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Abstract

This paper addresses the problem of finding tight affine lower bound

functions for multivariate polynomials, which may be employed when

global optimisation problems involving polynomials are solved with a

branch and bound method. These bound functions are constructed by

using the expansion of the given polynomial into Bernstein polynomials.

The coefficients of this expansion over a given box yield a control point

structure whose convex hull contains the graph of the given polynomial

over the box. We introduce a new method for computing tight affine lower

bound functions based on these control points, using a linear least squares

approximation of the entire control point structure. This is demonstrated

to have superior performance to previous methods based on a linear inter-

polation of certain specially chosen control points. The problem of how

to obtain a verified affine lower bound function in the presence of uncer-

tainty and rounding errors is also considered. Numerical results with error

bounds for a series of randomly-generated polynomials are given.

Key words: Constrained global optimisation, relaxation, affine bound

functions, Bernstein polynomials, linear least squares

1 Introduction

Consider the constrained global optimisation problem

min
x∈F

f(x), (1)
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where the set of feasible solutions F is defined by

F :=

{

x ∈ S

∣

∣

∣

∣

gi(x) ≤ 0 for i = 1, . . . , t
x ∈ X

}

,

and where S ⊆ R
n, X is an axis-aligned box contained in S, and f, gi are

real-valued functions defined on S. The optimisation problem

min
x∈R

f(x) (2)

is termed a relaxation of (1) if its set of feasible solutions R fulfils F ⊆ R and
f(x) ≤ f(x) holds for all x ∈ F .

A relaxation may be generated by replacing the functions f , gi (i = 1, . . . , t)
by lower bound functions f , g

i
, respectively. Its solution provides a lower bound

for the solution of (1). Such relaxations are commonly used in a branch and
bound framework for solving problem (1).

Computing a good quality convex lower bound function for a given function
is thus of great importance in global optimisation when a branch and bound
approach is used. Of special interest are convex envelopes, i.e., uniformly best
underestimating convex functions, cf. [7], [19]. Because of their simplicity and
ease of computation, constant and affine lower bound functions are especially
useful. Constant bound functions are thoroughly used when interval compu-
tation techniques are applied to global optimization, e.g. [12], [15]. However,
when using constant bound functions, all information about the shape of the
given function is lost. A compromise between convex envelopes, which require in
the general case a great deal of computational effort, and constant lower bound
functions are affine lower bound functions.

To generate an affine relaxation for problem (1), the functions f , gi (i =
1, . . . , t) are replaced by affine lower bound functions f , g

i
, respectively. Then

the relaxed problem (2) with the respective set of feasible solutions yields a linear
programming problem whose solution provides a lower bound for the solution
of (1).

We address the use of relaxations for global optimisation problems (1) in
which the objective function f and the functions defining the constraints gi (i =
1, . . . , t) are all multivariate polynomials. In this case, affine bound functions
can be constructed by utilising the coefficients of the expansion of the given
polynomial into Bernstein polynomials.

The organisation of our paper is as follows. Properties of Bernstein polyno-
mials are introduced in Section 2; the reader is also referred to [3], [8], [16], [20].
In Section 3 we present a brief overview of existing methods and a new method
for computing Bernstein–based affine bound functions. Section 4 consists of re-
sults for a series of randomly-generated polynomials, with a comparison of the
error bounds. In Section 5 we present a rigorous version of our new method
which will deliver a guaranteed affine lower bound function in the presence of
either uncertainty or rounding errors. Directions for future work conclude this
paper.
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2 Bernstein Expansion

In this section we recall some properties of the Bernstein expansion which are
fundamental to our approach.

Firstly, some notation is introduced. We define multiindices i = (i1, . . . , in)T

as vectors, where the n components are nonnegative integers. The vector 0
denotes the multiindex with all components equal to 0, which should not cause
ambiguity. Comparisons are used entrywise. Also the arithmetic operators on
multiindices are defined componentwise such that i⊙ l := (i1⊙ l1, . . . , in ⊙ ln)T ,
for ⊙ = +,−,×, and / (with l > 0). For instance, i/l, 0 ≤ i ≤ l, defines the
Greville abscissae. For x ∈ R

n its multipowers are

xi :=

n
∏

µ=1

xiµ
µ . (3)

For the sum we use the notation

l
∑

i=0

:=

l1
∑

i1=0

. . .

ln
∑

in=0

. (4)

The generalised binomial coefficient is defined by

(

l

i

)

:=

n
∏

µ=1

(

lµ
iµ

)

. (5)

