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1 Introduction

Merton (1971) showed that in a continuous-time model with i.i.d. asset returns the optimal
instantaneous stock proportions of an investor are proportional to 1/γ with γ being the
local relative risk aversion of the agent. The 1/γ-rule can also serve as a rule of thumb
for portfolio choice in a finite period setting. This paper asks how good this rule of
thumb is for a HARA-investor who invests money for a given finite period and does not
adjust the portfolio within the period. More precisely, we derive the optimal portfolio for
some HARA-investor with exponent φ and for another HARA-investor with exponent γ
and check how well the γ-optimal risky portfolio is approximated by the φ-optimal risky
portfolio multiplied by φ/γ.

We measure the approximation quality by the approximation loss. This is defined as
the relative increase in initial endowment required for the approximation portfolio to
generate the same certainty equivalent as the optimal portfolio. If, for example, an initial
endowment of 100 $ is invested in the optimal portfolio and the approximation loss is
5%, then the investor needs to invest 105 $ in the approximation portfolio to equalize the
certainty equivalents of both portfolios.

The main findings of the paper can be summarized as follows. For a given investment
opportunity set the approximation loss depends not only on γ and φ, but also on the elas-
ticity of the pricing kernel, θ. To illustrate, assume a stock market such that the elasticity
of the pricing kernel with respect to the market return is a constant θ. Investors buy stocks
and borrow/lend at the risk-free rate. According to the 1/γ-rule, the approximation stock
portfolio of the γ-investor equals the optimal stock portfolio of the φ-investor multiplied
by φ/γ. If γ < φ, then the γ-investor invests more in stocks than the φ-investor. Hence
the γ-investor may have to borrow at the risk-free rate. But then he may end up with
negative terminal wealth which is infeasible. Hence, we require γ ≥ φ. We find a very
small approximation loss for γ ≥ φ ≥ θ. Then the 1/γ -rule works very well.

But we find possibly high approximation losses for θ ≥ γ ≥ φ and for γ ≥ θ ≥ φ. Whenever
the elasticity of the pricing kernel, θ, is much higher than the relative risk aversion φ used
for the approximation, the φ-investor will be very aggressive in her risk taking. This is a
situation which provides approximate arbitrage opportunities as defined by Bernardo and
Ledoit (2000). A high pricing kernel elasticity implies a high equity premium. An investor
with low relative risk aversion would then buy a very risky approximation portfolio. This
implies a high approximation loss for an investor whose relative risk aversion γ is clearly
higher than φ. The reason is that the γ-investor would be more conservative in her risk
taking than the 1/γ-rule suggests. Therefore this rule does a poor job. If, however, γ is
very large, then the γ-investor takes a very small risk anyway so that the approximation
loss is rather small. Hence, the 1/γ-rule works quite well when the equity premium is
rather small, but it may be seriously misleading in case of a high equity premium.

Fortunately the problem of a high equity premium can be resolved by replacing the market
return by a transformed market return with a low pricing kernel elasticity. Also, if the
pricing kernel elasticity of the market return is not constant, a transformed market return
with low constant pricing kernel elasticity can easily be derived. This transformed market
return is the payoff of a special exchange traded fund (ETF). Then the approximation
portfolio would invest in this ETF and the risk-free asset. The approximation loss would
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be quite small then for a wide range of HARA-investors so that the 1/γ-rule works quite
well. This approximation can be viewed as a generalization of the two-fund separation
result of Cass and Stiglitz (1970). Their result only holds for HARA-functions with a
given exponent. Our approximation generalizes it to a wide range of exponents.

The practical relevance of our findings is easily illustrated. A portfolio manager has
many different customers investing in different risky funds and the risk-free asset. Their
preferences may be characterized by increasing, constant or declining relative risk aversion
(RRA) and can be approximated by a HARA-function. The portfolio manager proceeds as
follows. First, she derives the optimal portfolio for some low constant RRA φ. Second, she
allocates the customer’s initial endowment to the same portfolio and the risk-free asset,
using the 1/γ-rule for the risky investment and putting the rest in the risk-free asset.
Hence, the allocations for different customers only differ by the amount invested in that
risky portfolio and the amount invested risk-free.

Our analysis refers to static portfolio choice. We do not address dynamic portfolio strate-
gies which may try to exploit predictability of asset returns. As a caveat, our results should
not be applied to risk management which focuses on tail risks. Our results are based on
the certainty equivalent of portfolio payoffs covering the full distribution of payoffs.

The rest of the paper is organized as follows. Section 2 gives a literature review. Section 3
and 4 describe the general approximation approach and the measurement of the approxi-
mation quality. Section 5 analyzes the approximation quality in a perfect market with a
continuous state space and long investment horizons. In section 6, we consider a market
with very few states. Section 7 concludes.

2 Literature Review

Over the last decades a sophisticated theory of decision making under uncertainty, based
on the expected utility paradigm, has been developed. Following the seminal papers by
Arrow (1974), Pratt (1964), Rothschild and Stiglitz (1970), Diamond and Stiglitz (1974),
many papers investigated optimal decisions and showed how they depend on the utility
function. Portfolio choice is perhaps the most important application.

There is an extensive literature about portfolio choice. Hakansson (1970) derives the
optimal portfolio for a HARA-investor in a complete market. Regarding dynamic strate-
gies, Merton (1971) was one of the first to look into these strategies in a continuous time
model. Later on, Karatzas et. al. (1986) provide a rigorous mathematical treatment of
these strategies. They pay attention, in particular, to non-negativity constraints for con-
sumption. Viceira (2001) discusses dynamic strategies in the presence of uncertain labor
income. He uses an approximation approach to derive a simplified strategy which, however,
deviates very little in terms of the certainty equivalent from the optimal strategy. Other
papers, for example, Balduzzi and Lynch (1999), Brandt et. al. (2005), look for optimal
strategies in the case of asset return predictability, Chacko and Viceira (2005) analyze the
impact of stochastic volatility in incomplete markets. Brandt et. al. (2009) derive opti-
mal portfolios using stock characteristics like the firm’s capitalization and book-to-market
ratio.

Black and Littermann (1992) show that the optimal portfolio for a (µ, σ)-investor reacts
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very sensitively to changes in asset return parameters. Yet, the Sharpe-ratio may vary
only little. Then an intensive discussion on shrinkage-models started. Recently, DeMiguel,
Garlappi and Uppal (2009) compare several portfolio strategies to the simple 1/n strategy
that gives equal weight to all risky investments. These strategies are compared out-of-
sample in the presence of uncertainties about asset return parameters. Using the certainty
equivalent return for an investor with a quadratic utility function, the Sharpe-ratio and
the turnover volume of each strategy, they find that no strategy consistently outperforms
the 1/n strategy. In a related paper, DeMiguel, Garlappi, Nogales and Uppal (2009) solve
for minimum-variance-portfolios under additional constraints. They find that a partial
minimum-variance portfolio calibrated by optimizing the portfolio return in the previous
period performs best out-of-sample. Jacobs, Müller and Weber (2009) compare various
asset allocation strategies including stocks, bonds and commodities and find that a broad
class of asset allocation strategies with fixed weights for the asset classes performs out-
of-sample equally well in terms of the Sharpe-ratio as long as strong diversification is
maintained. Hodder, Jackwerth and Kolokolova (2009) find that portfolios based on second
order stochastic dominance perform best out-of-sample. Our approximation results will
be shown to hold also under parameter uncertainty.

