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Reduced thermal stability of antiferromagnetic nanostructures
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Antiferromagnetic materials hold promising prospects in novel types of spintronics applications. Assessing the
stability of antiferromagnetic nanostructures against thermal excitations is a crucial aspect of designing devices
with a high information density. Here we use theoretical calculations and numerical simulations to determine
the mean switching time of antiferromagnetic nanoparticles in the superparamagnetic limit. It is demonstrated
that the thermal stability is drastically reduced compared to ferromagnetic particles in the limit of low Gilbert
damping, attributed to the exchange enhancement of the attempt frequencies. It is discussed how the system
parameters have to be engineered in order to optimize the switching rates in antiferromagnetic nanoparticles.
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I. INTRODUCTION

In the field of spintronics, the storage, transfer, and pro-
cessing of information is based on the spin magnetic mo-
ment of electrons. Conventional spintronic devices are mainly
based on ferromagnetic (FM) systems. However, recent ad-
vances in understanding and controlling antiferromagnetic
(AFM) materials have led to an increasing interest in AFM
spintronics [1–7]. Possible advantages of spintronic devices
based on AFM materials include their lack of stray fields,
which normally destroy single-domain states and lead to an
interaction between bit patterns; the low susceptibility to
external fields; and the rich choice of new materials, including
a variety of AFM insulators. Moreover, AFM spin dynamics
are found to be faster than those of FMs [4,8–10].

For many applications, the size of magnetic structures will
have to be scaled down to the nanometer regime, where, even-
tually, thermal excitations will reduce the stability of the mag-
netic state. In single-domain FM nanoparticles this is known
as the superparamagnetic limit [11], where the whole structure
can be described as a single macroscopic magnetic dipole.
Besides their technological relevance, superparamagnetic par-
ticles have found their uses in biomedical applications [12] as
well as in rock magnetism [13]. Analogously, a single-domain
AFM nanoparticle may be described by a macroscopic Néel
vector, being the difference of the two sublattice magnetiza-
tions. The spontaneous switching of the Néel vector under
thermal fluctuations constitutes the superparamagnetic limit
in AFMs. In this context, it was shown recently [14] that
thermally activated superparamagnetic reversal enhances the
current-induced switching rates in AFM Hall cross devices.
Furthermore, AFM nanoparticles play an important role in
biological molecules such as the natural [15] and synthetic
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forms [16] of the iron-storage protein ferritin, and in the field
of geochemistry [17].

The thermal stability of FM nanoparticles has been studied
extensively in the past [18–23]. An analytical formula for the
thermal switching rate in the superparamagnetic limit was
first given by Brown [24] based on the stochastic Landau-
Lifshitz-Gilbert equation [25,26]. The mean switching time
in AFM nanoparticles has been investigated in significantly
less works so far [27], and the analytical studies [28,29] have
been restricted to the case of uncompensated AFMs with a
finite magnetization. For current technological applications of
compensated AFMs, a simple but accurate formula explaining
the role of the interaction parameters in the reversal process
seems to be lacking.

Here we theoretically investigate the switching rate in
compensated AFM nanoparticles. By deriving an analytical
expression, it is demonstrated that the coupling between the
Néel vector and the magnetization leads to significantly faster
dynamical processes than in FMs. In the limit of low Gilbert
damping, this causes strong oscillations in the Néel vector
direction during the reversal process and an exchange en-
hancement of the switching rate compared to Brown’s formula
applicable to FMs. The accuracy of the analytical formula is
confirmed by spin dynamics simulations. By analyzing the
effect of different material parameters on the switching rate,
the advantages and disadvantages of AFMs over FMs are
discussed for various applications. Our findings contribute to
the understanding of thermal effects in AFM nanostructures,
their stability as well as switchability, where the latter is often
affected by heating effects due to applied currents or laser
excitation.

The paper is organized as follows. The analytical formulas
for the switching times in uniaxial FM and AFM nanoparti-
cles are discussed in Sec. II. The spin dynamics simulations
are introduced in Sec. III. The necessary conditions for the
application of the macrospin model to the results of atomistic
simulations are detailed in Sec. IV. The switching times
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(a)
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FIG. 1. Comparison of reversal mechanisms in AFM (left) and
FM (right) nanoparticles. While the energy barriers �E for coherent
rotation are identical (a), the attempt frequencies strongly differ,
which is caused by the different dynamical properties of the eigen-
modes (b). Springs in the AFM case represent that energy may be
transferred between anisotropy and exchange contributions, while
the latter is not present in the macrospin description of FMs.

between FMs and AFMs are compared in Sec. V, and the
results are summarized in Sec. VI.

II. ANALYTICAL MODEL

A. Axially symmetric FM nanoparticle

For the analytical investigations we will focus on the
simplest example of a magnetic nanoparticle, which switches
by coherent rotation between two stable magnetic states sep-
arated by an energy barrier �E , as sketched in Fig. 1(a). We
will rely on the so-called single-domain approximation, where
the total magnetization of the nanoparticle is described by a
single magnetic moment or macrospin in the FM case. This
remains valid if the particle size stays below the exchange
length, corresponding to the characteristic size of domain
walls in the system. The dynamics can be calculated within
the framework of the macroscopic Landau-Lifshitz-Gilbert
equation [25,26]

ṁ = −m ×
(

γ hm − α
ṁ
m0

)
, (1)

where α is the Gilbert damping constant, γ is the gyromag-
netic ratio, m is the magnetization of the nanoparticle, m0 is
the magnitude of the magnetization, and hm = −δmF is the
effective field, where F is the magnetic free energy of the
system. For simplicity, in this paper we restrain the discus-
sion to a uniaxial particle, with the free-energy density f =
−Ham2

z /(2m0), where Ha = 2DzN/(V m0) is the anisotropy
field, Dz is the anisotropy energy of a single spin, N is the

number of spins in the nanoparticle, and V is its volume.
Equation (1) describes the rotational motion of the macrospin,
with its length fixed at |m| = m0. In this case, the free energy
has two minima, mz/m0 = 1 and −1, with the energy barrier
between them being �E = Ham0V/2 = DzN .

