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Abstract 
Color is one of the most effective visual variabks since it can be combined with other mappings and encode 
ilifonnation without using any adtational space on the display. An important exampk when expnssing additional 
visutJJ dimensions is dinly neetkd is the analysis of high-dimensionJJl dtlta. The property of perceptual linearity is 
tksirabk in this applicatio1t, because the user intu:itively perceives clusters and nlationships among multidimen­
sional data points. Many approaches ust~ two dimensional colo1711Dps in their analysis, which an typica/ly cnated 
by interpolating in RGB, HSV or CIELAB color spaces. These approaches s'lum! the problem thai the re.ndting 
colon are either saturaled aniJ discriminative but rwt perr:eptuallinear or vice versa. A solution that combines both 
advantages has been pnviously introduced by Kilski et al.; yet, this method is to dQJe undenmlized in Injormalion 
Visualization according to our lilerature an.alysis. The JMthod maps high-dimension.al dtlta points into the CIELAB 
color space by maintaining the rttlalive perceivt~d distances of data points and color discrimination. In thi.J paper; 
Wtl generalize aniJ extend thll method of KtJski et al. to pTDVide perceptulll unifonn color mapping for vislllll tuUJlysis 
of high dimensional data. Further; we evaluale the method and provide guidelines for diffirnmt cmalysis tasks. 

1. IDtroduction. 

Ware and Beatty [WB88] performed an experiment. in which 
five dimensional data was mapped to two spatial and three 
color dimensions. The results indicated that each additional 
color dimension is as useful as an additional spatial dimension 
for cluster identification. Other guidelines [Bre96. Warl2] 
suggest mapping two dimensions to hue and saturation (or 
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Figure 1: 1\vo dinwnsioltal eolonnaps. The position ofblaclc 
dots represent the color of multidimensional data points. 
(A) 2D colormap in RGB: colon are saturated. howevet; 
rwt perceptually uniform; (B) Rectangultu sub plane of 
CIELAB: perr:eptually u:nifo171'4 but ks.s satumted colors; 
(C) Ktuki et al.: saturated and perceptuDlly unifonn colors. 

lightness). This results in few distinguishable colors, which 
is in most cases enough to visualize effective overviews but 
lacks in precision [Warl2]. In high dimensional data analysis 
the focus is typically on exploring the relations of data items. 
Perceptual similarity is already modeled in oo1or spaces such 
as CIELAB. If tbe distances in the data space are mapped 
to perceptual distances in the color space, the analysts will 
perceive the relations of data items by interpreting the percep­
tual similarity of their colors. In this case, the color mapping 
is not bound to a fixed number of dimensions and is able to 
encode high-dimensional data relations. Unfortnnately, only 
a subspace of CIELAB can be visualized on cuaent displays. 
This subspace (or bounds) is of non-rectangular shape that 
Dllil::cs interpolation and other arifhmetics for color mapping 
very complex (see Fsgure 1 C). Rectangular parts of this sub­
space as defined by a maximum mJIOundcd box provide 
perceptwdlinear mappings but result in fewer disctiminable 
colors (see Figure lB). Other techniques use two-dimensional 
color maps that are often created by interpolation between 
four comer colors. This results in bigbly discriminable colors 
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J!igure 2: Wine data s.t [BL13}. 13 attributes describe thru ckuses of wines. 'I'M data ia projected with MDS to four dimeruwm 
and visualized in the scatter plots (x-, y-axis and two dimenawm are mapped to color). (A) 2D RGB color map: ckuses are not 
separated and colors reveal (wrong) large distance between data points; (B) CIELAB sub plane: distances are preseTI/ed but 
ckuses are not separated; (C) Our Method: Three ckuses are separated and local distances of ckus elements are preserved. 

but these color maps are not perceptually linear. The user 3. Color Mappioc for High-Dimauiooal Data Analym 
may group data points of the same cluster differently (in Fig­
ure lA clusters span over two or more color hues). Kaski et 
al. previously introduced a method [KVKOO] that projects 
high-dimensional data with a self-organizing map to two di­
mensions and fits the data into the bounds of CIELAB (see 
Figure l C). The color assignment supports the user in rec­
ognizing clusters and preserves the relationships of clusters 
while maximiziDg lhe exploitation of the color space. 

In this paper, we revisit 1he method of Kaski et aL and 
adjust it to the nced8 of visual analysis. Our method provides 
improved color mapping for high dimensional data points, 
which can be used in any visual design since color is an addi­
tional design variable that is most effective in combination 
with other visual variables such as position. A result of our 
method is illustrated in Figure 2 . We claim the following 
contributions: 1) generalization of the method with further 
projection methods, and extension to 3D target color spaces; 
2) ellldeat beurlBtial for practical use; 3) cost faDctfoiUI 
to further support analysis tasks; 4) evalnation of different 
configurations and methods in a user study. 