3 The Approximation Approach

To explain our approximation approach, first derive the optimal portfolio of a HARA-
investor. We consider a market with n risky assets and one risk-free asset. The gross
return of asset i is denoted Ri for i ∈ {1, . . . , n}. We denote the vector (R1, . . . , Rn)′ by
R. The gross risk-free rate is Rf . An investor with initial endowment W0 maximizes her
expected utility of payoff V , given by

V := V (α,W0) = (W0 − α′1)Rf + αR = W0Rf + αr,

where αi denotes the dollar-amount invested in asset i, α = (α1, . . . , αn), and 1 is the
n-dimensional vector consisting only of ones. ri = Ri − Rf denotes the random excess
return of asset i and r = (r1, . . . , rn)′. The investor has a utility function with hyperbolic
absolute risk aversion

u(V ) =
γ

1− γ

(
η + V

γ

)1−γ
, (1)

where the parameters η and γ assure that u is increasing and concave in V . Moreover,
0 < γ < ∞ indicates decreasing absolute risk aversion. For γ = 1, we obtain log-utility.
The well-known first order condition for this optimization problem is

E

[
ri

(
η +W0Rf + α+r

γ

)−γ]
= 0, ∀i ∈ {1, . . . , n}. (2)

The optimal solution is denoted α+.

Our approximation approach consists of the following three steps. First, we transform the
decision problem to an equivalent problem under constant RRA. Define W̃0 = η

Rf
+W0 as

the enlarged initial endowment. Then after substituting W̃0 in (2), this condition remains
the same, but the investor is constant relative risk averse. Second, we restrict the enlarged
initial endowment to the artificial initial endowment γ/Rf . This leaves the structure of
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the optimal portfolio unchanged. Without loss of generality, we multiply the first order
condition (2) by (W̃0Rf/γ)γ . This gives

E

[
ri

(
1 +

α̂+r
γ

)−γ]
= 0, ∀i ∈ {1, . . . , n}. (3)

The terminal wealth implied by (3) is

V̂ + = V

(
α̂+,

γ

Rf

)
= γ + α̂+r > 0. (4)

Positivity follows from u′(V̂ +)→∞ for V̂ + → 0.

The solution of the optimization problem for an investor with enlarged initial endowment
W̃0 is proportional to that with artificial endowment γ

Rf
: V + = V̂ +W̃0Rf/γ with α+ =

α̂+ W̃0Rf
γ = α̂+ η+W0Rf

γ .

Third, we define some low level of constant relative aversion φ to approximate the optimal
portfolio. We approximate the solution of equation (3), α̂+, by α̂−, the solution of

E

[
ri

(
1 +

α̂−r
φ

)−φ]
= 0, ∀i ∈ {1, . . . , n}. (5)

The terminal wealth implied by (5) is φ+ α̂−r > 0, given the artificial endowment φ/Rf .
To make up for the difference in artificial initial endowment in our approximation, the
difference, γ/Rf − φ/Rf , is simply invested in the risk-free asset adding γ − φ to the
terminal wealth φ+ α̂−r,

V̂ − = φ+ α̂−r + (γ − φ) = γ + α̂−r. (6)

Since φ+ α̂−r > 0, V̂ − is also positive for γ ≥ φ.

Comparing α̂+ and α̂− reveals two effects, a structure effect and a volume effect. The
structure of α is defined by α1 : α2 : α3 : . . . : αn. This structure changes with the level
of RRA used for optimization. This structure change is denoted the structure effect. The
volume is defined as the amount of money invested in all risky assets together. Hence the
volume equals

∑n
i=1 αi. This volume also changes when RRA φ replaces RRA γ. The

volume change is denoted the volume effect.

The 1/γ-rule suggests that the stock proportions are inversely proportional to the investor’s
local relative risk aversion.

α̂+

γ
Rf

∼ 1
γ

or α̂+ ∼ 1
Rf

.

Similarly,
α̂−

φ
Rf

∼ 1
φ

or α̂− ∼ 1
Rf

.

Hence if the 1/γ-rule is absolutely correct, α̂+ = α̂−. As a consequence, the volume and
the structure effect would disappear. Doubling γ doubles the artificial initial endowment
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and the relative risk aversion so that the 1/γ-rule implies unchanged risky investments.
Therefore, one benchmark for evaluating the quality of our approximation approach is a
zero volume effect and a zero structure effect.

The approximation (6) assures V̂ − > 0 for γ ≥ φ. For γ < φ, the investor would borrow
(φ − γ)/Rf at the risk-free rate. Then, V̂ − might turn negative since φ + α̂−r can be
very close to zero. V̂ − would be infeasible and is ruled out if γ ≥ φ. Therefore our
approximation requires γ ≥ φ. This will be assumed in the following.

4 The Approximation Quality

4.1 The General Argument

First, we present some arguments which support our conjecture of a strong approximation
quality. Comparing (4) and (6) gives the difference between the optimal and the approxi-
mation portfolio payoff, V̂ +− V̂ − = (α̂+ − α̂−) r. Hence we expect a good approximation
if the vectors α̂+ and α̂− are similar. Essential for this is that both utility functions display
similar patterns of absolute risk aversion in the range of relevant terminal wealth. The
utility functions

γ

1− γ

(
γ + αr
γ

)1−γ
and

φ

1− φ

(
φ+ αr
φ

)1−φ

give absolute risk aversion functions

1
1 + αr/γ

and
1

1 + αr/φ
.

Hence, if the portfolio excess return αr is zero, both utility functions display absolute risk
aversion of 1. As long as the portfolio excess return does not differ much from 0, absolute
risk aversion is similar for both functions implying similar portfolio choice. Figure 1
illustrates the absolute risk aversion functions for different levels of γ. The smaller is γ,
the steeper the curve is. For exponential utility, the curve is horizontal at a level of 1.
The similarity of the absolute risk aversion patterns suggests small volume and structure
effects.

[Figure 1 about here.]

The first order conditions (3) and (5) allow us to derive more precisely market settings
of high approximation quality. Let ui(·) denote the i-th derivative of the utility function.
Then a Taylor series for the first derivative of the utility function around an excess return
of zero yields

u′(α̂+r) =
∞∑
i=0

u(i+1)(0)
i!

(α̂+r)i (7)

so that (
1 +

α̂+r
γ

)−γ
= 1 +

∞∑
i=1

(−1)i
(α̂+r)i

i!

i−1∏
j=0

(
j

γ
+ 1
)
. (8)
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Hence, the first order condition (3), multiplied by α̂+
i and summed over i, yields

E

α̂+r

1 +
∞∑
i=1

(−1)i
(α̂+r)i

i!

i−1∏
j=0

(
j

γ
+ 1
) = 0

⇔ E[α̂+r] +
∞∑
i=1

(−1)i
E[(α̂+r)i+1]

i!

i−1∏
j=0

(
j

γ
+ 1
)

= 0.

