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Philosophically, one of the most important questions in the enterprise termed confir
mation theory is this: Why should one stick to well confirmed theories rather than to 
any other theories? This paper discusses the answers to this question one gets from 
absolute and incremental Bayesian confirmation theory. According to absolute confir
mation, one should accept "absolutely well confirmed" theories, because absolute con
firmation takes one to true theories. An examination of two popular measures of 
incremental confirmation suggests the view that one should stick to incrementally well 
confirmed theories, because incremental confirmation takes one to (the most) infor
mative (among all) true theories. However, incremental confirmation does not further 
this goal in general. I close by presenting a necessary and sufficient condition for 
revealing the confirmational structure in ahnost every world when presented separating 
data. 

1. Introduction. Philosophically, one of the most important questions in 
the enterprise traditionally termed confirmation theory is this: Why should 
one stick to well confirmed theories rather than to any other theories? In 
other and more mundane words: What is the point of confirmation? In 
what follows I will examine whether and how absolute and incremental 
Bayesian confirmation theory answer this question. 

According to absolute Bayesian confirmation theory, an agent's degree 
of absolute confirmation of some hypothesis or theory H by a piece of 
evidence E relative to a body of background information E equals the 
probability of H given E and E, Pr (HIE A E), where Pr : L -+ Dl is the 
agent's actual degree of belief function on some language L (see Section 
2). According to incremental Bayesian confirmation theory, an agent's 
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degree of incremental confirmation of H by E relative to B is measured by 
a relevance measure fPr based on the agent's actual degree ofbelieffunction 
Pr; i.e., a possibly partial function rPc : L x L x L -+ ffi such that for all 
H, E, BEL with Pr (E A B) > 0: 

rPc(H, E, B) ~ 0 q Pr (HIE A B) ~ Pr (HI B). 

2. The Point of Absolute Confirmation. The traditional answer to our 
question is something like this: Science aims at true theories, and one 
should accept well confirmed theories, because confirmation takes one to 
true theories. Indeed, if arriving at true theories is our (only) goal, then 
there is a point to absolute confirmation. In the long run, absolute con
firmation almost surely takes one to true theories. This is the content of 
the following theorem (Gaifman and Snir 1982, 507): 

Theorem 1 (Gaifman and Snir). Let S = {A, EL: i = 0, 1, ... } sep
arate Modv let A~ be A, if w 0= A, and c4, otherwise, and let 
[B](w) be 1 if w 0= Band 0 otherwise. Then for every BEL, 

Pr (BI o<;~, A~) -+ [B](w) almost everywhere as n -+ 00. 

Here is the relevant technical background. L is obtained from a first-order 
language for arithmetic, Lo, by adding finitely many "empirical" predi
cates and function symbols (whose interpretation is not fixed). Lo contains 
all numerals '1 " ... as individual constants; countably many individual 
variables 'Xl" ... taking values in the set of natural numbers N; the 
common symbols' +', '.', and' =' for addition, multiplication, and iden
tity, respectively; and the standard quantifiers and connectives. In addi
tion, there may be finitely many predicates and function symbols denoting 
certain fixed relations over N. The set of well formed formulas of L is 
denoted by'£' and is also called a language. 

A model for L consists of an interpretation <p of the empirical symbols 
which assigns every k-ary predicate 'P' a subset <p('P') ,; N k

, and every 
k-ary function symbol 'f' a function <p('/') from N k to N. The interpre
tation of the symbols in Lo is the standard one and is kept the same in 
all models. ModL is the set of all models for L. 'w 0= A' says that formula 
A is true in model w E ModL . A[xj , ••• , xk] is valid, 0= A[xj , ••• , xk], 
iff w 0= A[nJxj , ••• , nkixk] for all w E ModL and all n j , ••• , nk E N. 
Here, 'A[nJx], ... , nkixkJ' results from 'A[x], ... , xkJ' by uniformously 
substituting 'n/ for 'x/ in 'A', 1 ~ i ~ k. 'A[xJ, ... , xk ]' indicates that 
'Xl" ... , 'Xk' are the only variables occurring free in 'A'. 

