixed a point Set

A and then merged it with another point Set B whose number of

points and slope could be adjusted. Specifically, we first created a Set

A with 40 points, slope of β = 1 and residual bandwidth of σ = 0.2

by using Eq. 1. Then, wemerged Set Awith a second Set B generated

by combining 6 possible point numbers {40, 60, 80, 100, 120, 140},

with 4 slopes {0.1, 0.2, 0.4, 0.8}, and a residual bandwidth of 0.1.

The y-intercept of the trend line for point Set A was zero, while

the one for point Set B was chosen from the set {0.1, 0.3, 0.4, 0.45}.

Here, we only analyzed 4 slopes instead of 8 (positive and negative)

for two reasons: i) we had already studied effect of trend slope sign

on trend estimation in our previous experiments and had no strong

hypotheses around an interaction with cluster density (see Fig. 7)

and ii) mixing a positive trend in Set A with a negative trend in Set

B can only produce small regions with non-uniform densities. The

number of total stimuli was therefore 4 × 6 × 4 = 96 stimuli plus

4 additional validation stimuli synthesized by Eq. 1 as attention

checks for this experiment.

Fig. 13 shows six examples generated by merging the green

and orange point sets with overlaid green and orange trend lines.

Figs. 13(a,b,c) demonstrate that changing the number of points in

one set with a fixed slope influences the perceived density. On the

other hand, changing the trend slope while keeping the number

of points unchanged influences the bounding boxes, as shown in

Figs. 13(d,e,f). Since bounding boxes are an efficient visual proxy for

the perception of the correlations in scatterplots [36], we speculated

that the size of the bounding box might also impact the visual

estimates of the trends. Note that the colors used in Fig. 13 are for

illustrative purposes only, Fig. 14 shows an example stimuli used

in the experiment.

Mark Orientation. As with the prior experiments, we used static

marks (circles and Tri-Up) as well as a set of marks with data-driven

orientations. In this case, the triangle marks were rotated towards

the orientation of the trend of Set A (Tri-A) or Set B (Tri-B), which

serves as the upper or lower bound of the orientation of the user

fit. In particular, Tri-A was fixed with 45◦, while the orientation of

Tri-B was a value in the set of {5.7◦, 11.3◦, 21.8◦, 38.7◦}.

6.2 Hypotheses

We had three hypotheses for this experiment:

(1) Mark orientation would affect trend estimation for

non-uniform data: as per our previous experiments, we

expected mark orientation to guide or bias the estimates. For

instance, trend estimates for the Tri-A would be closer to the

trend of Set A, and for Tri-B to be closer to Set B. Since the

points of Set A by construction have a larger slope than the



Figure 13: Scatterplots with varying point numbers and slope: (a,b,c) show varying point numbers in Set B; (d,e,f) show varia-

tions of the slope of Set B. The overlaid green line is the fitted trend line for point Set A, the orange line for point Set B; and

the blue line is the user fit. The bounding box shown for each scatterplot is computed by discarding outliers.

points of Set B, this would result in an increasing estimated

slope for Tri-A, and a decreasing estimated slope for Tri-B.

(2) Local densitywould affect trend estimation: as the num-

ber of points in Set B increases, the estimated trend would

hew closer to the trend orientation of Set B (and so would de-

crease). Previous research indicates that local density heavily

affects human judgments in visual clustering [23].

(3) The slope of the points in Set B would affect estima-

tion precision: we anticipated that as the slope increases,

the resulting stimuli would be less “ambiguous” which, as in

our previous experiments, would result in a more consistent

performance. Similarly we anticipated that the impact of

mark orientation would be less pronounced for less ambigu-

ous stimuli.

6.3 Results

We performed a three-way repeated measures ANOVA analysis

for measuring the impact of mark orientation, number of points

and trend slope of the second set for trend estimation. Unlike in

the prior experiment, where we could use the robust trend line as

an anchor based on its dominance in participant responses, here

there is no single “correct” fit: OLS is not an appropriate tool for

intermixed heteroskedastic data. Due to the absence of a ground

truth in this experiment, we are left only with measuring precision

rather than accuracy: our analysis is directly based on the estimated

trend orientation and intercept related to the individual clusters A

and B. Significant differences in the values estimated for different

marks indicates different patterns of decision-making, with higher

estimated slopes indicating a preference for the trend of Set A over

the (by construction) lower slope of Set B.