Denoting the i-th non-centered moment of the optimal portfolio excess return by mi and
rearranging the last equation, the previous equation can be rewritten as

m1

m2
+

1
2
m3

m2

(
1
γ

+ 1
)
− 1

6
m4

m2

(
2
γ

+ 1
)(

1
γ

+ 1
)

+ . . . = 1. (9)

From the first order condition (5) we have

n1

n2
+

1
2
n3

n2

(
1
φ

+ 1
)
− 1

6
n4

n2

(
2
φ

+ 1
)(

1
φ

+ 1
)

+ . . . = 1, (10)

where ni is the i-th non-centered moment of α̂−r. Absolute portfolio excess returns below 1
imply |αr|i+1 < |αr|i. Then it follows for the non-centered moments: |mi+2| << |mi|, i ≥
2. Also, |m3| << m2. Therefore, we may neglect the terms mi, i ≥ 5, in the Taylor series
and focus on the first four moments. The same is true for ni.

Whenever the excess return distributions of the optimal and the approximation portfolio
have non-centered third and fourth moments close to zero, both first order conditions
are very similar implying a very good approximation quality1. Otherwise, equations (9)
and (10) indicate that the approximated return distribution derived from (10) attaches
too much weight to the skewness and the kurtosis relative to (9) for γ > φ. Hence, we
expect the approximated return distribution to have fatter tails, but less skewness than
the optimal return distribution. This follows because a HARA-investor with declining
absolute risk aversion likes positive skewness, but dislikes kurtosis.

We summarize our findings in the following lemma:

Lemma 1 Let γ ≥ φ. The approximation is of high quality even for large differences
between φ and γ if the non-centered moments of the optimal and of the approximation
portfolio excess return decline fast, i.e. if mi+2 << mi, i ≥ 2, m3 << m2 and ni+2 <<
ni, i ≥ 2, n3 << n2.

4.2 The Approximation Loss

We measure the economic impact of the approximation by the approximation loss. Com-
pare the certainty equivalent of the optimal portfolio α+ and that of the approximation
portfolio α−. In both cases, the certainty equivalent is based on the investor’s HARA-
function (1). For that utility function, given a portfolio α, the certainty equivalent, CE,
is defined by (

η + CE

γ

)1−γ
= E

[
(η/Rf +W0)Rf + αr

γ

]1−γ

=
(
W̃0

Rf
γ

)1−γ
E
[
1 +

α̂r

γ

]1−γ
=
(
ce

γ

)1−γ
. (11)
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Expected utility is the same for an investor with utility function (1) and endowment
W0 and an investor with constant relative risk aversion and enlarged initial endowment
W̃0 = η/Rf +W0. Therefore, we consider the enlarged certainty equivalent ce = η + CE.
Define ε as the ratio of the enlarged certainty equivalent, ce+, of the optimal portfolio
α+ = α̂+W̃0Rf/γ, and the enlarged certainty equivalent, ce−, of the approximated optimal
portfolio α− = α̂−W̃0Rf/γ. Then

ε =
ce+

ce−
=

E
[(

(η/Rf+W0)Rf+α+r
γ

)1−γ
]

E
[(

(η/Rf+W0)Rf+α−r
γ

)1−γ
]


1/(1−γ)

=

E
[(

1 + α̂+r
γ

)1−γ
]

E
[(

1 + α̂−r
γ

)1−γ
]


1/(1−γ)

.

(12)
Hence, ε is the same for the enlarged initial endowment η/Rf +W0 and the artificial initial
endowment γ/Rf . This is stated in:

Lemma 2 For a given market setting, the certainty equivalent ratio ε depends on the
exponent γ, but not on the initial endowment nor on the parameter η.

The lower boundary of ε is one, since the optimal portfolio α̂+ yields the highest possible
certainty equivalent. For a HARA-investor there exists a second interpretation of ε. k =
(ε−1) ≥ 0 is the relative increase in the enlarged initial endowment W̃0, that is required for
the approximation portfolio to generate the same expected utility as the optimal portfolio
generates with initial endowment W̃0. To see that ε = 1 + k, note(

W̃0Rf
γ

)1−γ

E

[(
1 +

α̂+r
γ

)1−γ
]

=

(
(1 + k)W̃0Rf

γ

)1−γ

E

[(
1 +

α̂−r
γ

)1−γ
]
.

Rearranging yields

1 + k =

E
[(

1 + α̂+r
γ

)1−γ
]

E
[(

1 + α̂−r
γ

)1−γ
]


1/(1−γ)

=
ce+

ce−
= ε.

We call k the approximation loss. If k = 0.02, for example, then the investor needs to
invest additionally 2% of his enlarged initial endowment in the approximation portfolio to
achieve the same expected utility as her optimal portfolio does.

For γ = φ, the approximation loss is 0, by definition. If we increase γ, the approximation
loss will be positive. But it does not increase monotonically. Instead, for γ → ∞, k → 0
again. For γ →∞, the investor’s utility is exponential and the artificial initial endowment
tends to infinity. The exponential utility investor buys a risky portfolio independently of
her initial endowment. Given an infinite artificial initial endowment, this risky portfolio
turns out to be irrelevant for the optimal payoff V̂ +. The same is true for the approximated
payoff V̂ −. Hence, both certainty equivalents converge for γ →∞ so that k → 0.

In the following, we illustrate the approximation loss k by looking, first, at a complete
market with a continuous state space and different distributions of the market return.
Thereafter, we consider a discrete state space with few states only.
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5 Approximation in a Continuous State Space

5.1 Demand Functions for State-Contingent Claims

5.1.1 Characterization of Demand Functions

We start from a perfect market with a continuous state space. First, assume a complete
market. Then state-contingent claims for all possible states s ∈ S exist. Hakansson (1970)
was the first to investigate investment and consumption strategies of HARA investors in a
complete market. Consider an investor with constant relative risk aversion γ and artificial
initial endowment γ/Rf . The investor’s demand for state-contingent claims, α̂ = (α̂s)s∈S ,
is optimized

max
α̂

E

[
γ

1− γ

(
γ + α̂

γ

)1−γ
]
s.t. E[πV ] = γ/Rf , (13)

where π = (πs)s∈S denotes the pricing kernel and α̂s is the demand for claims with payoff
one in state s and zero otherwise. Differentiating the corresponding Lagrangian with
respect to αs gives the well-known optimality condition for each state(

γ + α̂s
γ

)−γ
= λπs, s ∈ S. (14)

First, we assume that the pricing kernel is a power function of the market portfolio return

πs =
1
Rf

R−θM,s

E[R−θM ]
, (15)

where RM,s denotes the gross market return in state s and θ is the constant relative risk
aversion of the market, i.e. the constant elasticity of the pricing kernel. Hence, we assume
a pricing kernel as implied by the Black-Scholes setting.

Replacing πs by (15) and solving (14) for V̂ +
s = γ + αs yields for finite γ

V +
s = R

θ/γ
M,s exp{a(γ)}. (16)

a(γ) depends on the investor’s relative risk aversion and is determined by the budget
constraint: E[Rθ/γM exp{a(γ)}π] = γ

Rf
. We have

exp{a(γ)} = γ
E[R−θM ]

E
[
R
−θ+θ/γ
M

] =
γ

EQ
[
R
θ/γ
M

] , (17)

with EQ[·] being the expectation operator under the risk neutral probability measure using
the pricing kernel π(RM ).

