First  publ. in: 1st IFIP Wireless

Days" 2008, 24-27 november 2008, 1-5

pp.

I Seek for Knowledge: Exploiting Social Properties
in Mobile Ad Hoc Networks

Sebastian Kay Belle*

Muhammad Arshad Islam*

Marcel Waldvogel*

* University of Konstanz
Distributed Systems Laboratory
Konstanz — Germany
firstname.lastname @uni-konstanz.de

Abstract—New social networks are born each day, at a formal
conference, at informal social gathering, at family reunions etc.
Internet has already been playing an important role in modern
socialising. But it is still not the optimal way of interaction as one
has to be very active updating profiles. With the easy access to
mobile devices, modern technologies have now started to adopt
to new ways of socialising. mobile devices accompany their users
almost all the time, they can record and observe their users
behavior as well as gather information about their social circle.
Therefore, they can help users to get information from contacts,
that they potentially not even know. In this paper we put our
efforts towards the initial design of an architecture that will sniff
for information around the user’s surrounding, leveraging useful
answers on their demand.

I. INTRODUCTION

Nowadays, we face a novel kind of social networking,
virtual social networks as enforced by well known platforms
like Facebook, MySpace or Friendster — just to name a few
— that have more than 50 million registered users. This new
approach to social networks somehow reflects the old habit
of mankind that people tend to arrange themselves in groups
with similar interests to share and exchange their knowledge.

Another aspect of modern social networking is that infor-
mation is no longer solely stored and found in databases or
documents in the World Wide Web. Instead, information, or
to be more precise, knowledge is shared by users worldwide.
Hence, social networks become even more prominent when
searching for information to solve a problem. Simplified, it
all comes down to the well known adage:“It’s not what
you know, it’s who you know”. Therefore, the question we
face is less how we find the information, but more how we
get in contact with someone who has the expertise. These
group-forming networks, as discussed in Reed’s law [13],
have an utility that grows exponentially with the number of
participants — unlike traditional networks whose utility merely
grows linearly or quadratically. Anyway, note that the term
“friend” gets somewhat altered in the context of this new type
of social network. Relationships become binary, either you are
connected or you are not connected. These social networks
alter the type of relationship between people, personality
becomes somewhat irrelevant, only the mere interest for a
specific topic connects one person to another. Further, modern
social networking bypasses the geographic context in which
people reside. Technology simplifies it to stay in contact with

others, even in remote locations of our planet, for instance
by e-mail or chat. However, the most obvious device we use
to stay in contact with others — and probably nowadays the
most mobile devices can aid us to leverage the next level of
social networks, mobile social networks. personal device — are
mobile phones.

First, we define why it is important to rethink what we like
to achieve with modern (mobile) social networks. Second, we
state the difficulties to face when as we integrate these aspects
in mobile social networks.

a) Why do we care?: (1) Connecting to experts that
have some specific knowledge facilitates problem solving as
these experts can provide quick access to answers we could
not solve on our own, or at least, only with an high effort.
(2) Modern social networks build upon a pull type approach
where users explore the available connections in the network.
However, a push type approach as we know it from real-
world social networks — when we get introduced to others by
colleagues of friends — would ease the use of such a system.
(3) Related to the previous point is the third aspect that is
specifically inherent to virtual social networks, transitivity.
Transitivity is a powerful way to explore social connections
by following links to n'* degree contacts. However, due to
the pull approach, utilising transitivity is somewhat limited as
the user is responsible to dig out experts and does not get any
recommendations.

b) What problems to solve?: (1) Modelling an automatic
recommendation system based on the push approach. (2)
Modelling the transitive relationship in a system that facilitates
the desired push approach. (3) Including social information
(e.g. expertise in a specific topic) of the users in the social
network.