An n-variate polynomial p,

p(x) =
l

∑

i=0

aix
i, x = (x1, . . . , xn), (6)

can be represented over I = [0, 1]n as

p(x) =
l

∑

i=0

biBi(x), (7)

where Bi is the ith Bernstein polynomial of degree l

Bi(x) =

(

l

i

)

xi(1 − x)l−i (8)

and the so-called Bernstein coefficients bi are given by

bi =
i

∑

j=0

(

i

j

)

(

l
j

)aj , 0 ≤ i ≤ l. (9)

We may consider the case of the unit box I without loss of generality, since any
nonempty box in R

n can be mapped affinely thereupon.
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Figure 1: The curve of a polynomial of fifth degree, the convex hull (shaded)
of its control points (marked by squares), and an example affine lower bound
function.

From (9) the endpoint interpolation property

b0 = p(0, . . . , 0) and bl = p(1, . . . , 1) (10)

follows.
A fundamental property for our approach is the convex hull property

{(

x

p(x)

)

: x ∈ I

}

⊆ conv

{(

i/l

bi

)

: 0 ≤ i ≤ l

}

, (11)

where the convex hull is denoted by conv; the points generated by the Bernstein
coefficients appearing on the right hand side are called control points.

Figure 1 illustrates the convex hull property and the straighforward con-
struction of an affine lower bound function based upon the convex hull of a
univariate polynomial of degree 5. The lower bound function passes through
the control point associated with the minimum Bernstein coefficient b2.

3 Affine Lower Bound Functions

There are numerous possible approaches to deriving a tight affine lower bound
function from the Bernstein control points (coefficients) of a given polynomial.
Methods are introduced in [9], [10], [11] and compared in [11].

The simplest method is to use constant bound functions obtained by choos-
ing the minimum Bernstein coefficient. Other methods rely on a control point
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associated with the minimum Bernstein coefficient and a determination of n
other control points. These are chosen in such a way that the linear interpolant
of these points coincides with one of the lower facets of the convex hull of the
control points and therefore constitutes a lower bound function for the given
polynomial, cf. (11). Such a lower bound function can be obtained as the solu-
tion of a linear programming problem [9]. An alternative [10] is the construction
of a sequence of hyperplanes passing through a minimum control point which
approximate from below the lower part of the convex hull increasingly well.
In this case, only the solution of a system of linear equations together with a
sequence of back substitutions is needed. The last approach is shown in [11]
to have the best performance, in terms of error (the maximum distance of the
affine function below the graph of the polynomial) and in computing time. It is
compared in Section 4 with the new method presented in the next subsection.

3.1 New Method

An alternative approach to the prior methods is to derive an affine approxima-
tion to the whole set of control points (and thereby the graph of the polynomial)
over the box. In this new method, we propose the use of the linear least squares
approximation. This yields an affine function which closely approximates the
graph of the polynomial over the whole of the box. It must be adjusted by a
downward shift so that it passes under all the control points, yielding a valid
lower bound function.

The algorithm includes the following three steps:

1. Compute the Bernstein coefficients bi, 0 ≤ i ≤ l, of p over the box I. There
are m =

∏n

i=1
(li + 1) such coefficients. We recall, for the convenience of

the reader, from [8], cf. [20], an algorithm for the efficient computation of
these coefficients, which avoids the calculation of the binomial coefficients
and products inherent in (9). It requires O(nl̂n+1) additions, where l̂ :=
maxi=1,...,n{li}.

• bi := ai

(l
i)

, i = 0, . . . , l.

• For r = 1, . . . , n:

– For k = 1, . . . , lr:

b∗i :=

{

bi, if ir < k
bi + bi1,...,ir−1,...,in

, if ir ≥ k

}

, i = 0, . . . , l.

bi := b∗i , i = 0, . . . , l.

• bi are the desired Bernstein coefficients, i = 0, . . . , l.

2. Let A be the m × (n + 1) matrix whose i, jth element is defined as

ai,j = ij/lj , for 1 ≤ j ≤ n, ai,n+1 = 1.
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Let b be the vector consisting of the corresponding m Bernstein coeffi-
cients. Then the coefficients of the linear least squares approximation of
all the control points are given by the solution γ to

AT Aγ = AT b,

yielding the affine function

c∗(x) =
n

∑

i=1

γixi + γn+1.

For numerically reliable approaches to solving the linear least squares
problem, see, e.g., [1].

3. Compute the maximum positive discrepancy between c∗ and the control
points, and perform a downward shift:

δ+ = max

{

c∗
(

i

l

)

− bi : 0 ≤ i ≤ l

}

,

c(x) = c∗(x) − δ+, x ∈ I.