Thermal activation allows the nanoparticle to jump be-
tween the free-energy minima with a characteristic time scale.
In the limit of low temperatures, kBT � �E , the switching
time for coherent rotation over the barrier was derived by
Brown [24]:

τFM = 1 + α2

α
ω−1

a

√
πkBT

DzN
e

DzN
kBT . (2)

This expression is of the form of the exponential Néel-
Arrhenius law τ = τ0e�E/kBT , with the energy barrier �E =
DzN determined above. The prefactor τ0 is called the inverse
attempt frequency. Its first factor is related to the damping
dependence of the switching time, clearly with a minimum
at α = 1. The second factor is the precessional time scale
of the system, with ωa = γ Ha = γ 2DzN/(V m0). The weak
temperature dependence of the prefactor is attributed to the
Goldstone mode of the system at the top of the energy barrier
in the axially symmetric free-energy expression.

B. Nonaxially symmetric FM nanoparticles

Equation (2) is valid for all values of the damping param-
eter α. As pointed out in, e.g., Ref. [30], its simple form
can be attributed to the fact that the Fokker-Planck equation
derived from the stochastic Landau-Lifshitz-Gilbert equation
simplifies to an ordinary differential equation for the polar
angle variable cos ϑ = mz/m0. If the rotational symmetry
of the system is broken, for example, by a tilted external
magnetic field [31], then the free energy F must describe the
coupling between polar ϑ and azimuthal ϕ variables, or lon-
gitudinal and transversal degrees of freedom. This transforms
the Fokker-Planck equation into a partial differential equation
which is significantly more difficult to handle.

For massive particles, escape rates from an energy mini-
mum were first systematically derived by Kramers [32], who
differentiated between intermediate-to-high damping (IHD)
and very-low-damping (VLD) limits. For IHD, it can be
assumed that the system is in thermal equilibrium both close
to the energy minimum (min) and in the vicinity of the saddle
point (SP) which has to be crossed during the escape. The IHD
limit of nonaxially symmetric FM nanoparticles was derived
by Brown [33], which was later revealed to be [34–39] a spe-
cial case of Langer’s [40] expression for multiple degrees of
freedom. Within this description, the Hamiltonian or the free
energy is approximated by a harmonic expansion around the
minimum and close to the saddle point, while the equations of
motion are linearized near the saddle point. The energy scale
of thermal fluctuations is required to be much lower than the
energy barrier protecting the metastable state, leading to an
Arrhenius-like formula. Applications to magnetic systems can
be found in, e.g., Refs. [34–37,41]. The generalization to an
arbitrary number of Goldstone modes as presented in Eq. (3)
below is based on harmonic transition-state theory [42], which
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differs from Langer’s theory in applying a dynamical prefactor
independent of the damping.

The switching time τ IHD may be expressed by the formula

τ IHD = 2π

λ+,SP

Vmin

VSP
(2πkBT )

PSP−Pmin
2

√√√√∏′
j |ε j,SP|∏′
j ε j,min

e
ESP−Emin

kBT ,

(3)

where E is the energy of the given configuration and ε j

denotes the eigenvalues of the harmonic Hamiltonian in the
equilibrium state. Ideally, all eigenvalues in the minimum are
positive, and there is a single negative eigenvalue (hence the
absolute value) in the first-order saddle point, along which
direction the transition takes place. However, the system may
possess zero-energy Goldstone modes which are to be handled
separately. These must be left out of the eigenvalue products,
hence the prime notation. Each of these will contribute a√

2πkBT factor instead, with P denoting the number of Gold-
stone modes. V is the phase-space volume belonging to the
Goldstone modes. Finally, λ+,SP is the single positive eigen-
value of the linearized equations of motion in the saddle point.
This determines how fast the system crosses the transition
state. The derivation of Eq. (2) based on Eq. (3) is given in
Appendix A.

However, in the VLD limit the approximations of Langer’s
theory break down, since the weak coupling between the
system and the heat bath encapsulated in the damping param-
eter is no longer sufficient for ensuring thermal equilibrium
at higher energy values. In order to achieve agreement with
the fluctuation-dissipation theorem, one has to calculate the
energy dissipated during a single precession along the energy
contour including the saddle point, and ensure that this is
low compared to the thermal energy kBT in the VLD case.
Such a calculation for FM nanoparticles was carried out
by Klik and Gunther [43]. Finally, the missing connection
between the VLD and IHD limits, the solution of the so-called
Kramers turnover problem, was derived by Mel’nikov and
Meshkov [44] for massive particles, and adapted to nonax-
ially symmetric FM nanoparticles by Coffey and cowork-
ers [35,41]. This can be summarized in the formula

τ = A−1

(
αS

kBT

)
τ IHD, (4)

where A( αS
kBT ) is the depopulation factor,

A(x) = e
1

2π

∫ ∞
−∞ ln[1−e−x( 1

4 +y2 )] 1
1
4 +y2 dy

, (5)

and τ IHD is the switching time in the IHD limit given by
Eq. (3). The validity of the general formula for FMs was later
thoroughly confirmed by the numerical solution of the Fokker-
Planck equation, spin dynamics simulations, and experiments;
see, e.g., Refs. [29,30,39].