In this paper we propose a system design based on mobile
devices, building an implicit infrastructure for mobile social
networks. The proposed system integrates social information
of its users stored in Bloom filters [3] to facilitate the look-
up of experts or people that share a common interest. We
define a two-way message protocol that exploits the social
network’s inherent transitive connections, enhanced with the
social information of the users in the network, to route
messages to a suitable receiver. Further, this message protocol
enables a receiver to reply to the initial sender, using a pointed
multicasting approach, while maintaining the replier’s privacy

Konstanzer Online-Publikations-System (KOPS)
URN: http://nbn-resolving.de/urn:nbn:de:bsz:352-opus-101844
URL: http://kops.ub.uni-konstanz.de/volltexte/2010/10184/


teamxp
Schreibmaschinentext
First publ. in: 1st IFIP Wireless Days" 2008, 24-27 november 2008, pp. 1-5

http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?tp=&arnumber=4812924&isnumber=4812823
http://nbn-resolving.de/urn:nbn:de:bsz:352-opus-101844
http://kops.ub.uni-konstanz.de/volltexte/2010/10184/

(a)

(©)

Fig. 1: Simplified illustration of the concept of centrality measurements fig.(a), semantic group models fig.(b), and the
enhancement of connections in a social network by exploiting social information about the nodes fig.(c).

as well as the privacy of the initial sender.

II. RELATED WORK

Following, we give an overview of related work in the area
of Mobile Ad Hoc Networks (MANETS) and Delay Tolerant
Networks (DTNs). We focus on research that exploits social
information in these networks. Further, we review some basics
on Bloom filters used later on in section III.

1) Exploiting Social & Semantic Information: In social
sciences, researchers have been debating about different pa-
rameters to classify the satus of someone in a social network.
These parameters include the number of contacts, the closeness
to contacts, and location in the network. However, the concept
of Betweenness Centrality [6] has gotten the most attention
(c.f. Figl(a)). Using Betweenes Centrality those nodes in the
network are addressed for routing that have the highest number
of connections to other nodes in the network. Daly and Haahr
[4] propose a metric to identify characteristic nodes in a
delay tolerant MANET that can serve as bridge nodes to pass
messages to the intended receiver. To identify these nodes,
[4] exploit social analysis techniques as a measurement of
centrality in a MANET to enhance routing. Their idea is de-
rived from the characteristics of the small world phenomenon
which states that individuals are often linked by short links
in overlapping circles of acquaintances [11]. Miklas et al.
[10] exploit the use of social information in mobile systems,
conducting a simulation on the “Reality Mining” dataset of
the MIT Media Lab [1]. In their simulation they classify users
into strangers and friends due to their number of encounters.
This simulation shows that this simple classification already
yields a gain in the message delivery performance in DTNs in
terms of the time a message needs to arrive at its destination.
Zhao et al. [15] introduce semantic models for efficient routing
in DTNs by defining group membership models (Temporal
Membership, Temporal Delivery, and Current Membership) for
routing messages through the network (c.f. Fig.1(b)). These
models define membership groups that could be interested in
receiving a message depending on the location and/or time. A
similar semantic model was proposed by Gong et al. [7].

In contrast to the approaches of [15] and [7] we follow the
idea of [10] to utilise social information. However, we do not
only classify users into friends and strangers but add a third
class to the system, trusted friends. Additionally, we do not
stop at this classification in our design. We also introduce

transitivity in the social information of a user, simplified,
we combine Betweeness Centrality and Group Membership
Models to identify users that are either experts in a specific
topic, or users that are connected to experts, respectively (c.f.
1(c)).

2) Bloom Filters in Networking: Bloom filters [3] are
simple space-efficient randomized data structures that maintain
a set of elements and support membership queries while
allowing false positives. Formally, a Bloom filter is a bit array
of length m that utilises £ hash functions to map a set of n
elements, with n < m, into the bit array. Each element is
hashed to £ distinct indices in the array setting the k indexed
bits to 1. If a bit is set more than once by different elements
the bit simply retains its value. The probability p.,, of a false
positive depends on the three parameters m, n, k of the Bloom
filter and is calculated as::

Perr = (]- - efkn/m)k: (1)

Given a fixed size m for a Bloom filter as well as the intended
(maximal) number of elements n, the optimal number of hash
functions to uses can be obtained as'::

k=In2-(m/n) (2)

Bloom filters have been used to solve a variety of network-
ing problems. Different variations of Bloom filters have been
proposed in the last years, most of them suited towards a
specific application area. Mitzenmacher [12] introduced the
concept of compressed Bloom filters. He has shown that the
size of a Bloom filter can be reduced without increasing pe,
by introducing some modifications to the original concept.
Guo et al. [8] proposed dynamic Bloom filters that can grow
as needed by adding static sized Bloom filters to a list of
Bloom filters as soon as the actual Bloom filter’s false positive
rate increases over a given threshold. Bauer et al. [2] propose
simple boolean set operations on Bloom filters to combine
sub-queries for efficient queries on distributed hash tables.
However, Bloom filters are by far not the only way to go.
Hurley and Waldvogel [9] have shown that Bloom filters can
be outperformed by other techniques in the case that false
negatives are admissible.