A function Pr : L -+ ffi,o is a probability on L iff for all A, BEL: 
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1. 0= A ~ B ~ Pr (A) = Pr (B) 
2. 0= A ~ Pr (A) = 1 
3. 0= ~(A /\ B) ~ Pr (A V B) = Pr (A) + Pr (B) 

4. Pr(3xA[x]) = sup {Pr (A [nJx] V··· V A[nklx]): n" ... ,nb kEN} 

The conditional probability of A given B, Pr (AIB), is defined as 

5. Pr (A I B) = Pr (A /\ B)/Pr (B) 

provided Pr (B) > O. Pr is regular iff the converse of 2. holds as well, 

6. Pr (A) = 1 ~ 0= A. 

A set of sentences S ,; L separates a set of models X,; ModL iff for any 
two distinct W 1, W 2 E X there exists A E S such that (Ut 1= A and 
W 2 ~ A. The set of all atomic empirical sentences separates ModL (Gaif
man and Snir 1982, 507).' 

However, absolute confirmation has long been abandoned in favor of 
incremental confirmation. Is there another goal for incremental confir
mation that is different from arriving at true theories? If so, what is this 
goal? 

3. What Is the Point of Incremental Confirmation? Two popular measures 
of incremental confirmation are the distance measure d (Ear man 1992) 
and the Ioyce-Christensen measure s (Joyce 1999; Christensen 1999): 

dPc(H, E, B) = Pr (HIE /\ B) - Pr (HI B), 

sPc(H, E, B) = Pr (HIE /\ B) - Pr (HI~E /\ B). 

What do these measures measure? The measure d increases with 

the plausibility of H given E and B, p = Pr (HIE /\ B), and 
the evidence neglecting or data independent semantic informativeness 
of H relative to B, io = Pr (~HIB). 

Similarly, s increases with 

the plausibility of H given E and B, p = Pr (HIE /\ B), and 

1. The Gaifman and Snir framework is not rich enough for proper theory assessment. 
The reason is that the "theories" whose truth values one converges to by conditioning 
on appropriate data sentences are formulated within the same "empirical" vocabulary 
as are the data sentences. So there is no room for theoretical terms in the sense that 
the probability of a theory whose formulation contains theoretical terms not occurring 
in any data sentence does not necessarily converge to its truth value when one keeps 
conditionalizing on these data sentences. As an aside, note that this problem disappears 
if the realist goal of truth is replaced by the empiricist goal of empirical adequacy. 
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the evidence based or data dependent semantic informativeness of 
H relative to E and B, i.e., the amount to which H informs about E 
relative to B, i, = Pr (~HI~E A B). 

This is clearly seen by rewriting d and s as follows: 

dPc(H, E, B) = Pr (HIE AB) +Pr(~HIB) -1, 

sPc(H, E, B) = Pr (HIE A B) + Pr (~HI~E A B) - 1. 

The quantities p and io as well as p and i j are conflicting in the sense that 
p decreases, whereas io and i j increase with the logical strength of the 
hypothesis to be assessed. So d and s weigh between two conflicting as
pects, viz. the plausibility and the informativeness of the hypothesis to 
be assessed. 

In Section 4 I will argue in more detail that io and i j measure two 
different, but equally sensible kinds of informativeness. Section 5 provides 
another argument that: (i) d and s do nothing but weigh between the two 
conflicting goals of plausibility and informativeness; (ii) that they are 
exactly alike in the way they weigh between these two aspects; and (iii) 
that they differ from each other just in the respect that d is based on data 
independent informativeness whereas s is based on informativeness about 
the data. All this suggests the following answer to our question: Science 
aims at informative true theories, and one should stick to incrementally 
well confirmed theories, because incremental confirmation takes one to 
(the most) informative (among all) true theories. However, as shown in 
Section 6, incremental confirmation does not further this goal in general. 
I close by giving a necessary and sufficient condition for revealing the 
confirmational structure in almost every world when presented separating 
data. 