C. Axially symmetric AFM nanoparticle

For AFMs, to the best of our knowledge, analytical for-
mulas similar to Eq. (2) remain unknown. Only a few recent
works have addressed the problem [28,29]. However, they
assumed AFM nanoparticles with uncompensated magnetic
moments, attributed to finite-size effects and lattice defects

in naturally occurring nanoparticles [45,46]. In this limit, the
AFM was effectively described as a FM with a very small
magnetic moment. In spintronics applications, it is possible
to prepare completely compensated AFM structures, for ex-
ample, by atom manipulation as demonstrated in Ref. [27].
The dynamics in AFMs are described by coupled equations of
motion for the Néel vector and the magnetization [47–50], ex-
pected to lead to a qualitatively different behavior. Dissipative
dynamics in two-sublattice AFMs may be derived by consid-
ering two coupled Landau-Lifshitz-Gilbert equations (1) for
the sublattice magnetizations m1 and m2. These are trans-
formed to the dynamical variables of the magnetization m =
(m1 + m2)/2 and the Néel vector n = (m1 − m2)/2. At low
temperature, it is reasonable to assume that the Néel vector
conserves its length |n| = m0 and only undergoes rotational
motion. The magnetization remains perpendicular to the Néel
vector, n · m = 0, since in a compensated AFM a finite mag-
netization may only be formed by canting the two sublattice
magnetizations perpendicularly to their original antiparallel
orientation. This leads to the equations of motion [48]

ṅ = −n ×
(

γ hm − α
ṁ
m0

)
, (6)

ṁ = −m ×
(

γ hm − α
ṁ
m0

)
− n ×

(
γ hn − α

ṅ
m0

)
, (7)

where hm,n = −δm,nF are the effective fields acting on the
magnetization and the Néel vector, respectively. The free-
energy density of an axially symmetric single-domain AFM
particle reads f = Hem2/(2m0) − Han2

z /(2m0), with He =
qJN/(V m0) being the exchange field describing the coupling
between the sublattices, where q is the number of nearest
neighbors and J is the exchange constant in the correspond-
ing atomistic model. In the following, we will assume that
qJ � Dz, which is true for practically all magnetic materials.

Although the AFM nanoparticle is still axially symmetric,
it fundamentally differs from its FM counterpart described in
Sec. II A. As illustrated in Fig. 1(b), in AFMs the anisotropy
energy assigned to the z component of the Néel vector nz may
transform into the exchange energy between the sublattices,
leading to a finite magnetization m, even in the conservative
case. In comparison, the FM particle may only perform a
precession around the easy axis with a constant polar angle
ϑ . Consequently, one has to rely on the theory for coupled
degrees of freedom, such as in the case of nonaxially sym-
metric FM systems in Sec. II B, when deriving the switching
time in AFMs. Applying Eq. (4) to this problem leads to the
expression

τAFM = A−1

(
αS

kBT

)
1 + α2

α
ω−1

AFM

√
πkBT

DzN
e

DzN
kBT , (8)

with the derivation given in Appendix B.
In comparison with Eq. (2), one can observe that the energy

barrier �E = DzN between the minima at nz/m0 = 1 and −1
remains the same in Eq. (8), as long as all individual spins ro-
tate coherently during switching. Similarly, the temperature-
dependent square-root term attributed to the axial symmetry
is preserved. On the other hand, the frequency ωa is replaced
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by ωAFM:

ωAFM = γ N

V m0

[(
Dz− 1

2
qJ

)
+

√(
1

2
qJ +Dz

)2

+ 2DzqJ
α2

]
.

(9)

The transition between the IHD and the VLD limits is
governed by the ratio of the thermal energy kBT and the
energy loss per cycle on the contour including the saddle
point:

αS = αN

(
16D2

z

3
√

2DzqJ
+ 4

√
2DzqJ

)
; (10)

for the derivation see Appendix C.
In order to highlight the differences and similarities be-

tween the FM and AFM cases, appropriate asymptotic ex-
pressions are derived. On the one hand, in the limit of high
damping α � 1, one has ωAFM ≈ ωa and A(αS/(kBT )) ≈ 1
due to the strong energy dissipation αS � kBT , leading to

τAFM,α�1 ≈ αω−1
a

√
πkBT

DzN
e

DzN
kBT , (11)

which coincides with the asymptotic behavior for FMs,
Eq. (2).

On the other hand, significant deviations may be observed
between the two types of systems in the limit of low damping.
For α � 1, the characteristic frequency of AFMs is αωAFM ≈√

2DzqJ = √
qJ /(2Dz )ωa, indicating that the dynamics are

exchange enhanced compared to FMs. Furthermore, the de-
population factor may be approximated as A[αS/(kBT )] ≈
αS/(kBT ) ≈ α4N

√
2DzqJ /(kBT ) for slow energy dissipa-

tion and qJ � Dz. The VLD limit of Eq. (8) reads

τAFM,α�1 ≈ 1

α

kBT

4qJ N
ω−1

a

√
πkBT

DzN
e

DzN
kBT . (12)

In Eq. (12), the switching time is inversely proportional
to the damping parameter, as expected from the fluctuation-
dissipation theorem [32]. Furthermore, it is reduced by a
factor of kBT/(4qJN ) compared to the appropriate limit of
Eq. (2). The typical value of intrinsic damping in magnetic
materials is α = 0.001–0.01, e.g., α = 0.0025 was deter-
mined for Mn2Au in Ref. [51]. This means that the switching
time in AFMs could be up to several orders of magnitude
shorter than in FMs, which effectively means much less
thermal stability.