2. Related Work 
General guidelines on selecting color maps can be found 
in [War88,BRT95,KI'B96,RheOO,SSSMll, Warl2]. For more 
than one dimension, color seems to be probkmatic. If mapped 
to the receptor level (e.g., RGB or LMS) we pem:ive the mix­
ture and can infer similarity [WB88] but cannot separate 
the input from each dimension. Bivariate color schemes that 
meet several perceptual issues are discussed in [Bre96,HB03]. 
These schemes, however, do only support a limited num­
ber of color levels. An extension to the approach is intro­
duced in [GGMZOS, GCML06]. The method uses interaction 
and bell shaped rasters in the CIELAB space to produce 
diverging colors. There is evidence that two-dimensional 
color maps are unintelligible for encoding certain dimen­
sions [WF80]. However, under a different perspective of vi­
sualizing 1he similarity of data points or clusters these color 
maps have shown their usefulness in many papers. Foe exam­
ple, in [HimOO,BvLBSll] high dimensional data is projected 
to a lower (two) dimensional space and then scaled to fit a two 
dimensional color map. Most methods interpolate in RGB or 
CIELAB between fixed color anchon in the comers. Some 
methods also use uniform planes of CIELAB [WD08]. 

Figure 3: SdteiiiGik Approt~Ch. High dimensionol dota D 
i.t projemd with P to low tlimemiOIIIll spac~ D', which i.t 
transformed with P • CM to fit into color spac~ C. 

For color mapping of high-dimensional data, we see dif­
ferent requirements for the visual analysis tasks as de!K:!lbed 
in [TFS08] on the task model in [AA06]: Group 1: iden­
tification and comparison of data points and clusters; 
Group 2: lookup of clusters and classes. Group 1 requires 
an accurate match of all distances in the data space and per­
ceptual distances in the mapped colors. Group 2 requires per­
ceptual separation of classes and known clusters. Assigning 
clusters to distinct categorical colors works well for group 2. 
However, with this approach properties of the clusters are 
lost (e.g., the correlation of dimensions or relations of cluster 
elements). In the ideal case, data relations are preserved in the 
coloring. This requires a model of perceptual similarity that is 
implemented in CIELAB. The exploitation of the whole color 
space supports color discrimination and thus, lookup of clus­
ters. To guarantee full exploitation, 1he method must adapt 
the data to the non-linear shape of CIELAB. The intuition 
behind the method of Kaski et al. is that high-dimensional 
data is projected into the low-dimensional color space and 
thenfi#ed to the bounds of the color space (see Figure 3). The 
fittiDg is an optimization algorithm that minimire~ target cost 
functions. In the following, we generalize the method and 
provide cost functions that meet the requirements of different 
analysis tasks. 

J.L CCIIIt Func:tioos & Pen:eptual Metrics 
De6Diti011.1: D is the set of all model vectors mi E R."' de­
senDing all data clements i. Cis the set of all colors Ci E R." 
in 1he target color space. P : K"' t-t KJJ is the projection of 
the high-dimensional model vectors in the lower dimensional 
target space. D' being the set of model vccton m: E RJJ (note 

that D' #: C), CM : K" t-t C is the color assignment of m: 



to color c;. G is the set of clusters in D with g(i) being the 
cluster of data element i. Hx being the convex hull and V (Hx) 
the volume of a set or cluster x (e.g., V(Hn) represents the 
volume of the convex hull of Din Rm). 
Preservation of data relations. A quality measure of a pro­
jection from high- to low-dimensional space is the preserva­
tion of all relative distances that can, for example, be mea­
sured by the Sammon's stress measure (1). However, the 
preservation of all pairwise distances is typically impossible. 
Therefore, Kaski et al. preserve the relative distances within a 
cluster to increase the accuracy of the projection locally (2). 

'{"' '{"' (d (m;,mi)- d (~,mj) )2 

h=~~ ro 
iEDj#i d(mi,mi) 

h = L L (d(m;,mi) -d(mLmj))
2 

(2) 
iEDjEg(i) 

Color space exploitation. Another important property of 
good color mappings is that the mapping exploits as much 
of the color space in order to provide distinguishable colors. 
Kaski et al. rigidly scale the vectors m~ with a parameter k. 
It is increased to let D' occupy more of the available color 
space C. The original method estimates the distance of m~ 
to its perceptually closest color c; that can be displayed on 
the output device. This does not measure the exploitation of 
the color space. It measures the distortion of C1ELAB colors 
that lay beyond the color space bounds (3). The exploitation 
of the color space can be measured by the overlap of the 
color space in Rn and the projected data D' E Rn. This can 
be approximated by computing the volume of the intersection 
of the convex hulls of Hn' and He ( 4). 