4. Measuring Semantic Information. In a subjective Bayesian framework 
it is clear that p = Pr (HIE A B) measures the plausibility of H in view of 
E and B. It is still rather obvious that io = Pr (~HIB) measures the data 
independent informativeness of H relative to B. io was already considered 
by Carnap and Bar-Hillel (1952), Bar-Hillel and Carnap (1953), Hempel 
(1960, 1962), and Hintikka and Pietarinen (1966) (for the notion of se
mantic information cf. Bar-Hillel 1952, 1955). The second measure that 
was discussed in this connection is 

i2 = -log2Pr (HIB) 

i2 is ordinally equivalent to io. For future reference it is convenient to 
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Figure 1. 

define the analogous 

which is or din ally equivalent to Po = p. 
It is less obvious that i 1 = Pr (~HI~E /\ B) measures how much H in

forms about the data E relative to background B (cf., however, Hilpinen 
1970). Following the above mentioned literature, one would expect some
thing like:2 

i3 = Pr (~HIE /\ B), 

i4 = Pr (E) . Pr (~HIE /\ B), 

1 
is = 10g2 pr (HIE/\B) = -10g2Pr(HIE/\B). 

As is often the case, a picture is worth a 1,000 words-see Figure l. 
The background information B determines the set of possibilities and 

is nothing but a restriction on the set of possible worlds over which inquiry 
has to succeed. H is the hypothesis whose informativeness about the data 
E is to be assessed (relative to B). Suppose you are asked to strengthen 
H by deleting possibilities verifying it, that is, by shrinking the area rep
resenting H. Would you not delete possibilities outside E? After all, given 
E, those are exactly the possibilities known not to be the actual one, 
whereas those possibilities inside E are still alive options. Indeed, i 1 in
creases when H shrinks to HI as depicted in Figure 2, because it measures 
how much of ~E is occupied by ~H. As a consequence, the information 

2. In Levi (1967), i3 is proposed as, roughly, a measure for the relief from agnosticism 
afforded by accepting H as strongest relative to total evidence E /\ B. For i4 and is the 
reader is referred to Hintikka and Pietarinen (1966). 

teamxp
Schreibmaschinentext
1150



B 

E 

Figure 2. 

H provides about E is maximal if H logically implies E (in this case His 
completely within E, and so ~H covers all of ~E). So according to i l , two 
hypotheses both logically implying all of the data-say, a complete theory 
about the world, and a theory-like collection of the data---carry the same 
maximal amount of information about E. In a sense, this is odd, because 
one would like the complete theory to come out as more informative than 
the theory-like collection of the data. This is what io yields. For io it does 
not matter which possibilities one deletes in strengthening H (provided 
all possibilities have equal weight on the probability measure Pr). io ne
glects whether they are inside or outside E. The other candidates for 
measuring semantic information do rather poorly on this count: they 
require the deletion of the possibilities inside E. (Another reason why i 3, 

i4 , and is seem to be inappropriate in the present context is presented in 
the next section.) 

The background information B plays a role different from that of the 
evidence E for io and i l , but not for i3 , i4 , or is. Clearly, there is a difference 
between data on the one hand and background assumptions on the other; 
and this difference should show up somewhere. Apart from the above 
mentioned point that B determines the set of possibilities over which 
inquiry has to succeed, whereas E is gathered in order to indicate which 
of these possibilities is the actual one, there is the following difference: 
Hypotheses are supposed to inform about the world, and hence about 
the data, but they are usually not supposed to inform about the back
ground assumptions. (If one holds there should be no difference between 
E and B as far as measuring information is concerned, then one can 
nevertheless adopt the above measures by substituting El = EA Band 
BI = T for E and B, respectively.) 

In order to avoid that one has to take sides between io and i l let us 
call a possibly partial function i = to,i! : L x L x L ---> [0, 1] a strength 
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indicator (based on io and i,) iff/is non-decreasing in both and increasing 
in at least one of its arguments io and i 1,1o.i! = 1 for io = i j = 1, and 
10.il = 0 for io = i1 = o. 