The high- and low-damping limits of the AFM switching
time, defined by Eqs. (11) and (12), may be connected by the
simplified formula

τAFM,asymptotic =
kBT

4qJN + α2

α
ω−1

a

√
πkBT

DzN
e

DzN
kBT , (13)

which has an analogous form to Eq. (2). This clearly ex-
presses the difference in the behavior between FMs and
AFMs: while for the former the minimal switching time is
found for αFM,min = 1, for the latter this value now depends
on the system parameters, αAFM,min = √

kBT/(4qJ N ), being
decreased due to the exchange interaction. Since for high

α values the switching times in FMs and AFMs coincide,
while the minimum is shifted to lower α values in AFMs, this
implies that AFM nanoparticles are significantly less resistant
against thermal fluctuations at low damping compared to
their FM counterparts. However, note that in the immediate
vicinity of αAFM,min Eq. (8) is expected to give a more accurate
description than Eq. (13), since the former includes a more
precise interpolation between the VLD and IHD limits exactly
in this turnover regime.

III. SPIN DYNAMICS SIMULATIONS

To test the validity of Eqs. (2) and (8), we performed
atomistic spin dynamics simulations. For the description of
the magnetic system, we introduce the classical atomistic spin
Hamiltonian

H = ∓1

2

∑
〈i, j〉

JSiS j −
∑

i

DzS
2
i,z. (14)

Here the Si variables denote unit vectors on a simple cubic
lattice and J is the Heisenberg exchange interaction between
atoms at nearest-neighbor sites i and j. For the negative sign in
Eq. (14) the ground state is FM, while for the positive sign it is
AFM. Dz > 0 is the single-ion magnetocrystalline anisotropy,
implying that the ground state of the system lies along the z
direction.

The time evolution of the unit vectors Si is described by the
Landau-Lifshitz-Gilbert equation,

(1 + α2)μsṠi = −γ Si × [Hi + α(Si × Hi )], (15)

where μs denotes the magnetic moment of a single spin
and α is the Gilbert damping as in the macrospin model.
By including a Langevin thermostat, the equilibrium and
nonequilibrium thermodynamic properties can be obtained in
the classical approximation. The effective local magnetic field
at lattice site i is

Hi = −∂H
∂Si

+ ξi(t ), (16)

where H is given by Eq. (14) in the present case and ξi is a
fieldlike stochastic process. Here we consider the white-noise
limit [52], with the first and second moments

〈ξi(t )〉 = 0, 〈ξi,a(0)ξ j,b(t )〉 = 2αkBT μs

γ
δi jδabδ(t ), (17)

where a and b denote the Cartesian components.

IV. CORRESPONDENCE BETWEEN THEORY
AND SIMULATIONS

A. Temperature-dependent effective parameters

For a direct comparison of Eqs. (2) and (8) with the results
of the spin dynamics simulations, it has to be ensured that
the assumptions which the analytical formulas are based on
are satisfied by the atomistic model. As long as the linear
size of the system is shorter than a characteristic length
scale on the order of the exchange length, Le ∼ √

J/Dz, it
is expected that coherent rotation is the primary mechanism
of magnetization reversal in the nanoparticles. Above this
threshold, the nucleation of a pair of domain walls becomes
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energetically favorable compared to the energy barrier which
has to be overcome by coherent rotation [53–57].

Even for small particles, one has to take into account that
in the atomistic model the thermal fluctuations decrease m0,
the equilibrium length of the magnetization in FMs and of
the Néel vector in AFMs [58]. In earlier publications for FM
systems [59], it was found that the dimensionless magneti-
zation may be well approximated by the phenomenological
relation m0V/(Nμs) = (1 − T/Tc)1/3 for three-dimensional
(3D) Heisenberg models. Furthermore, one has to account for
finite-size effects. Small systems such as the nanoparticles
considered here have a reduced magnetization compared to
the bulk at a given temperature, as a result of lower coordina-
tion numbers at the surfaces. For 3D Heisenberg spin models,
finite-size-scaling theory provides a value for the apparent
Curie temperature as a function of the size L (linear charac-
teristic size of the nanoparticle), Tc(L)/T ∞

c = 1 − (d0/L)1/ν ,
where the parameter d0 corresponds to the characteristic ex-
change length and ν corresponds to the critical exponent. A
recent work [60] on FM FePt nanoparticles using similar pa-
rameters to our simulations has estimated d0 = 0.4 nm, to be
compared to a lattice constant of a = 0.38 nm, and ν = 0.856.
The critical temperature of the cubic Heisenberg model in the
thermodynamic limit was found to be kBT ∞

c = 1.443 J [61].
In this paper we performed simulations for a cubic nanoparti-
cle composed of N = 43 = 64 spins; therefore, the lateral size
is four spins, meaning d0/L = 0.4/(0.38 × 4) = 0.238 in the
finite-size-scaling expression, leading to Tc(L) = 1.173 J . We
found that the phenomenological relation using this critical
temperature was in agreement with spin dynamics simula-
tions of the dimensionless order parameter at the temperature
ranges where coherent reversal is dominant.

