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Abstract 
Colloidal dispersions are commonly encountered in everyday life and represent an important 
class of complex fuid. Of particular signif cance for many commercial products and industrial 
processes is the ability to control and manipulate the macroscopic f ow response of a dispersion 
by tuning the microscopic interactions between the constituents. An important step towards 
attaining this goal is the development of robust theoretical methods for predicting from 
frst-principles the rheology and nonequilibrium microstructure of well defned model systems 
subject to external fow. In this review we give an overview of some promising theoretical 
approaches and the phenomena they seek to describe, focusing, for simplicity, on systems tor 
which the colloidal particles interact via strongly repulsive, spherically symmetric interactions. 
In presenting the various theories, we will consider frst low volume fraction systems, for which 
a number of exact results may be derived, before moving on to consider the intermediate and 
high volume fraction states which present both the most interesting physics and the most 
demanding technical challenges. In the high volume fraction regime particular emphasis will be 
given to the rheology of dynamically arrested states. 
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Complex fuids exhibit a rich variety of fow behaviour 
which depends sensitively upon the thermodynamic control 
parameters, details of the microscopic interparticle interactions 
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Figure 1. A schematic illustration of coarse graining as applied to colloidal dispersions. Continuum mechanics approaches treat the 
dispersion as a single continuum fiui (panel (a)), whereas a fully detailed picture is obtained by treating both colloids and solvent explicitly 
(panel (c)). The theoretical methods considered in this work operate at an intermediate level (panel (b)) in which the colloids are explicitly 
resolved but the solvent may be treated as a continuum. 

and both the rate and specif c geometry of the f ow under 
consideration. The highly nonlinear response characteristic 
of complex fuids may be readily observed in a number of 
familiar household products [I]. For example, mayonnaise 
consists of a stabilized emulsion of oil droplets suspended in 
water and behaves as a soft solid when stored on the shelf but 
f ows like a liquid, and is thus easy to spread, when subjected 
to shear fow with a knife [2]. This nonlinear viscoelastic 
f ow behaviour, known as shear thinning, may be manipulated 
on the microscopic level by careful control of the oil droplet 
size distribution. In contrast, a dispersion of corn-starch 
particles in water, at sutf ciently high concentrations, exhibits a 
dramatic increase in shear viscosity with increasing shear rate; 
a phenomenon called shear thickening [3, 4]. Even the familiar 
practical problem of extracting tomato ketchup from a glass 
bottle presents a highly nonlinear f ow. In this case the applied 
shear stress, generally implemented by shaking, must exceed 
a critical value, the yield stress, before the ketchup begins to 
fl w as desired. 

Colloidal dispersions are a class of complex fl id 
which display all of the above mentioned nonlinear f ow 
responses [5]. In addition to being of exceptional relevance 
for many technological processes, the considerable research 
interest in colloidal dispersions owes much to the existence 
of well characterized experimental systems for which the 
interparticle interactions may be tuned to relatively high 
precision (often possible by simply varying the solvent 
conditions) [6]. The ability to control the microscopic 
details of the colloidal interaction facilitates comparison of 
experimental results with theoretical calculations and computer 
simulations based on idealized models (see e.g. [7-9]). In 
particular, the size of colloidal particles makes possible light 
scattering, neutron scattering and microscopy experiments 
which provide information inaccessible to experiments on 
atomic systems and which have enabled various aspects of 
liquid state theory to be tested in detail". 

The typical size of a colloidal particle lies in the range 
10 nm-l p,m and thus enables a fairly clear separation of 

2 For example, in [g] and [9] dynamic light scattering was employed to 
measure the coherent transient density correlator of spherical hard-sphere
like colloids. The data conf fined the factorization propenies of the 0' 

and {J relaxation, as predicted by the mode-coupling theory of the glass 
transition [I U, I I]. In [12] confocal microscopy experiments on a mixture of 
PMMA colloids and non-adsorbing polymer were used to conf rm the capillary 
wave theory of the fuctuating interface between demixed fuid phases [13]. 
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length- and timescales to be made between the colloids and 
the molecules of the solvent in which they are dispersed. 
As a result, a reasonable frst approximation is to represent 
the solvent as a continuum fuid, generally taken to be 
Nevvtonian and thus characterized by a constant solvent 
viscosity (see fgure I). For suspended particles with a 
length-scale greater than approximately 1 p,m the continuum 
approximation of the solvent is completely appropriate. 
However, this becomes questionable as the average size of 
the particles is reduced below a few nanometres, at which 
point the discrete nature of the solvent can no longer be 
ignored. Colloidal particles occupy an intermediate range 
of length-scales for which a continuum approximation for 
the solvent must be supplemented by the addition of frst 
order Gaussian fuctuations (Brownian motion) about the 
average hydrodynamic f elds describing the viscous f ow of the 
continuum solvent. 