Mark Orientation. Our results partially support the hypothe-

sis that mark shapes would affect trend estimation. We observed

a significant effect of the mark shape on the estimation of the

trend slope (F (3, 201) = 8.60,p < .0001) and trend intercept

(F (3, 204) = 4.76,p = .003). A post hoc Turkey HSD test showed

that only Tri-B and Tri-Up performed significantly differently

from each other when estimating slope (p < .005) and intercept

(p = 0.005) , whereas marks Tri-B and Tri-A did not have a sta-

tistically significant difference in estimates of the trend intercept

(p > .05).

Fig. 15 illustrates mean estimation orientations and intercepts

for different mark shapes. Tri-B resulted in the smallest mean orien-

tation (30.1◦) and the largest mean y-intercept (0.045), while Tri-Up

resulted in the largest mean orientation (31.9◦) and the smallest

mean y-intercept (0.015). Tri-A, Circles and Tri-Up all performed

similarly for the estimation of the trend intercept.



Figure 14: Scatterplots with four differentmarks explored in

Experiment 3: (a) Circle; (b) Tri-Up; (c) Tri-A, and (d) Tri-B.

Figure 15: Results of Hypothesis 1 in Experiment 3: for our

third experiment with intermixed point sets A and B, the

effect of mark orientation on the estimation of trend orien-

tation (a) and intercept (b).

Local Density. Our results support the hypothesis that estimates

are influenced by the density of the secondary cluster. We observed

that the number of points in Set B has a significant effect on the

estimation of the trend slope (F (5, 335) = 218.12,p < .0001) and

trend intercept (F (5, 340) = 76.92,p < .0001). Fig. 16(a,b) illustrates

the results.

As the number of points in Set B increases, the estimated trend

orientation decreases and the intercept increases roughly (see

Fig. 16(a,b)). This observation indicates that estimates are influ-

enced by the point density, which was enlarged by the increased

number of points in Set B. However, the interaction effect between

density of the secondary cluster and mark orientation is not sig-

nificant (F (15, 1005) = 0.95,p > 0.05). Fig. 16(c) shows that Tri-B

and circles result in similar and smaller estimation results when

the point number in Set B is bigger than 40. Tri-Up results in the

largest estimated trend orientation, which is consistent with the

observation in Fig. 15.

Trend Slopes. Our results support the hypothesis that estimates

are influenced by the slope of Set B. We observe that the slope of

Set B has a significant effect on the estimation of the trend orien-

tation (F (3, 201) = 467.02,p < .0001) and intercept (F (3, 204) =

301.98,p < .0001). As shown in Fig. 17(a,b), the estimated mean

trend orientation increases and the variance decreases as the slope

increases for Set B. This is consistent with our observation that Set

B becomes more distinct with increasing slope and the ambiguity

of the stimuli is reduced.

Fig. 17(c) further shows the interaction between trend slopes

and visual marks, which has a significant effect on estimating mark

orientation (F (9, 603) = 4.07,p < .0001). We can see that the differ-

ence of the estimated mean orientations between Tri-A and Tri-B

rapidly decreases from 5◦ to almost zero as the slope increases.

Meanwhile, the local density grows larger and the bounding boxes

become smaller, see example in Figs. 13(d,e,f). Previous work [36]

shows that the bounding box and local density are efficient visual

proxies for the perception of correlations in scatterplots; however,

it is unclear which plays the more important role.

6.4 Post-Task Interviews

Q1. About 22% of the participants believed that mark orientation

does not have an influence on their estimates and utilized the bound-

ing box of the whole point set and the one of high density areas to

estimate trends. The rest of the participants (78%) believed that the

mark orientation influenced their estimation, with quotes such as

“I will unconsciously rotate the trend line along the mark orientation,”

or “I will first rotate the trend line along the mark orientation and

then fine-tune it based on the data, and “when the mark orientation

is close to my estimation, I will be sure that it is the orientation of

trend line and thus rotate the trend line to align it. ”

Q2. We found almost all participants estimate trends by using

bounding boxes or local densities with three different procedures.

The two major procedures were: i) “I first adjust the trend line based

on dense areas and then fine-tune it along sparse points”; and ii)“I first

look at the bounding box of the whole data, then find a line to bisect

the bounding box, and finally fine-tune the line in terms of the density

difference in scatterplots,” whereas only two participants mentioned

“I only consider dense areas of the scatterplot for adjusting trend lines.”