5. Expected Informativeness as One Way of Weighing. Having tried to 
make plausible that io and it measure informativeness per se and inform
ativeness about the data, respectively, let us now turn back to the distance 
measure d and the Joyce-Christensen measure s. The two conflicting goals 
of informativeness and plausibility are equally important for d and s
and they are all what matters for them. Hence, other things being equal
these other things being the probabilities (plausibility values) of the hy
potheses given the data E and the background information E-the overall 
d- or s-value of hypothesis H relative to E and E is the greater, the higher 
the informativeness of H (in the respective sense). 

Clearly, if one knows the truth values of the theories one is assessing, 
then the plausibility of a theory's being true is of no interest anymore. 
In this case all what matters is how informative the theories are. Yet in 
general we do not know these truth values. Hence we consider how plau
sible it is that they are true in the world we are in, and how informative 
they are (about this world). Then we form their overall value by combining 
these two parameters in some suitable way. One such way immediately 
suggests itself: assign H as its overall value its expected informativeness. 

ECio) = Pr (~HIE) . Pr (HIE A E) 

- Pr (~~HIE) . Pr (~HIE A E), 

E(i, ) = Pr (~HI~E A E) . Pr (HIE A E) 

- Pr (~~HI~E A E) . Pr (~HIE A E). 

A little bit of reformulation shows that 

E(io) = dPc (H, E, E) and E(i, ) = sPc (H, E, E). 

So once again, d and s are exactly alike in the way they combine or weigh 
between informativeness and plausibility-which is to form the expected 
informativeness (cf. Hintikka and Pietarinen 1966 and Levi 1961, 1963, 
but also Hempel1960). Their sole difference lies in the way they measure 
informativeness. In this sense, part of the discussion about the right mea
sure of incremental confirmation is a discussion about the right measure 
of semantic information. 
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The measures i3, i4 , and is do again poorly: 

E(i3) = E(i4 ) = 0, 

E(is ) ~ 0 q Pr (HIE A E) ~ Pr (~HIE A E). 

Hence only is gives a non-trivial answer, viz. to maximize probability. But 
then we can simply stick to probabilities and need not employ is. 

6. Revealing the Confirmational Structnre. The preceding suggests the fol
lowing answer to the question what goal incremental confirmation is sup
posed to further: Science aims at informative truth, and one should stick 
to incrementally well confirmed theories, because incremental confirma
tion takes one to (the most) informative (among all) true theories. The 
question is, of course, whether and in what sense this holds true. 

When is one theory at least as informative as another? Well, if the first 
theory logically implies the second one, then the first theory is at least as 
informative as the second one. When else? In general, there is no further 
condition that applies equally to all probability measures Pr. Just as the 
only Pr-independent condition for H, to be at least as probable as H2 is 
that H2 logically implies H

" 
so the above is the only Pr-independent 

condition for H j to be at least as informative as H 2• 

Hence, given a possible world W E Mod(E), H, is to be preferred over 
H2 in w if H j is true in w, but H2 is false in w; or if H j and H2 have the 
same truth value in w, and H , logically implies H2 but H2 does not logically 
imply H ,. If H is logically true, then H is preferred in w over any H2 
which is false in w. On the other hand, any contingent H, that is true in 
w is preferred over H, because these Hj's are not only true in w; they are 
also more informative than H. Similarly, if H is logically false, then His 
worse in w than any theory that is true in w, but better than any theory 
that is false in w (because they are all less informative than H). 

In this way each w induces a partial order among the set of all (equiv
alence classes ofaxiomatizations of) theories: On the positive side one 
has all theories that are contingently true in w, and on the negative side 
there are all theories that are contingently false in w. In between there 
are the logically determined theories. Among the true theories on the 
positive side, the most informative, i.e., the complete theory about w, is 
on top, followed by all true hypotheses it logically implies, partially or
dered according to the logical consequence relation. This order goes all 
the way down to the least informative among all true theories, the tau
tology, which is placed at the bottom of the positive side. On that same 
level is the most informative among all false theories, the contradiction, 
followed by all contingently false theories, again partially ordered ac-
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cording to the logical consequence relation. Let us call this partial order 
the confirmational structure of w. 