'Note that in practice k is rounded down to the next integer as this, in
general does not increase perr dramatically and yields better performance.



Aggregation [Union] of Bloom Filters ="
in a Bloom Filter Stack

~Jo[aTo[«]+] - TaTofeTxTo]--
~JoJoJoJo]o] - Tofo[of+T4]--
\Uw
~[olaTolaTo] - [*]aTo]1 o]
-[olaToaTaT - TATaTolaTaT-
%

e

~[aTaTe 4 o]

0 3 0 N N )

~JolaaTaTo] - [aTaToTTo[--

~[.f. Al

- [Afo[a A ] -
%

. . User-Specific Bloom Filter Stack

Fig. 2: Illustration of a user’s profile. A user combines his profile (Bloom filter stack) with the profiles of his virtual friends.
Other users in the system receive the aggregated profile as an approximation of the expertise the user has.

We use Bloom filters to encode the social information of
users as they allow efficient set operations according to [2].
As already stated, we enhance our system with this user
specific information and utilise this information in the look-
up procedure of potentially interesting contacts as well as in
our two-way message protocol. Therefore we can tolerate false
positives, whereas false negatives are not preferable.

III. MERGENET ARCHITECTURE

In the following section we present the design of the Mer-
genet architecture. We assume that users of our system are in
possession of mobile devices capable of P2P communication.
We aim Mergenet to be flexible enough to let users establish
P2P connections through arbitrary techniques like WAN, LAN,
Wifi, or Bluetooth. An user’s profile is present on the mobile
device giving the responsibility to the user to keep his profile
up-to-date, especially if he uses multiple devices. Details about
profiles will be presented in section III-A.

Mergenet takes into account the disparity among the users
with respect to their social activities. Some users may like to
be very social by introducing themselves to as many people
as possible. On the other extreme, some may want to keep
a very limited activity by maintaining a small number of
close contacts. Mergenet classifies contacts as users and virtual
friends similar to the idea of [10] depending on the frequency
two devices see each other. However, in contrast to [10],
we let users add trusted friends manually, or, depending on
recommendations of the system, let an user choose to add a
virtual friend in his list of trusted contacts. For a user p the
set of virtual friends Cy p is defined according to a threshold
oy as::

CVF = {C | cE CU7 Tc > ap}7 (3)

where Cy is the set of all the users p encountered, T, =
MC/(ZZGCU M), M. is the meeting count of p with ¢ € Cy,
and M; is the meeting count of p with ¢ € Cyy. The threshold
«y, varies for all users and depends on the embedding of p in
the social network. At the moment we are running experiments
to identify the best matching «, for a user p.
Following, we present two definitions we will use through-
out the next sections::
o Client — an user interested in either introducing himself to
the community or to enquire some specific information.

e Responder — an user interested in getting to know a new
client or to respond to a query from a client.

A. Profile Structure

We propose a profile structure based on Bloom filters. Every
profile contains a set of Bloom filters B;, j € Ny in a stack
BS; = {Bj{,BS,...,B}}, i € Ni. BS; denotes the Bloom
filter stack for the current user while ¢ > 1 denote the Bloom
filter stacks for the users that came in direct contact with
the current user. The first Bloom filter B in each stack is
considered mandatory and contains the minimum information
for the profile to exist. B will be populated with at least the
identification information of the users, while the remaining
Bloom filters correspond to an user’s interests (e.g. music,
movies, literature etc.). For every Bloom filter in the stack
we compute the check sum. Whenever the profile is updated,
the changes will be hashed in the corresponding Bloom filter
and the check sum is recomputed. Thus, other users in the
network perceive the change of a contacts profile. Formally,
let CSPi = fPB(BI) be the check sum for the Bloom filter
B; Then, the check sum of BS; would be computed as
CSB% = fBSi(CSPr), k =1,...5. This helps to shortlist
the number of Bloom filters in the case of profile exchange.