The Brownian motion resulting from solvent fuctuations 
not only plays an important role in determining the 
microscopic dynamics; it is essential for the existence of 
a unique equilibrium microstlUcture. With the important 
exception of arrested glasses and gels, the presence of 
a stochastic element to the particle motion allows a full 
exploration of the available phase space and thus enables 
application of Boltzmann-Gibbs statistical mechanics to 
quiescent (and ergodic) colloidal dispersions. While the 
specifi nature of the balance between Brownian motion, 
hydrodynamic and potential interactions depends upon both 
the observable under consideration and the range of system 
parameters under investigation, it is the simultaneous 
occurrence of these competing physical mechanisms which 
gives rise to the rich and varied rheological behaviour of 
dispersions. Unfortunately, the complicated microscopic 
dynamics presented by dispersions also serves to complicate 
the theoretical description of these systems [14]. 

The present review has been written with a number of 
aims in mind. On one hand, we would like to present a 
relatively concise overview of the main phenomenological 
features of the rheology of dispersions of spherical colloidal 
particles. In order to reduce the parameter space of the 
discllssion, emphasis will be placed on the simple hard-sphere 
model for which the space of control parameters is restricted 
to two dimensions (volume fraction and fow rate). While both 
attractive colloids and the response to non-shear f ows will be 



addressed, no attempt has been made to be comprehensive in 
this respect. Another primary aim of the present work is to 
provide an overview, within the context of the aforementioned 
phenomenology, of microscopically motivated approaches to 
the rheology and f ow induced microstructure of colloidal 
dispersions. Although we will discuss some less well founded 
'schematic model' approaches, the focus here is upon 'frst
principles' theories which prescribe a route to go il'om a 
well defned microscopic dynamics to closed expressions for 
macroscopically measurable quantities. 

The formulation of a robust theory of dispersion rheology 
from microscopic starting points constitutes a formidable 
problem in nonequilibrium statistical mechanics. Although 
considerable progress has been made in this direction, 
a comprehensive constitutive theory analogous to that of 
Doi and Edwards for entangled linear polymers [21--24] 
remains to be found. At present there exist a number of 
alternative microscopic theoretical approaches to dispersion 
rheology which, despite showing admirable success within 
limited ranges of the system parameters, have so far 
been unable to provide a unif ed global picture of the 
microscopic mechanisms underlying the rheology of colloidal 
dispersions. Despite common starting points (the many-body 
Smoluchowski equation) the disparate nature of the subsequent 
approximations, each tailored to capture a particular physical 
aspect of the coopcrative particle motion, make it diff cult 
to establish clear relations between different theoretical 
approaches. A goal of this work is thus to clarifY the 
range of validity of the various theoretical approaches and to 
identifY common ground. We note that the present work is 
well complemented by a number of recent reviews addressing 
dispersion rheology t1'om both experimental [25, 26] and 
theoretical perspectives [19, 27, 21\]. 

The paper is organized as follows: in section 2 we 
will discuss briefy some traditional continuum mechanics 
approaches to rheology, both to give a feeling for the 
spirit of such work and to put into context some of the 
microscopic results presented later (in section 7). In 
section ::; we will introduce and discuss in some detail the 
Smoluchowski equation defning the microscopic dynamics 
under consideration. In section 4 we will consider the 
equilibrium and nonequilibrium phase behaviour of hard
sphere colloids in the absence of fow, which is a necessary 
pre-requisite to the subsequent discussions. In section 5 we 
will give a brief overview ofthe relevant basic phenomenology 
of dispersion rheology, including the shear thinning and shear 
thickening of colloidal fuids and the yielding of colloidal 
glasses. In section 6 we will consider the various theoretical 
approaches to treating colloidal fuids under external f ow. In 
particular, exact results for the microstructure and rheology of 
low volume fraction systems and their (approximate) extension 
to fnite fuid volume fl'actions are discussed in sections 6.2 
and 6.3, respectively. In section 7, we consider the recently 
developed mode-coupling based approaches to the rheology of 
dense colloidal suspensions which enable glass rheology to be 
addressed. Finally, in section R we will provide an outlook for 
future work and identifY possible new avenues for theoretical 
investigation. 
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2. Continuum mechanics approaches 