In the analytical expressions the effect of the reduced
order parameter may be considered by assuming temperature-
dependent magnetic parameters in Eqs. (2) and (8) [58]:

Dz = Dz

(
m0V

Nμs

)3

, (18)

J = J

(
m0V

Nμs

)2

. (19)

The cubic dependence of the anisotropy on the dimensionless
magnetization expressed in Eq. (18) is the result of the Callen-
Callen theory [62,63]. The quadratic dependence of the ex-
change in Eq. (19) may be derived from the random-phase
approximation [64].

Furthermore, the reduced coordination number q at the
surface also directly affects Eq. (8). Here we substituted the
mean value of the number of nearest neighbors: for a nanopar-
ticle composed of N = 64 spins in simple cubic arrangement,
q = 6 for the spins inside (23 = 8), q = 5 for the spins at
the faces (6 × 2 × 2 = 24), q = 4 for the spin at the edges
(12 × 2 = 24), and q = 3 for the spins at the corners (8), thus
qavg = 4.5.

B. Oscillations in the order parameter in the VLD limit
of AFM nanoparticles

A further requirement for an accurate comparison between
simulations and analytical expressions is that the identified

FIG. 2. Illustration of the switching events in the AFM nanopar-
ticle for (a) low (α = 0.0005) and (b) intermediate (α = 0.1) damp-
ing. The other simulation parameters are T = 0.6 J/kB, Dz = 0.1 J ,
for a cubic nanoparticle consisting of N = 43 = 64 spins. The thresh-
old values for the switching are chosen to be ±0.75〈|ñz|〉, where ñz

is the z component of the dimensionless order parameter and 〈|ñz|〉
is the thermal average of its absolute value. ñavg

z was obtained by
performing a moving average on the ñz data using a window of width
�t = 8.8 μs/(γ J ).

switching events in the simulations have to correspond to the
reversals described by the theory [39]. For uniaxial nanopar-
ticles with easy axis along the z direction, the following
criteria may be identified. First, the z component of the order
parameter m or n has to change sign and thereafter cross
a threshold value governed by the equilibrium value m0 at
the given temperature. During the process, the energy of the
particle increases while crossing the energy barrier, before
decreasing again when coming to rest in the other energy
minimum; see Supplemental Material Videos 1 and 2 [65] for
an illustration of this process.

For FMs, the sign change of mz is always accompanied by
an increase in the anisotropy energy. On the other hand, in
AFM nanoparticles the energy can be transformed between
the anisotropy contribution of the Néel vector and the ex-
change contribution of the magnetization, meaning that nz

may switch sign even if the total energy of the system remains
constant. In the low-damping limit such an oscillatory motion
can indeed be observed, where the z component of the Néel
vector switches sign and crosses the threshold value many
times before coming to rest in one of the minima; see Fig. 2(a)
and Supplemental Material Video 3 [65]. This is analogous
to a mechanical particle in a double-well potential, where
the energy is transformed between the kinetic and potential
parts during the motion. During these oscillations in the Néel
vector, the energy of the system is slowly varied due to the
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FIG. 3. Damping dependence of the switching time for FM and
AFM nanoparticles. The system parameters are T = 0.6 J/kB, Dz =
0.1 J , N = 64. Symbols correspond to simulations using atomistic
spin dynamics methods, and lines correspond to the analytical for-
mulas Eqs. (2), (8), and (13).

weak coupling to the heat bath, meaning that the oscillations
take place on a roughly constant energy surface and hence
they only represent a single switching event. For an estimate
of the oscillation periods see Appendix D.

To determine the actual switching events in the low-
damping limit in the simulations, we therefore used a time
average of the data, where the time window was larger than the
period of the fast oscillations of the Néel vector while crossing
the energy barrier. As shown in Fig. 2(a), in the averaged data
the z component of the dimensionless order parameter only
crosses the threshold value once after its sign change during a
single reversal. In contrast, for intermediate-to-high values of
α the energy fluctuates strongly on the time scale of a single
rotation, and the oscillatory switching is absent as shown in
Fig. 2(b). In this case, the same number of switching events
are registered both with and without the averaging procedure.

V. COMPARISON OF SWITCHING TIMES

In order to validate the damping dependence of the switch-
ing time in both FMs and AFMs, we performed computer
simulations by varying the damping value α at a fixed tem-
perature T = 0.6 J/kB, shown in Fig. 3. In order to enable an
accurate comparison, the same absolute value of the exchange
interaction J and the anisotropy Dz = 0.1 J was considered
during the simulations, performed for a cubic nanoparticle
consisting of N = 64 spins. As can be seen in the figure,
Eq. (2) gives good agreement with the simulation results for
the FM case, while Eq. (8) is accurate for the AFM case over
the whole parameter range. While the switching times are
similar for high damping, the minimal switching time is found
for significantly lower α values in the AFM case, leading to
a reduced thermal stability in the limit of low damping. Note
that the asymptotic expression Eq. (13) for AFMs, which has
an analogous form to Eq. (2) for FMs, underestimates the
switching time in the turnover regime. In particular, for the
present simulation parameters the VLD limit, characterized

0.0001 0.001 0.01 0.1 1 10
100

1000

10000

100000

FIG. 4. Damping dependence of the switching time for the an-
tiferromagnetic nanoparticle, using the parameters T = 0.6 J/kB,
Dz = 0.1 J , N = 64. Circles and squares correspond to the same
simulation data as in Fig. 3, with and without performing the time
averaging. Lines show Eq. (8), expected to hold for all α values, and
Eq. (B17) without the depopulation factor, which is only applicable
in the intermediate-to-high-damping limit.

by the relation τAFM,α�1 ∝ α−1 in Eq. (12), is not reached yet
for α ≈ 0.001, and the AFM switching time shows a weaker
dependence on the damping in this turnover regime.