[3 = f.d(m~,ci) (3) 
iED 

!4 ~ 1 I v (Hen Hn•) (4) 

Preservation of clusters. Preserving the local distances 
within a known cluster and ignoring the interrelations of 
clusters makes the color mapping very flexible. The data 
can adapt to the non-linear shape of the color space, which 
separates clusters well. However, if the task requires also to 
perceive interrelations of clusters, this method will produce 
misleading results. Kaski et al. introduced a heuristic that 
measures the "orderliness" of clusters based on a SOM grid. 
We propose a different function that preserves the relative 
distances of cluster centroids liir with r E G (5), because the 
heuristic cannot be applied in high-dimensional spaces. 

fs = E E (d(mr,ms)-d(mr',m/))2 
(5) 

m,,rEGm,im, 

Further, the original method does not measure how well clus­
ters are separated or do overlap. This can be approximated 
with the inverse centroid distance (6) and the intersection of 
convex hulls (7). Another issue in visualizing clusters with 
color is that we will overestimate the number of clusters or 
see noise if there are only few present [WB88]. Our cogni­
tions tries to differentiate between groups and objects based 

on their color (hue). If a cluster spans over the whole color 
space, it is likely that it is perceived as multiple clusters. A 
cost function (8) measures the pairwise color distances of 
cluster elements that are higher than a threshold t (we found 
that fort = 30 in CIELAB clusters are correctly perceived). 

/6~1/ E E d(mr',m.') (6) 
m,,rEGm,,pn, 

h~ E f.V(HrnH.) (7) 
rEG#r 

fs = E E f.max(d(mLmj) -t,O) (8) 
rEGi,jErj#i 

Combination of cost functions. The optimization goal is to 
minimize the multi -objective cost functions. We scalarize and 
sum the functions (9). Note, that this may be different with 
other optimization methods. Scalar a; is used to make the 
cost functions comparable. This parameter can be estimated, 
for example, by evaluating a ''bad" random solution and 
normalize all cost functions. A.; steers the influence of the 
cost function i on the mapping and configures the method for 
different analysis tasks. Details can be found in Section 4. 

8 

!= EA.t·a;- fi (9) 
i=l 

3.2. Optimization Algorithms & Heuristics 
The optimization goal can be reached by minimizing the sum 
of cost functions by a variety of optimization algorithms. 
Kaski et al. use a stochastic gradient method. We found that 
particle swarming [KE*95] provided good results. However, 
we consider the choice of the optimization algorithm as inter­
changeable part of our method. The optimization goal min(!) 
has several issues: 1) f is not continuous so that f' can only 
be approximated; 2) in high dimensional spaces f1 and h 
suffer under the curse of high dimensionality. Sophisticated 
projections P exist that effectively map Rm to R3• We, in prac­
tice, use a standard projection technique P such as MDS. The 
fitting to CIELAB is then applied in a post-processing step 
(see Figure 3). Global and/or local distances can be preserved 
by P. Therefore, a heuristic can use translation (in three di­
mensions), scaling and rotation (about three axis; centers as 
fix points) on the projected data D' or on clusters in D' to 
minimize the cost functions. This has the advantage that the 
parameter vector in the optimization is of low dimensionality. 
This results in seven dimensions for the whole data D' if all 
pairwise distances shall be preserved or seven dimensions per 
cluster if the task is focused on the lookup of clusters. 

4. Evaluation 
Goal and Thsk. We evaluated our method empirically with 
an experiment introduced by Ware and Beatty [WB88]. The 
goal was to measure the accuracy of users identifying the 
number of clusters in a visualization. The participants were 
shown a multi-dimensional data set in a scatter plot (as in Fig­
ure 2). 1\vo spatial dimensions were encoded by x- andy-axis 
and two or three dimensions were encoded by color (note, 



Elementary Synoptic 
Task I Compare <!ala 

Costtunctlon Compare data 
po1n1s local 

ld<lnllfy Lookup Cool pare 
po.nts global 

(duster) 
Clusters clusters CIUsle<$ 

f1 ., X v X X 
12 X v X (v ) (v ) 
f5 X v X (., ) v 
f6 X "' X v v 
f7 X " X v " 
fS X v X v v 

VI' Activ ated X Deactivated (v ) Optional 

'Thble 1: Combinations of cost junctions for analysis tasks. 