Rheology is primarily an experimental discipline. Indeed, one 
of the simplest experiments imaginable is to exert a force 
on a material in order to see how it deforms in response. 
More precisely, in a controlled rheological experiment one 
measures either the stress arising from a given strain or, 
more commonly, the strain accumulated following application 
of an applied stress. In practice, both stress controlled 
and strain controlled experiments are performed and provide 
complementary information regarding the response of a 
material sample. For the purpose of this review we will 
focus upon situations in which a homogeneous strain l' eld is 
prescribed from the outset. The description of experiments 
for which macroscopic stress is employed as a control 
parameter poses an enormous challenge for microscopically 
based theories and demands careful consideration of the 
nontrivial mechanisms by which the applied stress propagates 
into the sample from the boundaries. 

Given the apparent complexity of any microscopic theory, 
it is quite natural to begin f rst at a more coarse-grained level of 
description in an effort to establish the general phenomenology 
and mathematical structure of the governing equations at 
the continuum level. Historically, this methodology was 
pioneered by Maxwell in his 1863 work on viscoelasticity 
and continued to develop into the following century through 
the efforts of distinguished rheologists such as Rivlin and 
Oldroyd [29]. While much of this early work aimed 
to achieve a more fundamental mathematical understanding 
of viscoelastic response, strong additional motivation was 
provided by experiments on polymeric systems which exposed 
a large variety of interesting nonlinear rheological phenomena 
in need of theoretical explanation, Theoretical approaches to 
continuum rheology thus seek to obtain a constitutive equation 
relating the stress, a tensorial quantity describing the forces 
acting on the system [30), to the deformation history encoded 
in the strain tensor. 

The typical 'rational mechanics' approach to this problem 
is to assume a suff ciently general integral or differential 
constitutive relation between stress and strain and to then 
constrain this as much as possible via the imposition 
of certain exact or approximate macroscopic symmetry, 
conservation and invariance principles [22, 29, ::; I]. The clear 
drawback to this methodology is that the entire particulate 
system is viewed as a single continuum f eld, thus losing 
any contact to the underlying colloidal interactions and 
microstructure ultimately responsible for the macroscopic 
response (see f gure 1). As a result, such constitutive 
theories are neither material specifi nor genuinely predictive 
in character. Despite these shortcomings, the continuum 
mechanics approach to rheology has attained a great level of 
ref nement and can be applied to ft experimental data from 
a wide range of physical systems [22, 29]. Moreover, the 
experience gained through continuum mechanics modelling 
may well prove useful in guiding the construction of more 
sophisticated microscopic theories by providing constraints on 
the admissible mathematical form ofthe constitutive equations. 



2.1. The Lodge equation 

It is perhaps instructive to give an illustration of the spirit 
in which phenomenological constitutive relations may be 
constructed using continuum mechanics concepts. The 
example we choose is not only of intrinsic interest, but will also 
prove relevant to the discussion of a recent microscopically 
based theory of glass rheology [16-18] to be discussed in 
section 7. We consider a viscoelastic f1 id subject to shear 
deformation with f ow in the x-direction and shear gradient 
in the y-direction (a convention we will continue to employ 
throughout the present work). Suppose that we wish to 
determine the infnitesimal shear stress d(Jxy at time t arising 
from a small strain increment dy at an earlier time t'. As 
the material is viscoelastic, it is reasonable to assume that the 
infuence of the strain increment dy (t') = y (t') dt' on the 
stress at time t must be weighted by a decaying function of 
the intervening time t - t', in order to represent the intl ence 
of dissipative processes. Adopting a simple exponential form 
for the relaxation function it is thus intuitive to write 

[ 
t - t'J" , d(Jxy(t) = Goo exp - T yet ) dt , (I) 

where T is a relaxation time and Goo is an elastic constant (the 
inf nite frequency shear modulus). Assuming linearity, the total 
stress at time t may thus be constructed by summing up all 
of the inf nitesimal contributions over the entire f ow history, 
which we take to extend into the infnite past. We thus arrive at 

(Jxy(t) = [00 dt'Gooexp[-t~t'Jy(t')' 
Partial integration leads fnally to 

1 jt 
(Jxy(t) = dt' G(t - t')y(t, t'), 

T -CX) 

(2) 

(3) 

where G(t) = Goo exp[ -t IT] is the shear modulus and y(t, t') 
is the accumulated strain y(t, t') = .f/ ds yes). The simple 
integral relation (3) between shear stress and shear strain was 
frst considered by Boltzmann. Indeed, the assumption that the 
stress increments (1) may be summed linearly to obtain the 
total stress is often referred to as the 'Boltzmann superposition 
principle' . 