For a given w, we would like a function f to stabilize to the correct 
answer in the sense that/gets the confirmational structure of w right after 
finitely many steps (data sentences from w), and continues to do so forever 
without necessarily halting (or giving any other sign that it has arrived 
at the true answer)---<;f. Kelly (1996). In general, stabilisation to the correct 
answer is a stronger requirement than convergence to the correct answer. 
However, the Gaifman and Snir convergence theorem actually gives rise 
to a measure I stabilisation result (assign I to H if its probability exceeds 
.5, and 0 otherwise). 

Let eo, ... , e"" ... be a seq uence of sentences all of which are true in 
W E Mod(B). A possibly partial function f: L x L x L -+ Dl reveals the 
confirmational structure of w when presented (e,)'eN iff for any contingent 
Hj, H2 E L, and any H E L: 

1. w 0= H
" 

w ~ H2 ~ 3n'lm <: n: f(H
" 

Em' B) > 0 > f(H2, Em' B) 
2. w 0= H

" 
w 0= H 2, H, 0= H2 0= H, ~ 3n'lm <: n: f(H

" 
Em' B) > 

f(H2 , Em, B) > 0 
3. w ~ Hj, w ~ H 2, H, 0= H2 ~ H, ~ 3n'lm <: n: 0> f(Hj, Em, B) > 

f(H2 , Em' B) 
4. 0= H or 0= ~H ~ '1m :f(H, Em' B) = 0, 

where Em = I\o~i<m et. An immediate conseq uence of the Gaifman and Snir 
convergence theorem is 

Observation 1. For any regular Pr on L and any le, EL: i E N} 
separating ModL there is X,; Mod L with Pr' (X) = 1 such that for 
all W E X (and hence for all W EX" Mod(B), for any BEL): dpc' 

Spr' and Cpr it reveal the confirmational structure of w when presented 
(e;"')iEN· 

Pr' is the unique probability measure on the smallest a-field A containing 
the field {Mod(A): A E L) such that Pr (A) = Pr' (Mod(A» for all 
A E L. c is the Carnap measure (Carnap 1962), 

c",(H, E, B) = Pr (H A E A B) . Pr (B) - Pr (H A B) . Pr (E A B) 

= (p + io - 1) . Pr (B) . Pr (E A B). 

However, observation 1 does not extend to all relevance measures. The 
log-ratio measure r (Milne 1996) and the log-likelihood ratio measure I 
(Fitelson 1999, 2001) do not reveal the confirrnational structure of almost 
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every W E Mod L when presented separating data: 

[
pr (HIE A B)] 

rPc(H, E, B) = log Pr (HIB) , 

[ 
Pr (EIH A B) ] 

IPc(H, E, B) = log Pr (EI~H A B) 

= 10 [pr (HIE A B) . Pr (~HIB)]. 
g Pr (~HIE A B) . Pr (HI B) 

Like all relevance measures, r and I separate contingently true from con
tingently false theories. More precisely, for any regular Pr on £, any 
le, E £ : i E N} separating Modv any B E £, any W E X n Mod(B) (for 
some X,; ModL with Pr' (X) = I), and any two contingent H

" 
H2 E 

£ such that W 0= H, and W ~ H2 there exists n such that for all m <: n, 

Furthermore, r and I also weigh between plausibility and informativeness: 

rPc(H, E, B) = log Pr (HIE AB) -logPr(HIB) 

1",(H, E, B) = log Pr (HIE AB) -logPr(HIB) 

- (log Pr (~HIE A B) -logPr (~HIB» 

= p,(H) + i2(H) - (p,(~H) + i2(~H». 