The optimal terminal wealth, V̂ +, is approximated by V̂ −. For γ ≥ φ, V̂ − is the optimal
terminal wealth of an investor with CRRA φ and artificial endowment φ/Rf , supplemented
by the risk-free payoff (γ − φ),

V̂ −s = R
θ/φ
M,s exp{a(φ)}+ (γ − φ). (18)
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How does (V̂ +
s − V̂ −s ) depend on (γ−φ) for γ > φ? The functions V̂ +(RM ) and V̂ −(RM )

intersect twice, given a sufficiently large domain of RM . Both functions have to intersect at
least once to rule out arbitrage opportunities. For RM → 0, V̂ − → γ−φ > V̂ + → 0. Also
V̂ − > V̂ + for RM → ∞ (this follows from θ/γ < θ/φ). Since V̂ +(RM ) is more concave
than V̂ −(RM ), both functions intersect twice. The demand for state contingent claims is
overestimated by the approximation in the bad states and in the good states and underes-
timated in between, as Figure 2 illustrates. This range-dependent over-/underestimation
of the optimal demand characterizes the structure effect.

Consider the special case φ = θ. This implies that V̂ − is linear in RM and, hence,
exp{a(θ)} = θ/EQ[RM ] = θ/Rf . Then (18) yields

V̂ −s =
θ

Rf
RM,s + γ − θ, γ ≥ θ. (19)

The approximation portfolio policy is very simple. The investor invests θ/Rf in the market
portfolio and (γ − θ)/Rf in the risk-free asset.

[Figure 2 about here.]

5.1.2 Approximation Quality and Shape of the Probability Distribution

Next, we illustrate the effect of the shape of the market return distribution on the approx-
imation quality. A change in the probability distribution of RM implies an adjustment in
the intersection point(s) of V̂ +(RM ) and V̂ −(RM ). This adjustment tends to stabilize the
approximation quality. To characterize the adjustment, we state the following Lemma:

Lemma 3 Assume γ > φ. Let p be a changing parameter of the market return distribution
and RjM = RjM (p), j ∈ {l, u}, denote the lower respectively upper market return where

V̂ +(RM |p) and V̂ −(RM |p) intersect. Then, holding EQ[RM ] = Rf and θ constant, ∂ lnRjM
∂p

is given by

∂ lnRjM
∂p

θ

φ

1
γ

[
V̂ +(RjM )− γ

]
=
[
∂a(γ)
∂p

− ∂a(φ)
∂p

]
V̂ +(RjM )
(γ − φ)

+
∂a(φ)
∂p

, (20)

with

γ
∂a(γ)
∂p

= −
∫ ∞

0
V̂ +(RM )

∂FQ(RM )
∂p

(21)

and

φ
∂a(φ)
∂p

= −
∫ ∞

0
V̂ −(RM )

∂FQ(RM )
∂p

. (22)

FQ(RM ) is the cumulative probability distribution of RM under the risk-neutral measure.

The proof of this lemma is given in the appendix. The lemma relates changes in the risk-
neutral probability distribution of the market return to changes in the intersection points
of V̂ +(RM ) and V̂ −(RM ). For simplicity, assume θ = φ. Then exp{a(φ)} = φ/Rf so that
∂a(φ)/∂p = 0. Then, by (20), since V̂ + > 0 and V̂ +(RlM ) − γ < 0, V̂ +(RuM ) − γ > 0,
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a marginal change in the underlying probability distribution function of RM (1) either
lowers RlM and raises RuM or (2) raises RlM and lowers RuM , or (3) leaves both unchanged.

For illustration, consider a mean preserving spread in the market return, such that EQ[RM ] =
Rf stays the same. Lemma 1 suggests that the approximation loss increases. However,
Lemma 3 implies that an increase in the volatility lowers Rl and increases Ru. To see this,
subtract φ∂a(φ)

∂p = 0 from equation (21),

γ
∂a(γ)
∂p

=
∫ ∞

0

[
V̂ −(RM )− V̂ +(RM )

] ∂FQ(RM )
∂p

.

Increasing the volatility reallocates probability mass from the center to the tails, so that
the integral is positive. Then, by (20), lnRlM

∂p < 0 and lnRuM
∂p > 0. This reduces the claim

difference (V̂ + − V̂ −) in the tails and raises it in the center so that the approximation
quality is stabilized.

Alternatively, consider a reduction in the skewness of the market return distribution. It
is not clear whether the intersection points are spreading. Relocating probability mass
from the right to the left tail of the market return distribution would lower EQ[RM ] and,
therefore, is infeasible. In order to keep EQ[RM ] = Rf unchanged, the probability mass
needs to go up in some range of RM with RM > Rf . Therefore, a(γ) can change in either
direction, stabilizing the approximation quality.

5.2 Simulation Results for γ ≥ φ = θ

5.2.1 Normal Distribution

Now we illustrate the approximation loss numerically for various probability distributions
of RM and various time horizons. The investor buys state-contingent claims due at the
time horizon. He does not readjust the portfolio over time. First assume that lnRM is
normally distributed with mean µ and variance σ2. Then ln E[RM ] = µ + σ2

2 so that the
annual Sharpe-ratio is

E[RM ]−Rf
σ(RM )

=
[
1− exp

{
rf −

(
µ+

σ2

2

)}] (
exp{σ2} − 1

)−1/2
.

The elasticity of the pricing kernel is θ = µ+σ2/2−rf
σ2 , the certainty equivalent of V̂ + has a

closed form representation

ce(V̂ +) = γ exp
{

1
2
σ2θ2

γ

}
.

For γ ≥ φ, the approximation portfolio is given by (19). To compute its certainty equiva-
lent, we have to rely on numerical integration techniques.

Consider the case φ = θ. To calibrate our analysis to observable market returns, we first
use an annual expected logarithmic market return µ = 6%, an annual market volatility
σ = 25% and an instantaneous risk-free rate rf = 3%. This implies a pricing kernel
elasticity of θ = 0.98, an annual equity premium of 6.51% and an annual Sharpe-ratio of
23.4%. We consider investors with constant relative risk aversion in the range [0.98; 8], an

10



investment horizon between three month and 5 years and assume an i.i.d. market return.
Hence, the expected logarithmic market return for t years is µt = tµ and the standard
deviation of the t-year logarithmic market return is σt =

√
tσ.

Figure 3 shows the approximation loss. For γ = 0.98, the approximation portfolio equals
the optimal portfolio so that there is no approximation loss. For γ > φ = θ, the ap-
proximation loss increases with a longer investment horizon because the market return
distribution becomes wider implying higher risk. Yet, the approximation quality still re-
mains very good. The highest approximation loss in Figure 3, left, is about 0.3% for an
investor with γ about 3 and an investment horizon of 5 years, or, about 0.06% per year.
In other words, the investor would need to raise her initial endowment by 0.3% to make
up for the approximation loss.

[Figure 3 about here.]

The impact of γ and the investment horizon can also be seen in Figure 3, right, which
depicts isoquants of the approximation loss, i.e. combinations of γ and investment horizon
yielding the same loss. For an investment horizon of 2.5 years, for example, the loss always
remains below 0.08%. For all horizons the loss has a maximum at some γ between 2 and
4 and then monotonically declines to zero with increasing γ.