We conclude that local densities are one major visual proxy for

estimating trends in scatterplots with non-uniform densities.



Figure 16: Results of Hypothesis 2 in Experiment 3: for our third experiment with intermixed point sets A and B, the effect of

the number of points in Set B on the estimation of trend orientation (a) and intercept (b). (c) Interaction between the number

of points in Set B and mark orientation on the estimation of the orientation.

Figure 17: Results of Hypothesis 3 in Experiment 3: for our third experiment with intermixed point sets A and B, the effect of

the slope of Set B on the estimation of trend orientation, in terms of bothmean (a) and variance (b); (c) Effect of the interaction

between the slope of Set B and mark orientation on trend estimation.

Q3. The majority (66%) of participants preferred circular marks and

some participants expressed concern that marks with orientation

might mislead them. That is, a preference for circular marks over

data-driven marks appears to be a worry over their undue influence

over their estimates, and a clear assumption of impact. For example,

two participants mentioned that “Given the rotated triangle marks,

I often unconsciously rotated the trend line along their orientation.

However, I am not sure if such orientation is correct and thus I prefer

circle marks to avoid incorrect estimations.”

7 DISCUSSION

Directly showing trendlines in scatterplots is a clear way to indi-

cate trends, however, the model enforced by such trendlines might

be inappropriate for some data. Even with an appropriate model,

viewers may not have enough statistical expertise to interpret the

included trendlines. We propose data-driven orientation in marks as

a way to guide viewers’ perceptions of trends without dogmatically

enforcing a particular model on the data. However, advocating for

this technique required us to more fully investigate the strengths

and limitations of regression by eye. Building on previous work [7],

we further investigated how mark orientation influences trend esti-

mates.

Accuracy of Regression by Eye. Our first collection of findings

deals with our capacity to perform regression by eye in scatterplots

that differ from the single cluster gaussian collections of points

common in prior experiments [7, 12, 21]. Without a strong belief

in the ability of viewers to make reasonably accurate estimates

of trends from scatterplots, it would be difficult to argue for any

intervention other than the explicit annotation of trend lines. This

would also be a troubling result for other visualization techniques

that rely on visual estimations of aggregates, such as assessing

distributional fits via Q-Q plots, or labeling points as outliers.



(a) (b)

Figure 18: (a) The accuracies of estimated trend orientation

in the study of Correll & Heer [7] and ours under the condi-

tions of different residual bandwidths; (b) the maximal dif-

ferences of the estimated mark orientations in three exper-

iments.

Overall, we find that, in our constrained estimation settings

(where, for instance, the user is adjusting the parameters of a lin-

ear model, rather than choosing a particular model type directly),

our participants made estimates that were, on the whole, reason-

able. We reflect on our experimental apparatus, as well as provide

additional analyses, in our supplemental materials. Participants

consistently ignored far-away outliers and non-dominant interior

clusters. Although not strictly an apples-to-apples comparison due

to, among other reasons, the different ways in which residuals were

added to data (which we would anticipate having the largest impact

when the bandwidth of residuals are large), Fig. 18(a) compares par-

ticipant estimates in our first two experiments using circle marks

(the two experiments where we have selected a ground truth trend)

to results in Correll & Heer [7], showing similar patterns of per-

formance, and in particular low error rates (less than 5◦ for our

two most tightly correlated data sets). We note that in such tightly

correlated stimuli, performance among different mark types was

similar to circle marks.

Influence of Mark Orientation. Prior work has found that visu-

alizations with ambiguous features can support multiple interpreta-

tions [35]. Marks with inherent orientation appear to function as a

tool to prime or bias participants towards a particular interpretation.

We found consistent impacts of shapes with inherent orientations

on visual estimates of trend. For each experiment, we found the

pairs of shapes with the highest average differences in estimates:

Fig. 18(b) shows such maximal differences with 95% CIs, where the

corresponding two most different marks are Tri-0 and Tri-Up in

Experiment 1, Tri-R and Circle in Experiment 2, and Tri-Up and

Circle in Experiment 3, respectively. In the first two experiments,

the largest differences were between marks (Tri-0 and Tri-R, respec-

tively) that directly and accurately encoded trend values, compared

to shapes without any such orientation information. This points

to the potential power of orientation as an encoding channel for

regression by eye.