that we reduced the number of dimensions in order to be com­
puable with related methods). The participams were asked 
to estimate the number of clusters in each scatter plot. Note, 
that counting the number of clusters is not trivial and involves 
elementary' and synoptic tasks (sec Thble l ). The participant 
bas to compare the spatial and color distribution of the data 
points, which is the elementary task of comparing data points 
globally. The participant has to group the data points and 
further bas to differentiate between spatial distribution and 
color since clusters may overlap spatially or in the color space. 
With this, the participant identifies clusters (synoptic task) 
and is able to count the number of clusters in the plot. 
ExperimeDt Factors. We evaluated seven color mappings 
with three state-of-the-art techniques and our method. Our 
method can be configured in multiple ways, however, we 
selected two versions. One was configured for the elemen­
tary' comparison task and the other was configured to pre­
serve known clusters (lookup and comparison task, see Ta­
ble 1). For four dimensional data we used our method with 
a fixed ligh1ness of L = 60 (20 version) and state-of-the-art 
methods that were two dim.eullional color maps in RGB and 
CIELAB (see Figure 1). For five dimenaional. data we used 
Ware's and Beatty's method to map three dimensions directly 
to red, green and blue [WB88] and our method that exploits 
the full CIELAB space (3D version). The color mapping of 
Kaski et. al. requires the SOM projection. We excluded the 
uncertainties of projections. Thus, our .m.edlod was compara­
ble to the !tate-of-d!.e-art but Dot to the method of Kaski et al. 
Experimezdal Design. We conducted a user study with 8 
visualization and data analysis experts. The study was within­
subject designed. Each participant performed 18 tasks with 
each color mapping. The onler of color mappings was ran­
domized. The data was created according to [WB88], with 
the DUmber of clustas (1 to 6 clustas), number of clusta 
elements (min: 30, max: 80), cluster positions and clusta 
shapes being randomized in each trial. 
Results and Dlscasslon. Tbc summary of results is illus­
trated in figure 4. With our method preserving clusters (20 
and 3D version) users were aignifi.cantly more accurate 1han 
with all other mappings on estimating the couect number 
of clusters (paired U-Test: p<0.001). This method supports 
the synoptic lookup and comparison task of clusters and still 
preserves the local data distances. The oon1iguration implies 

RGB 20 Colormap -::::::::::~:l 
CIELAB Sub Space • 

Our Method 20' ~====----------Our Method 20- ~~ 

3 Dimensions RGB ~--------------; 
Our Method 30' 

Our Method 30-

000 005 0.10 0 15 020 025 030 
• Configuration: Elementary comparison of data points. 
•• Configuration : Synoptic lookup and comparison of known clusters. 

~ 4: Ewiluadon RtJ&tilll. Averaged nonnalized error 
(I lkl!~r~6 - II) and standard deviation. 

that clusters are known a priori, which is typically not the 
case in the cluste.r identification task. Howeva, this shows dJ.e 
advantage of concerning separation of known clusters in the 
color mapping. Our method for cluster identification provides 
com:ct perceptually mappings. The 3D version performed 
weU, however, not significantly better than the state-of-the-art 
methods. The effect of perceiving more clusters if few are 
present [WB88] seems to compensate the beDefits of percep­
tual linearity. Especially, since our method tries to exploit dJ.e 
whole color space and preserves all pairwise distances. We 
presented cost functions that are designed to support two op­
posing groups of analysis tasks. We argue that these functions 
are a sound basis for the analysis in realistic scenarios. How­
ever, wee see further research to support different analysis 
tasks and to improve visual cluster idc:ntification. It will be 
interesting to find trade oft's in real applications. Further, we 
see future work to estimate the benefit of preserving global 
cluster relations and local cluster element relations in com­
parison to categorical color mapping. 
Impllcatiou. Our guidelines are swnmarized and illustl'atl:ld 
in Table 1. Note, that f3 and /4 are independent of the task 
and should always be activated. If the task is to visually 
identify high dimensional clusters, standard two dimensional 
color maps will perform as well as our technique. However, 
if the task also implies the comparison of data items, our 
technique (/1) will provide perceptual correct mappings. 
When clustas are known a priori and should be pet'1:Cptu­
ally preserved. our method (!2. /5-/8) should be used since 
it preserves local distances and supports lookup of clusters. 

S. ColldusiOIIS 

In this paper, we present an extension to the method of Kaski 
et al. [KVKOO] to project high dimensional data to perceptual 
linear color spaces. Our method preserves the relationships of 
data itmns and supports the user in recognizing clustm: while 
maximizing the exploitation of the CIELAB color space. 
We provide guidelines on how to configure our method for 
different analysis tasks and evaluated different versions of 
our method empirically. The results show that our method 
outperfonns othe:r .m.edlods in the lookup task of clusters but 
also highlighted that further research is required to improve 
cluster identification with color. 
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