To illustrate the relation between the approximation loss and the chosen parameters, let
µ = 0.075 and σ = 0.15, retaining rf = 3%. Then the Sharpe-ratio is 36.3% and the
elasticity of the pricing kernel is 2.5. Let γ ∈ (2.5; 15). In this scenario the highest
approximation loss is 0.1% for an investment horizon of 5 years and γ about 8.

Next, consider a somewhat extreme case with µ = 0.08, σ = 0.10 and rf = 3%. This yields
a Sharpe-ratio of 53.4% and a pricing kernel elasticity of 5.5. Let γ ∈ (5.5; 20). Then the
highest approximation loss is 0.04% for an investment horizon of 5 years and γ about 17.

The results indicate that the highest approximation loss is inversely related to the pricing
kernel elasticity respectively the Sharpe-ratio, provided γ ≥ φ = θ. This is not surpris-
ing because a higher pricing kernel elasticity has only small effects on the shape of the
V̂ +(RM )- and V̂ −(RM )-curves, but is associated with a strong decline in σ(RM ) so that
the monents mj and nj , j > 1, of the portfolio excess return decline (Lemma 1). Thus,
the 1/γ-rule works quite well.

5.2.2 Symmetric, Fat-tailed Distributions

Next, we analyze fat-tailed distributions. Consider a t-distribution to account for excess
kurtosis (fat tails) in logarithmic market returns. The density for a t-year investment
period is given by

f(lnRM,t|µt, σν,t, νt) =
Γ
(
νt+1

2

)
σν,t
√
νtπ Γ

(
νt
2

)
1 +

(
lnRM,t−µt

σν,t

)2

νt


−(νt+1)/2

, (23)

where σν,t = σt(νt/(νt − 2))−1/2. The mean of the distribution is µt = tµ, the standard
deviation is σt =

√
tσ and the excess kurtosis is 6

νt−4 for νt > 4. Empirical studies, for
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example Corrado and Su (1997), report a kurtosis of about 12 for the monthly logarithmic
returns of the S&P 500 between 1986 and 1995. Assuming i.i.d. returns, this translates
into an annual kurtosis κ1 = 3.75. Independent increments imply κt = 3 + (κ1−3)

t for
t-years. For robustness, we stress the calculation of the approximation loss with an annual
kurtosis of 4.5. This gives the simple rule for νt: νt = 4t+ 4. Using the initial parameter
values, µ = 0.06 and σ = 0.25, we derive the Sharpe-ratio and the approximation loss for
t-distributed logarithmic market returns. The Sharpe-ratio is 23%. The approximation

loss is shown in Figure 4, left. We assume φ = θ = µ−r+ 1
2
σ2

σ2 = 0.98. The fat tails raise the
approximation loss, as predicted by Lemma 1. However, the approximation loss is still
remarkably low, even for an investment horizon of five years. For γ = 3 and a five year
horizon, the highest approximation loss is about 0.35%, i.e. about 0.07% per year.

[Figure 4 about here.]

5.2.3 Left-skewed, Fat-tailed Distributions

As a final example of a complete market we consider a distribution with fat tails and
negative skewness. Since 1987 stock returns up to one year are mostly skewed to the left.
This is also true for stock index returns. For the simulation we use the skewed, fat tailed
normal distribution to model the logarithmic market return. The density function is given
by

f(lnRM,t|λt, ωt, ξt) =
(

2
σt

)
n

(
lnRM,t − λt

ωt

)
N
(
ξt

(
lnRM,t − λt

ωt

))
, (24)

where n(·) is the density of the standard normal density function and N (·) is the standard
normal distribution function. The mean is given by µt = λt + ωtδt

√
2/π, the standard

deviation is σt = ωt
√

1− 2δ2t /π, where δt = ξt/
√

1 + ξ2 2. Corrado and Su (1997) find
that the monthly logarithmic stock returns of the S&P 500 are skewed to the left at -1.67.
Assuming i.i.d. returns, this translates to an annual skewness of about -0.53. We stress
this number and use an annual skewness of -0.6 together with an annual excess kurtosis
of 0.4426. For each investment horizon, we choose the parameters λt, ωt and ξt such that
µt = 0.06t, σt = 0.25

√
t, skt = −0.6/

√
t and the excess kurtosis over t years is (3.4426−3)/t

. This yields a somewhat higher annual Sharpe-ratio of 24.6%. The approximation loss
is shown in Figure 4, right, for γ ≥ φ = θ, and t ∈ [0.3; 5]. The highest loss is about
0.36% for γ = 3 and 5 years. Figure 4, left, and Figure 4, right, indicate very similar loss
levels. Skewness and excess kurtosis do not affect the approximation loss substantially.
This is driven also by the adjustment of the intersection points of the optimal and the
approximate demand functions to the shape of the probability distribution. Hence the
1/γ-rule works well also for skewed, leptokurtic distributions for γ ≥ φ = θ.

5.3 Simulation Results for γ ≥ φ 6= θ

So far the simulations were based on γ ≥ φ = θ. If the pricing kernel elasticity is lowered,
then the smaller equity premium induces investors to take less risk. This is true for
the optimal and for the approximation portfolio. Hence the approximation loss should
decline with a smaller θ. Since the last section shows that the approximation loss is rather
insensitive to skewness and leptokurtosis, we use again the lognormal distribution with

12



σ = 0.25 and µ + σ2

2 − rf = θσ2 to simulate the impact of θ on the approximation loss.
Figure 5 shows the approximation loss for an investment horizon of one year and different
combinations of γ and θ. In Figure 5, left, φ = 1, in Figure 5, right, φ = 2. Both
figures clearly show that the approximation loss monotonically grows with θ, holding γ
and φ constant. Hence, if θ < φ, the approximation loss is smaller than that for θ = φ.
Therefore, the 1/γ-rule works even better for θ < φ, as expected.

Conversely, the approximation loss strongly increases with the pricing kernel elasticity,
given θ � φ. For φ = 1, the highest approximation loss in Figure 5, left, is about 1.1%
for the highest θ = 11 and γ ≈ 5. For φ = 2 (Figure 5, right), it is about 0.16% for
θ = 11 and γ ≈ 6.5. These findings nicely illustrate the approximate arbitrage-story of
Bernado and Ledoit (2000). They show that a market with a very high pricing kernel
elasticity offers approximate arbitrage opportunities. An investor with low relative risk
aversion would then take very much risk through a strongly convex demand function for
state-contingent claims, see Figure 2, right. Claims in states of high market returns are
very cheap, they almost offer a free lunch to investors with low relative risk aversion.
Therefore these investors buy a large number of these claims. Investors with γ ≥ θ benefit
much less from this effect because they buy a linear or a concave demand function. This
implies a high approximation loss as long as γ is not very high.

Clearly, the approximation loss is smaller for a higher φ. This is due to the fact that an
investor with higher φ would take less risk and, thus, benefit less from the approximate
arbitrage opportunity. The effect on the approximation loss can be seen by comparing
Figures 5, left, and 5, right.