By construction, c is then a valid affine lower bound function.

Theorem 1 The following error bound is valid:

0 ≤ p(x) − c(x) ≤ max
i=0,...,l

(

bi − c

(

i

l

))

, x ∈ I.

Proof: It can be seen from (9) that the value of p at a vertex of I coincides
with the respective Bernstein coefficient, i.e.,

bi = p

(

i

l

)

, for all i = 0, . . . , l with iµ ∈ {0, lµ} , µ = 1, . . . , n.

This property divides the surface of the convex hull of the control points into a
lower and an upper part, in a natural way. The function describing the upper
surface is piecewise affine over the grid given by the Greville abscissae and is
denoted by u. The discrepancy u − c is the difference of a piecewise affine
and an affine function and must therefore assume its maximum at a point i∗

l

at which the associated control point is an exposed vertex of the convex hull,

hence u
(

i∗

l

)

= bi∗ . So we may conclude

maxx∈I (p(x) − c(x)) ≤ maxx∈I (u(x) − c(x))
= maxi=0,...,l

(

u
(

i
l

)

− c
(

i
l

))

= maxi=0,...,l

(

bi − c
(

i
l

))

. 2

The results presented below in Section 4 show that, in general, the lower
bound functions delivered by the new method fit the given polynomial more
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Figure 2: The curve of the polynomial from Fig. 1 (bold), the convex hull
(shaded) of its control points (marked by squares), and the affine lower bound
functions c† and c.

closely than those given by the previous methods. We may conclude that the
approach of approximating all of the control points is superior to the technique
of interpolating n+1 control points which form a lower facet of the convex hull.
In other words, the general shape information of the polynomial over the whole
of the box would appear to be more valuable than just the local behaviour of
the polynomial near its minimum over the box.

This is illustrated by Figure 2, which shows the same univariate polynomial
of degree 5 as in Figure 1. In this case the lower bound function c from the
new method more closely represents the polynomial behaviour than c† from the
previous methods.

4 Results with Randomly Generated Polynomi-

als

The new method was tested with a number of multivariate polynomials (6)
in n variables with degree l = (D, . . . , D)T and compared to constant bound
functions and a previous method [10]. The polynomials were given k non-zero
terms, with the non-zero coefficients being randomly generated with ai ∈ [−1, 1].

Table 1 lists the results for different values of n, D, and k; (D + 1)n is the
number of Bernstein coefficients. In each case 100 random polynomials were
generated and the mean computation time and error δ are given. An upper
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Table 1: Results for randomly generated polynomials.
Method Constant bound functions Previous method New method

n D k (D + 1)n time (s) δ time (s) δ time (s) δ
2 2 5 9 0.000002 1.420 0.000069 0.981 0.000006 0.698
2 6 10 49 0.000011 2.002 0.00031 1.677 0.000024 1.496
2 10 20 121 0.000044 2.852 0.00074 2.511 0.000070 2.435
4 2 20 81 0.000053 3.458 0.0012 2.797 0.000090 2.468
4 4 50 625 0.00055 5.682 0.0093 5.045 0.00079 4.870
6 2 20 729 0.00056 4.075 0.016 3.353 0.0010 3.131
8 2 50 6561 0.0090 6.941 0.24 6.291 0.018 6.300

10 2 50 59049 0.11 7.142 3.43 6.503 0.29 6.473
12 2 50 531441 1.32 7.377 > 1 minute 3.81 6.712

bound on the discrepancy between the polynomial and its lower bound function
over I is computed as

δ = max
i

{

bi − d

(

i

l

)}

,

where d is c† or c, respectively. The results were produced with C++ on a 2.4
GHz PC.

Compared to the previous method mentioned at the beginning of Section 3,
the new method described in Subsection 3.1 in general delivers tighter bound
functions, and is one to two orders of magnitude faster. Compared to constant
bound functions, it provides much better bound functions, but is only slower by
a factor of 1.4 to 3. Given this relatively small factor, it is expected that further
improvements which rely on all Bernstein coefficients will likely be marginal;
cf., however, Section 6.

5 Rigorous Bound Functions

Due to rounding errors, inaccuracies may be introduced into the calculation of
the Bernstein coefficients and the corresponding bound functions. As a result,
the computed affine function may not stay below the given polynomial over
the box of interest. We also wish to consider the case of uncertain (interval)
input data. In either case, it is often desirable to compute the affine lower
bound functions in such a way that it can be guaranteed to stay below the given
polynomial. Methods based on Bernstein expansion can be adjusted relatively
easily to work with interval data, and the safe interpolation of interval control
points can be facilitated by a method similar to that introduced in [2]; see also
[13].