Figure 4 illustrates the effect of time averaging of the
simulation data on the obtained switching times. Moving aver-
ages were performed on a time interval of �t = 8.8 μs/(γ J ).
Without performing the time averaging, the mean time be-
tween sign changes of the z component of the order parameter
converges to a constant value at low damping, similarly to the
intermediate-to-high-damping formula, given by Eq. (B17) in
Appendix B. However, this behavior is in contradiction with
the fluctuation-dissipation theorem. The range in α where the
time averaging starts to play a significant role in the simulation
data coincides with the interval where the depopulation factor
in Eq. (8) becomes important in the theoretical description.
This emphasizes the necessity of correctly determining the
switching time in the very-low-damping limit both in the
analytical model as well as in the numerical simulations.

A further important difference between FMs and AFMs, as
can be deduced from Eqs. (2) and (8), is that the switching
time in AFMs depends on the microscopic exchange interac-
tion J , while this parameter is absent in the single-domain de-
scription of FMs. The analytical expressions Eqs. (2) and (8)
for different values of J are compared in Fig. 5 as a func-
tion of temperature, using the parameters Dz = 0.1 J0 and
α = 0.0005. For the AFM case simulation results are also
presented, confirming the assumed Néel-Arrhenius law in this
parameter range. For the FM case with the significantly longer
switching times only the analytical formula Eq. (2) is shown,
which had been confirmed in earlier publications [30] and is
demonstrated to hold in Fig. 3 here for a different damping
regime. Note that while Eq. (2) does not explicitly depend on
J the predicted analytical curves are still different for J = J0

and 10 J0, since the equilibrium magnetization m0 is higher
in the latter case [cf. Eqs. (18) and (19)]. As indicated in

064422-6



REDUCED THERMAL STABILITY OF … PHYSICAL REVIEW B 100, 064422 (2019)

1 1.5 2 2.5
102

104

106

108

1010

1012

FIG. 5. Dependence of the switching time on the exchange in-
teraction J for FM and AFM nanoparticles. The system parameters
are α = 0.0005, Dz = 0.1 J0, N = 64. Symbols correspond to sim-
ulations using atomistic spin dynamics methods for the AFM case,
and lines correspond to the analytical formulas Eqs. (2) and (8).

the figure, at the lowest temperature where the simulations
were performed (J0/kBT = 2), the ratio τFM/τAFM is about
ten times larger for ten times higher exchange interaction, in
agreement with the VLD damping limits of Eqs. (2) and (12).

VI. CONCLUSION

In summary, we investigated the superparamagnetic limit
of AFM nanoparticles analytically as well as by means
of computer simulations. The derived analytical expression,
Eq. (8), for the mean switching time indicates a drastically
reduced thermal stability of AFM nanostructures as compared
to their FM counterparts because of the exchange enhance-
ment of the attempt frequency. The latter is caused by the
coupling between the anisotropy term connected to the Néel
vector and the exchange term connected to the magnetization
in the free-energy density of single-domain AFMs, which also
causes a strong oscillation of the Néel vector direction at low
damping values during the switching process.

The significantly faster dynamics in AFMs is one of their
main proposed advantages over FMs in spintronics applica-
tions [4]. However, this enhanced speed also leads to an in-
creased susceptibility to thermal fluctuations as demonstrated
here; for realistic materials with a low damping value, the
switching times of AFMs can be expected to be four to five
orders of magnitude shorter than those of FMs, a finding
that is in agreement with a work on antiferromagnetic grains
in exchange bias systems [66]. Furthermore, the procedures
capable of increasing the switching times in FMs may be
less efficient in AFMs. The energy barrier in the Arrhenius
expressions Eqs. (2) and (8), which is the leading term in
the temperature dependence, may be increased by choosing
a higher anisotropy value Dz, a larger system size N , a lower
temperature T or a higher exchange coupling J . The latter
couples the microscopic spins more strongly to each other,
thereby leading to a larger order parameter m0. According

to the VLD limit Eq. (12), all of these methods except
increasing the anisotropy lead to a decrease in the inverse
attempt frequency, meaning that they decrease the τAFM/τFM

ratio assuming the same system parameters. Furthermore, for
FMs damping values in the range α = 0.001–0.01, typical for
materials suggested for spintronic devices [51], will surely
fall into the VLD regime, where lower α values lead to an
enhanced switching time. On the other hand, for AFMs similar
values may belong to the turnover region where the lifetime is
minimal and the dependence on α is weak, around αAFM,min ≈√

kBT/(4qJN ). These problems may be circumvented by
selecting materials with a high damping value, where the
difference between FM and AFM switching times disappears.