We summarize our findings with respect to mark orientation as

follows:

• Mark orientation that is consistent with a trend line can

reduce errors when the residual bandwidth is large.

• In the presence of a large outlying clusters close to the major

cluster, mark orientations with an orientation consistent

with the major cluster can reduce visual estimation errors,

down-weighting the importance of the outlying cluster.

• When two clusters are intermingled with similar densities

and slopes, mark orientations consistent with one cluster

can bias estimates towards this cluster.

However, the bias introduced by data-driven marks is small

when the trend line is more certain. This is the case if the residual

bandwidth is small, outliers are far away from the major cluster

or have different densities, or if the intermingled clusters have

radically different slopes. In such cases there is little ambiguity in

the trend, and so estimates are accurate even without guidance

from mark orientation.

Implications for Scatterplot Design. The above findings suggest

that mark orientation can be a visual cue to implicitly encode trend

information. A trend line directly encodes the model in a dogmatic

way, whereas data-driven marks act as less dogmatic guidance that

can be ignored or downweighted when they seem inappropriate or

are clearly at odds with the depicted data, functioning as a form of

“implicit uncertainty visualization” [6].We have shown viewers will,

in their own visual estimates, ignore things like outliers that would

be a problem for explicit trend lines based on models of insufficient

complexity. Fig. 19 shows how data-driven marks could be used to

disambiguate trends in a health care dataset for investigating how

the blood pressure is related to sodium excretion [11]. We can see

that the slopes of the OLS trend and the robust trend have oppos-

ing signs (see Fig. 19(a)). Using data-driven marks can suggest a

resolution to this ambiguity for the reviewer by downweight (b) or

reinforcing (c) the contribution of the outlying points to the overall

trend. Although it is hard to make a fair comparison between such

implicit and explicit trend visualizations (for instance, Correll &

Heer [7] believed that participants would adhere to explicit trend

lines so closely if present that they used such stimuli as action

checks), we believe that data-driven orientation can assist in regres-

sion by eye, especially for cases where standard models like OLS

are inappropriate, or there are multiple valid interpretations of the

data (as in Xiong et al. [34]).

In summary, if we do not want to guide users towards a trend or

the trend is clear, we suggest to use the most common visual marks:

circles. But, if we think that the trend is an important component of

the data that should be conveyed, and this trend would be difficult to

parse without guidance, then chart designers should be encouraged

to encode trend via mark orientations.

8 CONCLUSION & FUTUREWORK

In this paper, we study the impact of different data features on visual

estimations of trends in scatterplots, and how mark orientation,

especially data-driven mark orientation, can impact these estimates.

Our results show that participants are sensitive to features like

dispersion, outlying clusters, and local density in ways that can

systematically differ from common linear models of data. We also

find that, in cases where the trend is ambiguous or uncertain, data-

driven marks can be used to influence trend estimates.

Our interview results show that participants report that they

estimate trends by combining bounding boxes and local densities.



Figure 19: The scatterplots with different visual marks for studying the relation between sodium excretion and blood pressure.

(a) The points with outliers shown in red and the OLS and robust trend lines; (b,c) two scatterplots with two different visual

marks, Tri-O (b) and Tri-R(c).

Many of our participants reported mentally drawing a bounding

box for all points, and then removing outliers. Since the trend is

not strictly determined by these perceptual proxies [14, 18], we

cannot directly compute how these global or local visual structures

were used. In the future, we will quantitatively model how the esti-

mated trend is related to these proxies and to model a larger set of

mark shapes and sizes. Since participants might have used different

strategies for dealing with outliers (e.g., considering or discarding)

in Experiment 2, the effects of outliers are likely to differ based

on the individual strategy . In the future, we will model individual

differences and preform a secondary analysis of the experimental

data as did by Kay and Heer [15]. In addition, we are particularly

interested in how the mark size (and its influence on visual artifacts

like overplotting and occlusion) could skew assessments of local

density and the resulting estimated trend. We are also interested in

expanding our study of data-driven orientation to wider use cases,

especially under additional “adversarial” scatterplot conditions [18]

(such as marks with transparency, high degrees of overplotting, non-

linear or non-uniform trends, or where likely perceptual proxies

like bounding boxes are uninformative).
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