In order to extend C~) to a tensorial relation, i.e. a true 
constitutive equation, an appropriate tensorial generalization 
of the accumulated strain y (t, t') must be identif ed. For the 
spatially homogeneous deformations under consideration the 
translationally invariant deformation gradient tensor E(t, t') 
transforms a vector (,material line') at time t' to a new vector 
at later time t via ret) = E(t, t') • ret'), where EajJ = 
aralarfJ. An alternative nonlinear choice of strain measure 
is the symmetric Finger tensor B(t, t') = E(t, t')ET(t, t'). 
The Finger tensor contains information about the stretching of 
material lines during a deformation but is invariant with respect 
to solid body rotations of the material sample. For simple shear 
the Finger tensor is given explicitly by 

(

I + y2 Y 
B= Y I 

o 0 
(4) 
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where y == yet, t'). The accumulated strain in the integrand 
of equation (3) can thus be identif ed as the xy element of 
B(t, t'). This suggests that the Boltzmann integral form (3) 
may be extended using the simple ansatz 

j t G e-(t-t'l!r 
er(t) = dt' B(t, t') 00 , 

-CX) '[ 

(5) 

for the full stress tensor (see section 2.3 below for more 
justif cation of this nontrivial step). Equation (:5) is known 
as the Lodge equation in the rheological literature and 
is applicable in both the linear and nonlinear viscoelastic 
regime [22]. 

2.2. The upper-convected Maxwell equation 

The assumption of an exponentially decaying shear modulus is 
generally attributed to Maxwell, who realized that this choice 
enabled an interpolation between a purely elastic response to 
detormations rapid on the timescale set by T and a viscous, 
dissipative response in the limit of slowly varying strain f elds. 
In fact, the Lodge equation derived above is simply the integral 
form of a nonlinear (differential) Maxwell equation. In order 
to show this we frst differentiate (5) to obtain 

Der I Goo + er = 1, 
Dt T T 

(6) 

where we have introduced the upper-convected derivative [29] 

Der. ) T = er(t) - K(t er(t) - er(t) K (t), 
Dt 

(7) 

and where the velocity gradient tensor K(t) is defned in terms 
of the deformation gradient tensor via 

a, , 
E(t, t) = K(t)E(t, t). at (8) 

For an incompressible material the stress is only determined 
up to a constant isotropic term. Equation (6) may thus be 
expressed in an alternative form by frst defning a new stress 
tensor 

}j = er - Gael, (9) 

and substituting for er in equation (6). This yields 

D}j I 
+ }j=Goo(K(t)+KT(t». (10) 

Dt T 

This differential form of the Lodge equation is known as the 
upper-convected Maxwell equation [22] and is a nonlinear 
generalization of Maxwell's original scalar model to the full 
deviatoric stress tensor. Historically, the upper-convected 
Maxwell equation was frst proposed by Oldroyd [l()] directly 
on the basis of Maxwell's differential form. 

2.3. Material objectivity 

The assumption that one can go from (3) to (5) on the basis 
of a single off-diagonal element appears at frst glance to be 
rather ad hoc. On one hand, this choice can be justif ed 
retrospectively, using the fact that the Lodge equation (5) is 



derivable from a number of simple moleeular models, e.g. the 
dumbbell model for dilute polymer solutions [11]. However, 
from a continuum mechanics perspective (5) is the simplest 
generalization of (3) which satisf es the 'principle of material 
objectivity'. This principle expresses the requirement that 
the constitutive relationship between stress and strain tensors 
should be invariant with respect to rotation of either the 
material body or the observer, thus preventing an unphysical 
dependence of the stress on the state of rotation. That 
this symmetry is an approximation becomes clear when 
considering the material from a microscopic viewpoint: in 
a non inertial rotating fi'ame the apparent forces clearly 
lead to particle trajectories which depend upon the angular 
velocity. For many systems the neglect of these effects 
on the macroscopic response of the system is an extremely 
good approximation. For the overdamped colloidal dynamics 
considered in this work inertia plays no role and the principle 
of material objectivity is exactl . 