However, fast reversal of the nanoparticles may also be
desired in specific applications. Since thermal activation facil-
itates the current-induced switching in spintronic devices [14],
a higher attempt frequency necessitates a lower current den-
sity for achieving the same switching rate. In magnetic hyper-
thermia [12], the reversal of nanoparticles is used to provide
targeted warming of tissues, which can become more efficient
at higher frequencies. For such purposes, AFM nanoparticles
may provide advantages over their FM counterparts.
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APPENDIX A: FM SWITCHING TIME IN THE IHD LIMIT

Here the switching time of axially symmetric FM nanopar-
ticles, given by Eq. (2), is derived based on the general
expression Eq. (3). The free-energy density is given by f =
−Hem2

z /(2m0) where He = 2DzN/(V m0), and the normaliza-
tion |m| = m0 is assumed. The expression has a minimum
at mz/m0 = 1, and the expansion is performed in the small
variables mx/m0, my/m0 � 1. This yields

Fmin = −DzN, (A1)

ε1,min = ε2,min = 2DzN. (A2)

The saddle point is at mx/m0 = 1 with the expansion
variables my/m0, mz/m0 � 1, which results in

FSP = 0, (A3)

ε1,SP = −2DzN, (A4)

ε2,SP = 0. (A5)

Note that ε1,SP is negative, corresponding to the unstable
mode in the saddle point. The other eigenvalue ε2,SP describes
a Goldstone mode, representing the fact that the saddle point
can be arbitrarily chosen along the circle m2

x + m2
y = m2

0. The
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corresponding phase-space volume is

VSP = 2π, (A6)

the circumference of the circle.
The linearized Landau-Lifshitz-Gilbert equation in the sad-

dle point reads

∂t my = 1

1 + α2

γ N

V m0
2Dzmz = 1

1 + α2
ωamz, (A7)

∂t mz = 1

1 + α2

γ N

V m0
α2Dzmz = α

1 + α2
ωamz, (A8)

with the eigenvalues

λ1,SP = α

1 + α2
ωa, (A9)

λ2,SP = 0, (A10)

where λ+,SP = λ1,SP is the single positive eigenvalue.
Substituting Eqs. (A1)–(A6) and (A9) into Eq. (3) gives

precisely Eq. (2), which in this special case is valid for all
values of the damping.

APPENDIX B: AFM SWITCHING TIME IN THE IHD LIMIT

Here Eq. (8) without the depopulation factor will be de-
rived based on Eq. (3). We will use the free-energy density
f = Hem2/(2m0) − Han2

z /(2m0), with He = qJN/(V m0) be-
ing the exchange field, where q is the number of nearest neigh-
bors and J is the exchange constant in the corresponding
atomistic spin model, rescaled by accounting for the thermally
reduced order parameter.

The minimum of the free energy F is at n/m0 =
(0, 0, 1), m/m0 = (0, 0, 0) with

Fmin = −DzN, (B1)

ε1,min = ε2,min = 2DzN, (B2)

ε3,min = ε4,min = qJN. (B3)

For Dz � qJ the saddle point is n/m0 =
(1, 0, 0), m/m0 = (0, 0, 0), where the expansion yields

FSP = 0, (B4)

ε1,SP = −2DzN, (B5)

ε2,SP = 0, (B6)

ε3,SP = ε4,SP = qJN. (B7)

Here ε1,SP is the unstable mode and ε2,SP is the Goldstone
mode with

VSP = 2π. (B8)

The linearized equations of motion in the saddle point read

∂t my = γ N

V m0
2Dznz − α∂t nz, (B9)

∂t mz = α∂t ny, (B10)

∂t ny = − γ N

V m0
qJ mz − α∂t mz, (B11)

∂t nz = γ N

V m0
qJmy + α∂t my, (B12)

leading to the eigenvalues

λ1,SP = 0, (B13)

λ2,SP = − 1

1 + α2

γ N

V m0
αqJ , (B14)

λ3,SP = 1

1 + α2

γ N

V m0

[
α

(
Dz − 1

2
qJ

)

+
√

α2

(
1

2
qJ + Dz

)2

+ 2DzqJ
]
, (B15)

λ4,SP = − 1

1 + α2

γ N

V m0

[
α

(
1

2
qJ − Dz

)

+
√

α2

(
1

2
qJ + Dz

)2

+ 2DzqJ
]
, (B16)

where the positive eigenvalue is λ+,SP = λ3,SP.
Substituting Eqs. (B1)–(B8) and (B15) into Eq. (3) pro-

duces

τ IHD
AFM = 1 + α2

α

V m0

γ N

[(
Dz − 1

2
qJ

)

+
√(

1

2
qJ + Dz

)2

+ 2DzqJ
α2

]−1
√

πkBT

DzN
e

DzN
kBT ,

(B17)

the intermediate-to-high-damping limit of Eqs. (8) and (9).
Note that since the eigenvalues ε3,min, ε4,min cancel with
ε3,SP, ε4,SP, the difference between the ferromagnetic and anti-
ferromagnetic cases only comes from the dynamical prefactor
λ+,SP, which is exchange enhanced at low and intermediate
damping for the latter.

APPENDIX C: ENERGY DISSIPATION PER CYCLE WHEN
PASSING THROUGH THE SADDLE POINT

Here the depopulation factor in Eq. (4) will be calculated
for the AFM particle. The variable S in the argument of A in
Eq. (8) denotes the action of the undamped motion crossing
through the saddle point. Equation (4) expresses that if αS,
the energy dissipated during a single cycle of motion over the
saddle point [41,43], is small compared to the thermal energy
kBT then it takes longer for the particle to cross the energy
barrier since it can no longer be assumed that the equilibrium
Maxwell-Boltzmann distribution is formed in the region close
to the saddle point.