However, although r does distinguish between informative and uninforma
tive true theories (in the sense of revealing part 2 of the confirmational 
structure of almost every world), it does not distinguish between infor
mative and uninformative false theories. I performs even worse on this 
count, because it neither distinguishes between informative and unin
formative true theories nor between informative and uninformative false 
theories. The reason is fairly obvious: If p = 0, then p, = logp = -00, 

whence P2 + i2 = -00 for any finite value of i2. This means in particular 
that informativeness does not matter anymore once a theory is falsified 
by the data. Similarly in case of r. 

Which conditions are sufficient for a function to reveal the confirma
tional structure of almost every world when presented separating data? 
Let/ = /(i,p) be a function of, among others,p = Pr (HIE A B) and some 
strength indicator i = /"." based on io = Pr (~HIB) and i, = Pr (~HI 
~E A B). It is clearly necessary that/(I, 0) = /(0, I) = 0; for p = 0 and 

teamxp
Schreibmaschinentext
1155



i = 1, if H is logically false; and p = 1 and i = 0 if H is logically true
and in these cases H must be sent to 0, independently of what the data 
are. 

1. Demarcation: 1(1, 0) = 1(0, 1) = O. 

In conjunction with Demarcation, which is violated by r and I,' the fol
lowing is sufficient: 

2. Continuity: Any surplus in informativeness succeeds, if the differ
ence in plausibility is small enough. 

3. VB> 0 30, > 0 V S" S2, t" t2 E [0, 1]: S, > S2 + B & t, > t2 - 0, => 

I(s" t, ) > l(s2' t2)' 

(The s, are possible values of i, and the t, are possible values of p.) Indeed, 
it suffices that Demarcation be conjoined with 

3. Continuity in Certainty: Any surplus in informativeness succeeds, 
if plausibility becomes certainty. 

4. 'VE > 0 V(tJiEM (t;)iEN(ti , t; E [0, 1]): ti' t; ~i {6 3n"lm ~ nVsm , s~ E 

[0, 1]: Sm > s~ + B => I(sm, tm) > I(s~, t~). 

Theorem 2. Let Pr be a regular probability on £, let le, : i E N} ,; 
£ separate Modv let I be a function of, among others, i and p 
satisfying Continuity in Certainty and Demarcation, and let Pr' be 
the unique probability measure on the smallest a-field A containing 
the field {Mod(A): A E £} such that for all A E L: Pr (A) = 

Pr' (Mod(A», where Mod(A) = {w E ModL : W 0= A}. Then there 
exists X E A with Pr' (X) = 1 such that the following holds for every 
W E X, any two contingent H j , H2 E £, and every H E £: 

1. W 0= H" W ~ H2 => 3nVm <: n : I(H" E::,) > 0 > I(H2, E::,) 
2. W 0= H

" 
H , 0= H2 0= H , => 3nVm <: n :/(H

" 
E::,) > I(H2 , E::,) > 

o 
3. W ~ H 2, H, 0= H2 ~ H, => 3nVm <: n : 0> I(H" E::,) > I(H2, E::,) 
4. 0= H or 0= ~H => Vm :/(H, E::,) = O. 

3. This defect can be repaired by sticking to the ordinally equivalent r* and 1*, re
spectively: 

.( ) liml [Pr(HIEAB) + 1In] 
r H, E, B = ,_. og Pr (HIB) + 1In ' 

• _. [Pr(HIEAB)' Pr (-HI B) + 1In] 
I (H, E, B) - ~log Pr(-HIEAB)' Pr(HIB) + 1In' 
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However, even Continuity in Certainty is not necessary. The necessary 
and sufficient condition for revealing the confirmational structure in al
most every world when presented separating data is this: 

Definition 1. A possibly partial functionf: L x L x L --+ m is a Gaif
man and Snir assessment function iff for every probability Pr on a 
Gaifman and Snir language L (as described in Section 2) and every 
le, : i E N} ,; L separating ModL there is X E A with Pr* (X) = 1 
such that for all W E X and all mEN: 

I. H, 0= H2 ~ H
" 

Pr (H,IE;) --+m {6 ~ 3n'lm <: n : f(H
" 

E;) > 
f(H2 , E;) 

n. 0= H" 0= ~H2' Pr (E::,) > 0 ~ f(H" E;) = f(H2, E::,) = O. 