Mathematically, it is straightforward to check whether 
or not a proposed tensorial constitutive equation is material 
objective. When subject to a time-dependent rotation R(t) the 
deformation gradient tensor transforms as 

E(f, f') = R(f)E(f, fl)RT(t'), (II) 

where E is the deformation gradient in the rotating frame. The 
dependence of E upon the state of rotation arises because E 
contains information about both the stretching and rotation of 
material lines. Insertion of the transformed tensor (I I) into 
the constitutive equation for the stress thus corresponds to a 
rotation of the material sample. Material objectivity is verifed 
if the reSUlting stress tensor is given by 

U(f) = R(f)U(f)RT (t). (12) 

As noted, the Finger tensor B contains only information about 
the stretching of material lines and transforms under rotation 
according to 

B(f, f') = R(f)B(f, t')RT (f). ( 13) 

The material objectivity of the Lodge equation (5), and thus 
the upper-convected Maxwell equation (10), follows trivially 
fi'om the fact that U is a linear functional of B. Many 
phenomenological rheological models thus start by assuming 
a general functional dependence U(f) = F[B] in order to 
guarantee a rotationally invariant theory. 

The vast majority of microscopically motivated theories 
of dispersion rheology treat only a single scalar element of 
the stress tensor (generally the shear stress u xy )' Indeed, the 
rarity of microscopic tensorial constitutive theories may well 
be the primary reason for the apparent gap between continuum 
and statistical mechanical theories aiming to describe common 
phenomena. We will revisit the concept of material objectivity 
in section 7 when considering a recently proposed tensorial 
constitutive equation for dense dispersions. 

3 A useful discussion of material objectivity may be found in [33]. In 
Addition, we refer the reader to [32], which documents the insightful 
comments of de Gennes regarding this issue. 
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2.4. Beyond continuum mechanics 

In the last decade, significa t progress has been made 
in understanding the response of colloidal dispersions to 
external f ow on a level which goes beyond the tully 
coarse-grained phenomenological approaches of traditional 
continuum rheology. Important steps towards a more ref ned 
picture have been provided by studies based on mesoscopic 
models [15, 34-36]. However, "vhile such phenomenological 
approaches ean reveal generic features of the rheological 
response, they are not material specif c and can theretore 
address neither the infuence of the microscopic interactions on 
the macroscopic rheology nor the underlying microstructure, 
as encoded in the particle correlation functions. This deeper 
level of insight is provided by fully microscopic approaches 
which start from a well defned pmticle dynamics and, via a 
sequence of either exact or clearly specitie approximate steps, 
lead to closed expressions for macroscopically measurable 
quantItIes. The symmetry, invariance and conservation 
principles used as input in the construction of continuum 
theories, such as the material objectivity discussed in 
section 1.3, should then emerge directly as a consequence 
of the microscopic interactions. Such an undertaking clearly 
requires the machinery of statistical mechanics. 

Theories founded in statistical mechanics provide infor
mation regarding the con'elated motion of the constituent 
particles and are thus capable, at least in principle, of capturing 
nontrivial and potentially unexpected cooperative behaviour as 
exhibited by equilibrium and nonequilibrium phase transitions. 
This ability to capture emergent phenomena is in clear contrast 
to continuum approaches where such physical mechanisms 
must be input by hand. An additional advantage of a 
statistical mechanics based approach to rheology over the 
direct application of continuum mechanics is that important 
additional information is provided regm'ding the microstructure 
of the system, as encoded in the correlation functions. It 
thus becomes possible to connect the constitutive relations to 
the underlying correlations between the colloidal particles and 
obtain microscopic insight into the macroscopic rheological 
response. Additional motivation to theoretically 'look inside' 
the f owing system is provided by developments in the direct 
visualization and tracking of particle motion in experiments on 
colloidal dispersions (confocal microscopy) [37-39], together 
with advances in the computer simulation of model systems 
under fow [40--41]. 

Although beyond the scope of the present work, we note 
that the inf uence of steady shear fl w on glassy states has been 
addressed, albeit in an abstract setting. by generalized mean
feld theories of spin glasses [43,44]. Spin glass approaches 
have proved useful in describing the dynamical behaviour of 
quiescent systems [45]. In order to mimic the effect of shear 
f ow a nonconservative force is introduced to bias the dynamics 
and break the condition of detailed balance characterizing the 
equilibrium state [46]. While the abstract nature of these 
treatments certainly lends them a powerful generality, the lack 
of material specific ty makes diffic It a direct connection to 
experiment. 
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