The method presented in this paper is especially well suited to this purpose
and is easily adapted into a verified version using interval arithmetic. For an
introduction into interval arithmetic the reader is referred to, e.g., [15].
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1. Given a polynomial with interval coefficients (which may result either from
some uncertainties in the problem, or as very small intervals of machine
precision width, in order to cater for rounding errors), compute interval
Bernstein coefficients, using the same procedure as before in step 1, but
with interval arithmetic.

2. Compute the linear least squares approximation of the control points as
before, except using the midpoints of the interval Bernstein coefficients.

3. Compute the discrepancy δ+ and perform the downward shift as before,
but according to the lower bounds of the control points (Bernstein coeffi-
cients).

Step 2 (the bulk of the computation) does not need to be performed rigor-
ously, and is implemented with normal floating point arithmetic. Since only the
first and last steps need to be performed with interval arithmetic, little extra
computational effort is required.

6 An Alternative Basis

In the univariate case, a basis which is related to the basis of the Bernstein
polynomials was presented in [5]. This basis (henceforth termed the DP basis)
is defined as follows

C0(x) = (1 − x)l,
Ci(x) = x(1 − x)l−i, 1 ≤ i ≤

⌊

l
2

⌋

− 1,
Ci(x) = xi(1 − x),

⌊

l+1

2

⌋

+ 1 ≤ i ≤ l − 1,
Cl(x) = xl.

In addition, if l is even,

C l
2
(x) = 1 − x

l
2
+1 − (1 − x)

l
2
+1

and, if l is odd,

C l−1

2

(x) = x(1 − x)
l+1

2 + 1

2

[

1 − x
l+1

2 − (1 − x)
l+1

2

]

,

C l+1

2

(x) = 1

2

[

1 − x
l+1

2 − (1 − x)
l+1

2

]

+ x
l+1

2 (1 − x).

The DP basis shares with the Bernstein basis many properties which are im-
portant in Computer Aided Geometric Design, e.g., the endpoint interpolation
property (10), the convex hull property (11), and the variation diminishing prop-
erty. The latter means that the maximum number of intersections of a straight
line with the polynomial curve is not greater than the number of intersections
with the polygon which connects the control points. The transformation be-
tween the two bases was given in [14], cf. also [4]. From this transformation
it can be seen that for some l, e.g. l = 3 or l = 5, the convex hull of the

9



control points w.r.t. the Bernstein basis is contained within the convex hull
of the control points w.r.t. the DP basis. So this basis is only advantageous
for the construction of affine lower bound functions if an algorithm could be
designed for the computation of the coefficients of a given polynomial w.r.t. the
DP basis which exhibits linear complexity (in contrast to our algorithm, given
in the beginning of Subsection 3.1, which exhibits quadratic complexity in the
univariate case). The design of such an algorithm is an open problem.

7 Future Work

• The bound functions are to be integrated as a black-box component of a
general-purpose package for the solution of global optimisation and contin-
uous constraint satisfaction problems, part of the EU-funded COCONUT
project [17].

• The present limitation of our approach is the exponential growth in the
number of Bernstein coefficients which are computed in Step 1 of our al-
gorithm. Compared with this, the computational effort of Steps 2 and 3
is negligible. However it is worth noting that the technique will already
handle many types of polynomial constraint and objective functions fre-
quently arising in optimization problems. Typically, such polynomials are
sparse, with not all variables appearing, and the degree in most variables
is low.

For constant bound functions, significant progress towards the reduction
of the computational complexity has recently been achieved in [18]. By
means of results concerning the Bernstein coefficients of monomials and
through the development of an implicit Bernstein form, an efficient means
for the computation of the range of a polynomial was given. Many ex-
amples from literature show that often the determination of only a small
number of Bernstein coefficients is required, thereby reducing the compu-
tational complexity by orders of magnitude. It is intended to extend these
results to the efficient calculation of affine bound functions shortly.

• Our approach may be extended to the construction of affine lower bound
functions for arbitrary sufficiently differentiable functions, by using Taylor
expansion. A high-degree Taylor polynomial can be computed (the intro-
duction of higher degree polynomial terms is not necessarily problematic
for our approach), for which Bernstein coefficients and a bound function
can be computed, as before. The remainder of the Taylor expansion can
be enclosed in an interval, by using established methods from interval
analysis, e.g. [6]. Subtracting this interval from the lower bound function
of the Taylor polynomial provides the lower bound function for the given
function.
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