Condition I, and hence Continuity in Certainty, is violated by rand l. 
(This defect cannot be repaired by sticking to r* or /*.) 

Definition 2. Let Pr be a probability on a Gaifman and Snir language 
L and let le, : i E N} ,; L separate ModL- A possibly partial function 
f: L x L x L --+ m reveals the confirrnational structure of Pr*-al
most every world W E ModL when presented separating (e')'eN iff 
there is X E A with Pr* (X) = 1 such that for all W E X, all contin
gent H" H2 E L, and all H E L: 

1. W 0= H
" 

W ~ H2 ~ 3n'lm <: n :f(H
" 

E;) > 0 > f(H2, E;). 
2. W 0= H

" 
H, 0= H2 ~ H, ~ 3n'lm <: n :f(H

" 
E;) > f(H2, E;) > 

O. 
3. W ~ H 2, H, 0= H2 ~ H, ~ 3n'lm <: n : 0> f(H" E::,) > f(H2, E;). 
4. 0= H or 0= ~H ~ 'Im :f(H, E::,) = O. 

f reveals the confirmational structure of almost every world when 
presented separating data iff for any probability Pr on a Gaifman 
and Snir language L and any le, : i E N} ,; L separating ModL : f 
reveals the true assessment structure of Pr* -almost every world 
W E ModL when presented separating (e,),eN' 

Theorem 3. A possibly partial function f: L x L x L --+ m reveals 
the confirmational structure of almost every world when presented 
separating data iff f is a Gaifman and Snir assessment function. 

One reason why I nevertheless stick to the more general Continuity 
conditions is that it depends on the underlying convergence theorem which 
conditions are necessary and sufficient for revealing the true assessment 
structure in so and so many world when presented such and such data. 
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More importantly, in the context of theory assessment (Huber, forthcom
ing) the idea behind the use of these limit considerations is that they 
provide a theoretical justification for adopting the proposed conditions 
in the here and now. When assessing several alternative theories we cannot 
wait until we have arrived at the point of stabilisation for these theories 
(in fact, we won't know in general when we have passed that point). We 
need to make our evaluations here and now, where the informativeness 
and plausibility values are somewhere in between their maximal and min
imal values, and we have no idea in which direction they will eventually 
converge. A theory of theory assessment needs to answer the question 
what to do when facing such a situation. Continuity does give an answer, 
but Continuity in Certainty does not. However, we also need to justify 
this answer-and we do so by appealing to the fact that when we satisfy 
Continuity in the special case when the plausibility values converge, we 
almost surely reveal the true assessment structure; and in order to always 
almost surely reveal the true assessment structure, we always have to be 
prepared for that convergence to happen, and so we should always satisfy 
Continuity. 

7. Conclusion. I started from the question: Why should one stick to well 
confirmed theories rather than to any other theories? The answer we got 
from absolute Bayesian confirmation theory is that one should stick to 
absolutely well confirmed theories, because absolute confirmation almost 
surely takes one to true theories. I continued by looking for an answer 
from incremental Bayesian confirmation theory. This answer should be 
different from the previous one in order for incremental confirmation to 
improve on absolute confirmation. 

It turned out that three popular measures of incremental confirmation, 
viz. the distance measure d, the Joyce-Christensen measure s, and the 
Carnap measure c, give an interesting answer: One should stick to incre
mentally well confirmed theories, because incremental confirmation al
most surely takes one to (the most) informative (among all) true theories. 

However, although all measures of incremental confirmation separate 
contingently true from contingently false theories, not all of them distin
guish between informative and uninformative true and false theories. The 
log-ratio measure r does not distinguish between informative and unin
formative false theories, and log-likelihood ratio measure I neither dis
tinguishes between informative and uninformative true nor between in
formative and uninformative false theories. A sufficient condition for 
revealing the confirmational structure of almost every world when pre
sented separating data is the conjunction of Continuity and Demarcation, 
the core principle of the plausibility-informativeness theory of theory as
sessment (Huber, forthcoming). 
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