In order to calculate this energy dissipation, Eqs. (6)
and (7) are linearized in α at low damping, yielding

ṅ = −γ n ×
(

hm + α
m
m0

× hm + α
n

m0
× hn

)
, (C1)

ṁ = −γ m ×
(

hm + α
m
m0

× hm + α
n

m0
× hn

)

− γ n ×
(

hn + α
n

m0
× hm

)
. (C2)
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The free-energy dissipation per cycle may be written as

−�F = αS = −
∫ T

0
Ḟdt =

∫ T

0

∫
hmṁ + hnṅdrdt

= αγ m0V
∫ T

0

(
m
m0

× hm + n
m0

× hn

)2

+
(

n
m0

× hm

)2

dt . (C3)

Introducing the renormalized variables m̂ = m/m0,
n̂ = n/m0 and substituting hm = −qJN/(V m0)m̂, hn =
2DzN/(V m0)n̂zez for the considered system one obtains

αS = αγ N2

V m0

∫ T

0
4D2

z

(
1 − n̂2

z

)
n̂2

z + (qJ )2m̂2dt, (C4)

with the integral to be evaluated along the trajectory of the
undamped motion crossing the saddle point.

For α = 0, Eqs. (C1) and (C2) may be written as

∂t m̂x = − γ N

V m0
2Dzn̂yn̂z, (C5)

∂t m̂y = γ N

V m0
2Dzn̂xn̂z, (C6)

∂t m̂z = 0, (C7)

∂t n̂x = γ N

V m0
qJ (n̂ym̂z − n̂zm̂y), (C8)

∂t n̂y = γ N

V m0
qJ (n̂zm̂x − n̂xm̂z ), (C9)

∂t n̂z = γ N

V m0
qJ (n̂xm̂y − n̂ym̂x ), (C10)

for the axially symmetric AFM nanoparticle. Since the con-
straint |n̂| = 1 is satisfied by the dynamical equations, the
normalized Néel vector may be rewritten in spherical coor-
dinates, (n̂x, n̂y, n̂z ) = (sin ϑ cos ϕ, sin ϑ sin ϕ, cos ϑ ). For the
variable m̂ one has n̂ · m̂ = 0, and its z component is a
constant of motion as expressed by Eq. (C7). Without the
damping, the free energy of the system is also conserved
during the time evolution:

F = qJ
2

Nm̂2 − DzN cos2 ϑ. (C11)

Using the conserved quantities F and m̂z, Eqs. (C5)–(C10)
may be expressed as

∂tϑ = ∓
√

ω2
F − ω2

0 sin2 ϑ − ω2
m̂z

sin2 ϑ
, (C12)

∂tϕ = − 1

sin2 ϑ
ωm̂z , (C13)

with

ω0 = γ N

V m0

√
2DzqJ , (C14)

ωF = γ N

V m0

√
2

(F
N

+ Dz

)
qJ , (C15)

ωm̂z = γ N

V m0
qJ m̂z. (C16)

For the trajectory including the saddle point one has F = 0
[see Eq. (B4)] and m̂z = 0. Equation (C12) may be used to
change the parametrization from the time t to the polar angle
ϑ , which simplifies Eq. (C4) to

αS = αN
∫ 2π

0

4D2
z√

2DzqJ
(| cos ϑ | − | cos ϑ |3)

+
√

2DzqJ | cos ϑ |dϑ. (C17)

Evaluating the integral Eq. (C17) yields Eq. (10).

APPENDIX D: OSCILLATIONS IN THE NÉEL VECTOR
BASED ON THE THEORETICAL MODEL

As shown in Fig. 2, significant oscillations in the z com-
ponent of the order parameter were observed in the spin
dynamics simulations of antiferromagnetic nanoparticles at
very low damping values. This can be explained by the fact
that for F > 0 where the switching occurs, even in the con-
servative system, n̂ will perform full rotations during which
its z component changes sign, as described by Eq. (C12). For
m̂z = 0, the period of these oscillations may be evaluated in a
closed form:

TF =
∫ 2π

0

1√
ω2
F − ω2

0 sin2 ϑ

dϑ = 4

ωF
K

(
ωF
ω0

)
, (D1)

with K the complete elliptic integral of the first kind.
It can be seen from Eq. (D1) that the oscillation frequency

will change as the free energy varies due to the coupling
to the heat bath. If the thermal fluctuations are weak as
required for the application of Arrhenius-like expressions
such as Eqs. (2) and (8), the free energy does not become
significantly higher than its saddle-point value during the
switching, and in this case the oscillation frequencies will
be comparable to ω0. For example, 0.01 � F/(DzN ) � 0.2
yields 0.39 � 2π/(TFω0) � 0.65. The adiabatic variation of
the energy leads to a wide distribution of frequency values
if the oscillations are investigated in Fourier space, as dis-
played in Fig. 6. Using the temperature-dependent effective

0

0.5

1

1.5

2

2.5

3

3.5

0 0.5 1 1.5 2

|F
(ω

)|

frequency ω (γJ/μs)

FIG. 6. Fourier spectrum of the oscillations of the z component
of the order parameter from the spin dynamics simulations. The
same simulation parameters were used as for Fig. 2(a): α = 0.0005,
T = 0.6 J/kB, Dz = 0.1 J , N = 64. The characteristic oscillation
frequency from Eq. (C14) is ω0 = 0.66 γ J/μs.
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parameters described in Sec. IV A, for the model coefficients
in Fig. 6 one obtains ω0 = 0.66 γ J/μs, roughly corresponding
to the peak in the frequency distribution. The period of these
characteristic oscillations is 2π/ω0 = 9.48 μs/(γ J ), meaning

that the averaging window of �t = 8.8 μs/(γ J ) used in
Figs. 2 and 3 is expected to suppress most of the oscillatory
switching events and lead to a mean reversal time that is
comparable to the one predicted by the analytical model.
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