Summarizing, the 1/γ-rule does a very good job when the approximation is based on a
linear or concave demand function (φ ≥ θ). But it does a poor job when the approximation
is based (1) on a strongly convex demand function (θ � φ), (2) the investor’s optimal
demand function is much less convex (γ � φ) and (3) γ is not so high that risk taking
becomes negligible.

[Figure 5 about here.]

5.4 Non-Constant Elasticity of the Pricing Kernel

So far we assumed constant elasticity of the pricing kernel for the market return. Ait-
Sahalia and Lo (2000), Jackwerth (2000), Rosenberg and Engle (2002), Bliss and Pani-
girtzoglou (2004), Barone-Adesi, Engle and Mancini (2008) estimate the elasticity of the
pricing kernel using prices of options on the S&P 500 and the FTSE 100. They conclude
that the pricing kernel elasticity is declining, perhaps with a local maximum in between.

If the pricing kernel of the market portfolio does not have constant elasticity, we derive
a transformed market portfolio such that its pricing kernel has low constant elasticity.
Then, instead of the market portfolio, we use this transformed market portfolio for the
approximation. Assume that the elasticity ν(RM ) = −∂ lnπ(RM )/∂ lnRM is positive and
non-constant. Let RTM := g(RM ) := exp

{
1
θ̃

∫ RM
ε ν(R0

M )d lnR0
M

}
, where θ̃ is a small,

positive constant. ε is a positive lower bound of RM . g is invertible and yields a pricing
kernel π̃ of constant elasticity θ̃ with respect to RTM . This follows since
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− lnπ(RM ) + lnπ(ε) =
∫ RM

ε
ν(R0

M )d lnR0
M

= θ̃ ln g(RM )
= θ̃ lnRTM
= − ln π̃(RTM ) + lnπ(ε). (25)

The per unit-probability price for a claim contingent on RTM , π̃(RTM ), equals π(RM ),
the price for a claim contingent on RM = g−1(RTM ). By definition, RTM is a one-to-one
transformation of the market return so that constant elasticity θ̃ of the new pricing kernel
π̃(RTM ) is assured. This is true regardless of the sign of ν ′(RM ). Moreover, the level
of the constant pricing kernel elasticity of the transformed market return can be chosen
freely. Therefore, we can always create an exchange traded fund (ETF) on the market
return with return RTM and low constant elasticity θ̃ of its pricing kernel. This ETF is a
suitable candidate for the approximation portfolio so that

V̂ −(RTM ) =
θ̃

Rf
RTM + (γ − θ̃); γ ≥ θ̃.

This approximation assures a low approximation loss.

5.5 Incomplete Markets

So far we considered complete markets. In an incomplete market, the pricing kernel is no
longer unique. Suppose, first, that a pricing kernel on the market with low constant elas-
ticity is feasible. For this case the preceding analysis has shown that buying the market
portfolio and the risk-free asset provides a very good approximation to the optimal port-
folio for a large variety of settings. Actually, in an incomplete market the approximation
quality is even better. This follows because incompleteness does not affect the availability
of the market portfolio and, hence, the approximation portfolio, but the optimal portfolio
in a complete market may not be available. This reduces the the approximation loss.

Second, suppose that that a pricing kernel with low constant elasticity is not feasible.
Then we can use an ETF. If both, the ETF and the portfolio which would be optimal
in a complete market, cannot be replicated exactly in an incomplete market, then the
approximation loss might go up or down. But, given a large number of available risky
assets, the incompleteness effect should be small.

5.6 Extension to Parameter Uncertainty

So far all parameters are assumed to be known precisely. The discussion on parameter
uncertainty focusses on the probability with which one portfolio is preferable to another
one in the presence of parameter uncertainty. As discussed before, several papers conclude
that, given a set of well-diversified portfolio strategies, no strategy significantly outper-
forms the other strategies. To address this issue, consider the following setting. At date 0
the investor buys a portfolio of state-contingent claims based on the a priori probability
distribution of the market return. The date-0-pricing kernel is consistent with the a priori

14



distribution. The investor liquidates her portfolio at the investment horizon. Then she
also knows the a posteriori probability distribution of the market return.

In the spirit of the papers on parameter uncertainty, we derive the a priori probability
that ex post, i.e. given the a posteriori distribution, the ex ante optimal portfolio is still
preferred to the approximation portfolio. Let I denote the parameter vector of the a
posteriori distribution of the market return. Hence, we check

P = Prob
[
I
∣∣∣ ce(V̂ +|I) ≥ ce(V̂ −|I)

]
, (26)

where ce(V̂ |I) is the certainty equivalent of portfolio payoff V̂ , given the a posteriori
distribution I.

To illustrate, assume that each a posteriori distribution of the market return is log normal,
n(lnRM |I). Then the a priori probability density of RM is given by

∫
n(lnRM |I)dF (I),

with F (I) being the cumulative probability distribution of I. We use a symmetric
truncated normal distribution for I = [E[RM ], σ(RM )] with bounds [0.8955; 1.2955] for
E[RM |I] and [0.1782; 0.3782] for σ(RM |I). We assume that E[RM |I] and σ(RM |I) are
uncorrelated and that the standard deviation of both parameters is 0.1. This yields an
a priori probability distribution of RM with simulated expected market return of 1.0974
and standard deviation of 0.2942. This distribution is not log normal. Given the a priori
distribution, we derive exp{a(γ)} by simulation and obtain the optimal demand V̂ +(RM ).
The linear demand function V̂ −(RM ) is based on φ = θ = 1 and is independent of the
distribution. Figure 6 plots the certainty equivalent difference, ce(V̂ +|I)− ce(V̂ −|I), for
a time horizon of 1 year and for γ = 3, γ = 8 and γ = 50. Also, the plot illustrates the
I-range for which this difference is positive, i.e. it is above the black zero hyper-plane. The
a priori probability of this range is P ≈ 0.75 for all γ-values. Hence, the optimal portfolio
does not outperform the approximation portfolio at any conventional significance level.
Therefore, the regret probability (1−P) of not having chosen the approximation portfolio
is substantial.

This finding is not surprising because the approximation portfolio payoff is linear in the
market return while the optimal payoff is concave. The certainty equivalent of the linear
payoff is less sensitive to parameter variations than that of the concave payoff. Since, a
priori, the certainty equivalent of the optimal portfolio exceeds that of the approximation
portfolio only by a small percentage, we can only expect a high probability P if the a
posteriori certainty equivalent of the optimal portfolio is as stable as that of the approxi-
mation portfolio with respect to parameter variations. But as illustrated in Figure 6, this
is not true. Therefore the investor faces a rather high regret probability (1−P). This may
be viewed as another argument for choosing the simple approximation portfolio instead of
the complicated optimal portfolio.

[Figure 6 about here.]

6 Approximation in a Discrete State Space

In the following, we analyze the approximation quality in a discrete state space with
few states. In a continuous state space the probability mass of the optimal and the
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approximation portfolio payoff may be concentrated around the zero excess payoff inducing
a strong approximation quality. This quality might be weaker for portfolio returns with
more probability mass in the tails. Lemma 1, however, suggests that the approximation
loss is similar in a continuous and a discrete state space whenever the non-central moments
are.