Whenever two users come in contact with each other for
the first time they create a new Bloom filter stack for each
other, incrementing their corresponding values of i. At the
time of profile exchange, Mergenet computes the union of
all Bloom filters at one level of the stack before transmitting
them. Formally, let BST = {BY ... ,BJT} be the Bloom filter
stack to transmit. BS” is computed as follows, omitting the
mandatory Bloom filter::

BS" =VBS;:| JB;, j> L (4)
J

Thereby, we can ensure the transitivity property in the
network. Le., if user A shares her profile with B, and B shares
her profile with C', C’s profile also contains information about
A without being connected to A directly. However, Mergenet
permits the aggregation of profiles only for Bloom filter stacks
BS;, i > 1 of virtual friends. Bloom filter stacks associated
with users u ¢ Cy - will not be aggregated into BST. These
Bloom filter stacks will be kept separate, as they relate to



+ getMessage () : <V>
+ getTopic () : BloomFilterlF
+ contains (UID) : boolean

+ unlock (UID) : MessagelF

- message : String

- topic : BloomFilter {ii
- uid : UID

- uidSet : java.util.Set<UID>

+ getMessage () : <V>

+ getTopic () : BloomFilter

+ contains (UID) : boolean

+ unlock (UID) : MessagelF

+ getMessage () : <V>

+ getTopic () : BloomFilter
+ contains (UID) : boolean
+ unlock (UID) : MessagelF

Fig. 3: The UML class structure of the message design.

users of the system that are not encountered frequently. Fig. 2
illustrates the relationship between an user’s profile encoded in
a Bloom filter stack, the Bloom filter stacks of trusted friends,
and the aggregation of an user’s profile and the profiles of
her virtual friends. Note that the set of trusted friends is not
necessarily a subset of virtual friends.

Due to the aggregation of the different Bloom filters in
the Bloom filter stacks, the false positive rate p.., (c.f. Eq.
(1)) can increase dramatically. In our design we focus on
three different approaches to overcome this problem. (1) Use
large Bloom filters with a fixed size m = 23! that can be
compressed before transmission as proposed by [12]. (2) Use
Dynamic Bloom Filters (DBF) [8]. Thereby, the size of any
Bloom filter B; € BS; will be kept flexible and grows
dynamically as needed. Whenever the existing Bloom filter
gets heavy to sustain the false positive rate, another Bloom
filter of equal size is created while the old one is sent to storage
and treated as legacy Bloom filter. This enables our system to
transmit only chunks of the profile that were updated instead of
always transmitting a large Bloom filter. Furthermore, clients
with low populated profiles will not be burdened by unfilled
Bloom filters. (3) Use Attenuated Bloom Filters [14] that only
aggregate the information of user profiles up to a predefined
depth of transitive links. Actually, this is the most promising
approach so far.

B. Protocol definition

The transmission protocol consists of two kinds of exchange
— profile exchange and information exchange.

1) Profile Exchange: Mergenet identifies every user by an
unique identifier (UID). Whenever two users encounter each
other one user assumes the role of the Client, the other as
the Responder. The possible deadlock in this situation can be
removed by attempting random waiting and reattempting to
acquire the role. If one device acquires the role of the Client c,
it connects to the Responder r. Following, the profile exchange
is achieved as shown in Alg. 1. Method calls on the Client
side are denoted as c.methodCall(), methods executed at the
Responder side are written as r.methodCall(). This syntax
will be used throughout the presented algorithms.

2) Information Exchange: Information exchange includes
any kind of queries users may ask among each other. Mergenet
retrieves the suitable Responder(s) to a query by directing

Algorithm 1 Profile Exchange & Update

I: c.send(UID, CSBSCT) {//send initial information to r}
2: if risNew(UID) then

r.add(UID)

4:  BSY « c.exchangeBS(BSE) {/lexchange stacks}
5. raddBFStack(UID,CSB5  BST)

6: else if r.isUpdated(UID, CSB5:) then
7.