As an example, consider a bank which only invests in loans. The loan market is arbitrage
free. Loans either are fully paid or go into default paying a non-random recovery amount.
If the bank can invest in many different loans, it can achieve strong portfolio diversification.
Then the loan portfolio payoff can be approximated quite well by a continuous unimodal
probability distribution. This suggests again a high approximation quality in the absence
of approximate arbitrage opportunities. Critical might be cases in which the number of
loans is small. In the following, we present examples with one and two loans.

6.1 One Risky Asset

In the case of only one risky asset, there is no structure effect. Yet, the volume effect
(α̂+ − α̂−) remains and determines the approximation loss. A volume effect would not
exist if the 1/γ-rule would work perfectly. α̂+ = α̂(γ) and α̂− = α̂(φ) denote the optimal
and the approximate amount invested in the single risky asset, derived from the first order
conditions (3) respectively (5).

We analyze a negatively and a positively skewed binomial distribution. Both distributions
have the same expected return of 10.5% and standard deviation of 30% so that the Sharpe-
ratio is the same. The risk-free rate is 3%. Let u (d) be the gross return in the up-
state (down-state). p is the up-state probability for the distribution R skewed to the
right and also the down-state probability for the distribution L skewed to the left. For
example, let p = 0.25, uR = 1.42 and dR = 1, uL = 1.21 and dL = 0.79. Hence the
distribution R has a skewness of 0.191, while distribution L has a skewness of −0.165.
The approximated investment in the risky asset is the optimal investment using φ = 1.
The optimal investment, the volume effect and the approximation loss are shown in Table
1 for an investor with constant relative risk aversion γ = 2, γ = 3 and γ = 10.

[Table 1 about here.]

The volume effect is negative (positive) for the positively (negatively) skewed return dis-
tribution. The volume effect relative to the optimal investment in the risky asset is rather
large (small) for the positively (negatively) skewed distribution. Yet, the approximation
loss is rather small in all cases. It is larger for the positively skewed distribution, and
declines with increasing γ for high values of γ.

The intuition for the sign of the volume effect can be derived from Figure 1. The optimal
volume depends on the absolute risk aversion levels in the down-state and the up-state.
Given γ > φ, the absolute risk aversion is higher [smaller] for the utility function with
parameter φ than for that with parameter γ in the down-state [up-state].

For the positively skewed distribution the absolute difference in risk aversion is much
higher in the up-state than in the down-state. Therefore we expect a negative volume
effect, α̂+ < α̂−. For a negatively skewed distribution we expect a positive volume effect.
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This is confirmed in Table 1. For a symmetric distribution, the absolute difference in risk
aversion is about the same in the down- and in the up-state. Therefore α̂+(γ) ≈ α̂−(φ)
implying a very small volume effect.

There is an easy way to understand the strong volume effect for the positively skewed
distribution. For a binomial distribution, the first order condition yields

puru

(
1 +

α̂+ru
γ

)−γ
= (1− pu)|rd|

(
1 +

α̂+rd
γ

)−γ

⇔ puru
(1− pu)|rd|

=
(
γ + α̂+ru
γ + α̂+rd

)γ
. (27)

The left hand side of (27) denotes the gain/loss- ratio of Bernado and Ledoit (2000).
The higher it is, the closer is an approximate arbitrage opportunity. For the positively
(negatively) skewed distribution the gain/loss- ratio is 4.33 (2.25). Hence, the positively
skewed distribution is much closer to approximate arbitrage. An investor with low relative
risk aversion benefits more from approximate arbitrage than an investor with higher risk
aversion by choosing a more aggressive portfolio. This explains for φ = 1 the high value of
α̂− = 6.41, the strong negative volume effect and the relatively high approximation loss.

As argued by Bernado and Ledoit, a high elasticity of the pricing kernel also indicates an
approximate arbitrage opportunity4. The pricing kernel elasticity is 4.18 (1.90) for the
positively (negatively) skewed distribution. Hence, the higher elasticity for the positively
skewed distribution also motivates a higher approximation loss.

6.2 Two Risky Assets with Dependent Returns

Next, consider two risky loans with correlated binomial returns. In this case there exist
only 4 states of nature. If there are two loans with different expected returns and perfectly
negatively correlated returns, then there exists an arbitrage opportunity. If the returns
are strongly negatively correlated, then there exists an approximate arbitrage opportunity.
Hence, investors with low relative risk aversion will take very large positions in the risky
assets which should raise the approximation loss.

For illustration, let the marginal distribution of each risky asset have a binomial distribu-
tion with equal probability for both outcomes, the up-state and the down-state. The gross
return of asset 1 is R1 = (1.2; 0.925) and of asset 2 is R2 = (1.3; 0.85), respectively. The
risk-free rate is 3%. This implies an expected excess return of 3.25% for asset 1 and 4.5%
for asset 2. The standard deviation is 13.75% for the first asset and 22.5% for the second
asset. Holding the marginal distributions for both asset returns constant, we change the
return correlation by the following procedure. Let Ps,t := Prob(R1 = s,R2 = t) denote
the probability that asset 1 is in the s-state and asset 2 is in the t-state, s, t ∈ {up, down}.
Then, the joint probability is

[Ps,t]s,t∈{up, down} =
(

0.5− x x
x 0.5− x

)
,

with x ∈ [0; 0.5]. Reducing Pup, up and Pdown, down by x and adding x to Pdown, up and
Pup, down, decreases the correlation without affecting the marginal distributions.
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The approximation portfolio is based on φ = 0.98. For relative risk aversion γ ∈ [0.98; 8]
and for a return correlation between -0.8 and 0.8, Figure 7, left, shows the approximation
loss. It is very low for correlations above -0.5, but increases strongly for lower correlations.
Given negatively correlated assets, the investor can buy a hedged portfolio with long
positions in both assets and earn a high portfolio return with little downside potential.
Consider the case with correlation −0.6 and γ = 2.5. The optimal portfolio invests about
3.57$ of the initial endowment in asset 1 and about 2.06$ in asset 2. This gives an
expected excess return of the optimal portfolio of 8.61% and a standard deviation of
17.64%. The approximation portfolio invests 3.02$ in asset 1 and 1.70$ in asset 2 implying
an approximation loss of about 0.15%. The volume effect is (3.57 + 2.06)− (3.02 + 1.70) =
0.91$, it is quite strong. The structure effect 3.57

2.06 −
3.02
1.70 = −0.04 is, however, very weak.

For higher correlations, the approximation quality is excellent.

[Figure 7 about here.]

Figure 8 shows the volume and the structure effect. The volume effect is quite strong
for strongly negative correlation, while the structure effect is always quite modest. This
indicates that the approximation quality is impaired primarily by the volume effect.

[Figure 8 about here.]

The example shows that the approximation loss is substantial whenever the asset corre-
lation supports an approximate arbitrage. Then the investor with low RRA φ takes large
positions in both risky assets and borrows a lot. If we exclude short selling, then approx-
imate arbitrage opportunities cannot be used extensively so that the approximation loss
is much smaller. This is illustrated in Figure 7, right. Compared to Figure 7, left, the
restriction lowers the approximation loss strongly in the area [−0.8,−0.4]× [1.75, 4], where
the first dimension is the asset correlation and the second the relative risk aversion γ.

7 Conclusion

HARA-utility functions cover a wide spectrum of utility functions with declining, constant
and increasing relative risk aversion. We constrain our analysis to declining absolute
risk aversion and ask whether the parameters of the HARA-utility function really matter
for optimal investment decisions. The paper shows that the optimal portfolio can be
approximated by the simple 1/γ-rule if the exponent of the investor’s utility function is
higher than that used for the approximation and if approximate arbitrage opportunities
do not exist. If these opportunities exist and the approximation portfolio takes high risk
while the optimal portfolio does not, then the 1/γ-rule leads to high approximation losses.
Whenever the pricing kernel of the market return displays low constant elasticity, an
investor with higher relative risk aversion may simply buy the market portfolio and the
risk-free asset without noticeable harm. Otherwise, the investor may buy a transformed
market portfolio with low constant elasticity of the pricing kernel, again without noticeable
harm.
Critical for a good approximation quality is that the investor’s relative risk aversion is
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higher than that used for the approximation and that approximate arbitrage opportunities
are ruled out.

If there exists uncertainty about the parameters of the asset returns, then our examples
demonstrate that the approximation portfolio turns out to be better than the optimal port-
folio with a substantial probability. This also supports the use of a simple approximation
portfolio.

Further research might analyse the approximation quality in market settings in which
investors use dynamic trading strategies to benefit from stock return predictability. Also
the set of utility functions should be widened beyond HARA.
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A Footnotes
1For small portfolio risk, mi → 0 for i > 2. Then the optimal portfolio satisfies m1/m2 → 1 rendering

γ irrelevant. This is the case in a continuous time model with i.i.d. returns. Then the volume and the
structure effect disappear.

2The skewness is skt = 4−π
2

“
δt

√
2/π

”3

(1−2δ2t /π)3/2 and the excess kurtosis is 2(π − 3)

“
δt

√
2/π

”4

(1−2δ2t /π)2
.

3Independent increments imply skt = sk1/
√
t, where sk1 denotes the skewness for one year and skt is

the skewness for t-years.

4Consider the Arrow-Debreu prices in this complete market setting. For a binomial return there always
exists a pricing kernel with constant elasticity. The two Arrow-Debreu prices are

πu =
1

Rf

puR
−θ
u

E[R−θ]
and πd =

1

Rf

(1− pu)R−θd
E[R−θ]

.

The ratio πu
πd

can be used to solve for the pricing kernel elasticity θ,

θ =

ln

 
gain-loss-ratio

!
ln
“
Ru
Rd

” .
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B Proof of Lemma 3

At an intersection point, V̂ +(RjM ) = V̂ −(RjM ). Then, we have at an intersection with
R = RjM ,

∂V̂ +(R)
∂p

=
∂V̂ −(R)
∂p

⇔ θ

γ
exp{a(γ)}R(θ/γ)−1∂R

∂p
+
∂a(γ)
∂p

V̂ +(R) =
θ

φ
exp{a(φ)}R(θ/φ−1)∂R

∂p
+
∂a(φ)
∂p

[
V̂ −(R)−(γ−φ)

]
Since V̂ +(R) = V̂ −(R), we have

θ

γ
V̂ +(R)

∂ lnR
∂p

+
∂a(γ)
∂p

V̂ +(R) =
[ θ
φ

∂ lnR
∂p

+
∂a(φ)
∂p

]
[V̂ +(R)− (γ − φ)]

⇔ ∂ lnR
∂p

θ

φ

1
γ

(γ − φ)[V̂ +(R)− γ] =
[∂a(γ)
∂p

− ∂a(φ)
∂p

]
V̂ +(R) +

∂a(φ)
∂p

(γ − φ).

Dividing by (γ−φ) yields equation (20). Equations (21) and (22) follow from differentiating
the budget constraint with respect to p.
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Figure 1: The absolute risk aversion of the HARA-function with endowment γ/Rf declines in the
portfolio excess return. For increasing γ the difference between the absolute risk aversion of the
HARA-function and that of the exponential utility function, being 1 everywhere, decreases.
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Figure 2: Left: The figure shows the optimal demand for state contingent claims (blue solid
curve) and the approximation demand (red dotted line) for γ = 3 ≥ φ = θ = 1.25. In addition,
on a different scale the graph shows the probability density of the market return. Right: γ = 3,
θ = 6.75 and φ = 1. This implies a strongly convex approximation demand function while the
optimal demand function is only moderately convex.
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Figure 3: Left: The surface shows the approximation loss for γ ∈ [0.98; 8], φ = θ = 0.98 and an
investment horizon between 3 months and 5 years. For this setting, the highest loss in certainty
equivalent is obtained for γ between 3 and 4 and an investment of five years. The investor would
have lost about 0.3% of the optimal certainty equivalent or 0.06% per year. Right: Each isoquant
shows the combination of γ and investment horizon with the same approximation loss k depicted
in the curve.
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Figure 4: The surface shows the approximation loss for γ ∈ [0.98; 8], φ = θ = 0.98 and an
investment horizon between 3 months and 5 years. Left: The logarithmic market return is t-
distributed. We assume independent and identically distributed increments, hence, µt = 0.06t, σt =
0.25
√
t and νt = 4t+4. For γ ≈ 3 and an investment horizon of five years, the highest approximation

loss is about 0.4%. Right: The logarithmic market return is left-skewed, fat tailed distributed
with independent and identically distributed increments.
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Figure 5: Left: The approximation loss for an investment horizon of one year as a function of
θ and γ, assuming a lognormal market return with σ = 0.25. rf = 0.03 and φ = 1. γ ∈ [φ; 20] ,
θ ∈ [0.44; 11]. Right: The approximation loss for the same setting as in Figure 5, left, but with
φ = 2.
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Figure 6: The plot shows the a posteriori-approximation loss assuming parameter uncertainty.
The expected market return and the market volatility are a posteriori-realisations of both variables.
The blue (red) [green] surface shows the loss assuming γ = 3 (γ = 8) [γ = 50], the black hyper-plane
marks zero everywhere.
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Figure 7: γ > φ = 0.98, correlation of binomial returns between -0.8 and 0.8. Left: The figures
show the approximation loss in a market with two binomial assets for different return correlations
and γs. The expected excess return for asset 1 is 3.25% and 4.5% for asset 2. The volatility is
13.75% and 22.5%, respectively. Right: The figure shows the approximation loss for the same
market setting with borrowing being prohibited.
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Figure 8: Left: The volume effect for a market with two binomial assets as in Figure 7. Only
for strongly negative asset correlation there is a substantial volume effect. Right: The structure
effect is remarkably small.
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γ = 2 γ = 3 γ = 10
Distribution R L R L R L

α̂+ 4.7813 1.8519 4.3083 1.8830 3.7183 1.9187
(α̂+ − α̂−) −1.6290 0.1158 −2.1020 0.1469 −2.6920 0.1826

k 0.0038 0.0002 0.0048 0.0002 0.0028 0.0001

Table 1: It shows the optimal investment in the risky asset for γ = 2, 3 and 10 and the volume
effect (α̂+ − α̂−). The approximated investment based on φ = 1 is α̂− = 6.4103 for R and
α̂− = 1.9677 for L. k is the approximation loss. R (L) denotes the probability distribution skewed
to the right (left)
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