8

9:

w

BSY « c.updateBS() {/lupdate stack of c}
T
r.replace BF Stack(UID,CSB5:  BST)
end if

the query to only those users who have knowledge in the
area the query belongs to. To route the message to a suitable
Responder, Mergenet includes the topic of the query in the
message as a Bloom filter that contains the relevant bits to
identify the topic. Note that every query has a lifetime limited
by teap, its expiry time.

Mergenet assumes that ¢ maintains a list of all alive queries
Q = {qo,.-.,qx} sorted by their expiry time. A query q is
an object of type MessageIF (c.f. [lI-B2a & Fig.3). As a
precondition for information exchange, Mergenet assumes that
user profiles are up-to-date according to Alg.1.

a) Message Design: In Mergenet we utilise a proxy
enveloping technique. Using this technique, the Responder will
only “see” the set of forwarding users of the query (including
the initial Client). The Client will only see the answer to his
query but not the person who gave the answer. This technique
preserves the privacy of the Client as well as the privacy of the
Responder. We design this enveloping technique by utilising
the Decorator design pattern [S] as depicted in Fig.3. The
MessagelIF exposes four methods to retrieve the topic of the
message encoded in a Bloom filter, the message text, a method
to check if a given UID is included in the set of forwarding
nodes of the message, and a method to unlock the method up to
an envelope created by the node with the corresponding UID.
The initial Client creates the Message object adding the topic
of the message, the message itself, and her UID. Thereafter,
the message is wrapped in a MessageProxy object, adding
an arbitrary number of optional message receivers from her
from her list of virtual friends. These additional nodes are
later used for passing back the response to a query.

b) Query & Response Forwarding: Forwarding a query ¢
to a suitable Responder, or routing the answer to a query back
to its initial Client, involves the steps described in Alg.2. Ac-
cording to the previous definition, we write ¢.messageCall()
to represent a method call of the message object. Simplified,
the current Client — either the initial creator of the query
or an intermediate node — passes the message to the next
Responder that is identified as an user that can either answer
the query, or knows another person that can answer the query,
respectively. Whenever ¢ connects to a Responder r it checks
if r is either an expert for the topic of any message q € @,
or can serve as a forwarding node for the message. Therefor,
c and r first exchange or update their profiles according to
Alg.1. As r exposes his aggregated profile B.S,., the profile



Algorithm 2 Query & Response Forwarding
1: for all g € c.QQ do

2 if ¢.isQuery() then

3 if r.isExpert(q.getTopic()) then

4 r.handleQuery(q) {// c.f. Alg. 3}
5: end if

6 else

7 if g.contains(r.UID) then

8 temp «—r

9: T cC

10: c «— temp

11: c.handleQuery(q.unlock()) {// c.f. Alg. 3}
12: end if

13:  end if

14: end for

information of his n'" degree contacts will be included as
well. Thus, ¢ does not actually know if r can answer the
query or if r simply serves as an intermediate node. This
forwarding and back-routing scheme is further illustrated in
Fig.4. The thick red edges correspond to a query-forwarding
from the initial Client on the left to the final Responder on
the right. Thereby, the query is forwarded by the intermediate
users, represented by the (red) nodes in the centerline of
the figure. Each of the intermediate nodes encapsulate the
message in another MessageProxy object (the message
envelopes), adding an arbitrary number of further contacts that
are identified as virtual friends of the active node (c.f. Eq.
(3)). These additional nodes serve as proxies that can be used
later for routing back the answer of the query to the initiating
Client. The grey areas in the back of the figure correspond to
the envelopes an intermediate node creates before forwarding
the message. Every message envelope contains the information
of the creating node, including the additional proxy nodes, and
each envelope, including all envelopes created by nodes after
the actual node, can be unlocked by the creating node.
During response forwarding the final Responder keeps the
message as long as the query is alive and passes it to every
node, including proxy nodes (beige), it encounters. As every
forwarding node includes a number of proxy nodes, a forward-
ing node defines a “corridor” for the returning message. Thus,
the network is not simply flooded with messages containing
the answer to a query. Instead, the route to the final Responder
already defines a good route back to the initial Client.

IV. CONCLUSION AND FUTURE WORK

Mergenet is a system that assists user to socialize in
way that virtual social network cannot do. It helps them to
make contacts and lets them use these contacts to share and

Algorithm 3 Query & Response Handling

1: if c.isExpert(q.getTopic()) then
g.setAnswer|()
q.setIsQuery(false)

end if

c.Q.append(q)

Fig. 4: Illustration of the message protocol.

gather information. To the best of our knowledge, our design
approach is the first to enable users in MANETs or DTNs
to get a reply for a submitted query without flooding the
network with messages. Furthermore, our message protocol
introduces some simple privacy preserving mechanics due to
the message design, however, there is much more to be done to
call Mergenet very secure. Actually we are implementing this
system, running first tests on how to identify virtual friends
as well as optimizing the way we aggregate the Bloom filters
of several users without running into the problem of achieving
a high false positive rate. This also involves compression of
Bloom filters without loosing their efficiency.

REFERENCES

[1] “Mit media lab: Reality mining,” http://reality.media.mit.
edu.

[2] D. Bauer, P. Hurley, R. Pletka, and M. Waldvogel, “Bringing efficient
advanced queries to distributed hash tables,” Icn, vol. 00, pp. 614, 2004.

[3] B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Commun. ACM, vol. 13, no. 7, pp. 422-426, 1970.

[4] E. M. Daly and M. Haahr, “Social network analysis for routing in
disconnected delay-tolerant manets,” in MobiHoc ’07: Proceedings of
the 8th ACM international symposium on Mobile ad hoc networking
and computing. New York, NY, USA: ACM, 2007, pp. 32-40.

[5] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley, 2007
— 36th printing.

[6] M. Girvan and M. E. Newman, “Community structure in social
and biological networks.” Proc Natl Acad Sci U S A, vol. 99,
no. 12, pp. 7821-7826, June 2002. [Online]. Available: http:
//dx.doi.org/10.1073/pnas.122653799

[71 Y. Gong, Y. Xiong, Q. Zhang, Z. Zhang, W. Wang, and Z. Xu, “Anycast
routing in delay tolerant networks,” in GLOBECOM’06: In Proceedings
of the Global Telecommunication Conference 2006, San Francisco, CA,
USA, November 2006, pp. 1 - 5.

[8] D. Guo, J. Wu, H. Chen, and X. Luo, “Theory and network applications
of dynamic bloom filters,” in INFOCOM, 2006.

[9] P. Hurley and M. Waldvogel, “Bloom filters: One size fits all?” Icn,

vol. 0, pp. 183-190, 2007.

A. G. Miklas, K. K. Gollu, K. K. Chan, S. Saroiu, K. P. Gummadi,

and E. de Lara, “Exploiting social interactions in mobile systems,”

Innsbruck, Austria, September 2007.

S. Milgram, “The small world problem,” Psychology Today, vol. 1, pp.

60 — 67, May 1967.

[12] M. Mitzenmacher, “Compressed bloom filters,” in PODC ’01: Proceed-

ings of the twentieth annual ACM symposium on Principles of distributed

computing. New York, NY, USA: ACM, 2001, pp. 144-150.

D. P. Reed, “That sneaky exponential—Beyond Metcalfe’s law to the

power of community building,” http://www.reed.com/Papers/

GFN/reedslaw.html, 1999.

S. Rhea and J. Kubiatowicz, “Probabilistic location and routing,” in IN-

FOCOM 2002. Proceedings of the Twenty-First Annual Joint Conference

of the IEEE Computer and Communications Societies, vol. 3, 2002, pp.

1248 — 1257.

W. Zhao, M. Ammar, and E. Zegura, “Multicasting in delay tolerant

networks: semantic models and routing algorithms,” in WDTN ’05:

Proceedings of the 2005 ACM SIGCOMM workshop on Delay-tolerant

networking. New York, NY, USA: ACM, 2005, pp. 268-275.

(10]

(11]

[13]

[14]

[15]



	Text1: Konstanzer Online-Publikations-System (KOPS)
URN: http://nbn-resolving.de/urn:nbn:de:bsz:352-opus-101844
URL: http://kops.ub.uni-konstanz.de/volltexte/2010/10184/


