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Decay estimates for the Cauchy problem for the damped
extensible beam equation

Reinhard Racke, ∗ Shuji Yoshikawa, †

Abstract

The extensible beam equation proposed by Woinovsky-Krieger [13] is a fourth order
dispersive equation with nonlocal nonlinear terms. In this paper we study the Cauchy
problem of the extended model by Ball who proposed the following model with external
and structural damping terms:

ρ∂2t u+ δ∂tu+ κ∂4xu+ η∂t∂
4
xu =

(
α+ β

∫
R
|∂xu|2dx+ γη

∫
R
∂t∂xu∂xudx

)
∂2xu.

For η > 0 this represents a Kelvin-Voigt damping. We show the unique global existence
of solution for this problem and give a precise description of the decay of solutions in
time.

1 Introduction

The nonlinear beam equation

ρ∂2t u+ κ∂4xu =

(
α + β

∫ l

0

|∂xu|2dx
)
∂2xu (1.1)

was proposed by Woinovsky-Krieger [13] (see also [6]) as a model for the transverse defection
u of an extensible beam of natural length l, where ρ, κ, α and β are positive constants. In
this article we study the initial value problem for the modified model of (1.1) proposed by
Ball [2], where he assumes that the beam has linear structural (Kelvin-Voigt) and external
(frictional) damping, that is, we consider the following problem:

ρ∂2t u+ κ∂4xu+ δ∂tu+ η∂t∂
4
xu

=

(
α + β

∫
R
|∂xu|2dx+ γη

∫
R
∂xu∂t∂xudx

)
∂2xu, (t, x) ∈ R+ × R,

u(0, ·) = f, ∂tu(0, ·) = g, x ∈ R,

(1.2)

where γ and δ are positive and η is a non-negative constant. According to the modeling
in [2], physically, in connection with the Kelvin-Voigt damping term η∂t∂

4
xu, the additional
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nonlocal term γη
∫
R ∂xu∂t∂xudx arises. Our problem approximates a sufficiently long beam

the cross-sectional area of which is proportional to the length. The initial-boundary value
problem for the equation (1.1) has been studied by many authors (see e.g. [5] and [1], etc.).

On the other hand, there seem to be no results studying the initial value problem x ∈ R,
even if η = 0. For the problem (1.2) we investigate the decay property of solutions with the
help of the technique from the damped wave equation with absorbing type nonlinearity.

Before stating our main results, we explain several related results. The damped wave
equation ∂2t u −∆u + ∂tu = f has been extensively studied. When we consider the Cauchy
problem (x ∈ Rn) of semilinear damped wave equations with absorbing type nonlinearity
f(u) = −|u|p−1u, it is important that we find suitable techniques to utilize the dissipative
property of the linearized equation. Nakao [9] proposed a technique dividing the time energy
integral appropriately estimating local portions. His technique has been used and further
developed by many authors (see [8], [10] etc.). Combining their techniques with the decay
estimate for the linearized equation, we obtain the following result.

Theorem 1.1 (Decay estimates). Let k ≥ 2 be an any integer and set

θ` := min

{
`

2
, 2

}
, θ̃` :=

{
`
2
, ` = 0, 1, 2, 3

maxm=3,4,...,` min
{
θ̃`+2−m + 1, m

2

}
` ≥ 4.

(1.3)

1. Let η = 0. For any (f, g) ∈ Hk × Hk−2, there exists unique global solution u to
(1.2) satisfying u ∈ C([0,∞), Hk) and ∂tu ∈ C([0,∞), Hk−2). Moreover, the solution
satisfies

‖∂`xu(t)‖L2 ≤ Ck
(t+ 1)θ`

(0 ≤ ` ≤ k), ‖∂t∂mx u(t)‖L2 ≤ Ck
(t+ 1)θm+2

(0 ≤ m ≤ k−2),

where Ck = C(‖f‖Hk , ‖g‖Hk−2).

2. Let η > 0. For any (f, g) ∈ Hk × Hk there exists unique global solution u to (1.2)
satisfying u ∈ C([0,∞), Hk) and ∂tu ∈ C([0,∞), Hk). Moreover, the solution satisfies

‖∂`xu(t)‖L2 ≤ C̃k

(t+ 1)θ̃`
, ‖∂t∂`xu(t)‖L2 ≤ C̃k

(t+ 1)θ̃`+2

(0 ≤ ` ≤ k),

where C̃k = C(‖f‖Hk , ‖g‖Hk).

In the case η = 0, Brito [4] considered the abstract form

ρ∂2t u+ κA2u+ δ∂tu− (α +M(|A
1
2u|2))Au,

and showed the exponential decay of solutions if δ2 6= 2αζ where he assumed that, with
ζ > 0, (Au, u) ≥ ζ|u|2. Biler [3] gave a remark related to improvements of the assumption
in [4]. In the above results the boundedness of the domain plays an essential role. In our
setting x ∈ R, however, we can not expect the exponential decay of solutions. Indeed,
the result [12] showed that the decay of solution is polynomially and it is optimal even in
the linear case. In addition, from the result [12] we guess that the decay for ‖∂xu(t)‖L2 in
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Theorem 1.1 is optimal unless we do not assume some other restriction on the data. To
obtain the decay estimates in Theorem 1.1, the lower order term plays an essential role.
Indeed, if we assumed α = 0, we only expect to be able to show the slower decay estimate
‖∂xu(t)‖L2 ≤ C(t + 1)−1/4 as mentioned in [12]. In the case η > 0, although Ball [2] gave
an existence result in the bounded domain case, there seems to be not any results for the
Cauchy problem (x ∈ R) even for the linearized case. The Kelvin-Voigt damping changes
the structure of the equation (1.2). For example, when we compare the linear estimates (2.9)
and (2.13), the later estimate for the case η > 0 can be observed a kind of regularity gain

property. The intricate exponent θ̃` is concretely given as θ̃` = 2 (` = 4, 5), 5/2 (` = 6, 7), 3
(` = 8, 9, 10), 7/2 (` = 11, 12, 13), 4 (` = 14), . . . As we will show in the proof of Lemma 3.3,

it satisfies θ̃`−1 ≤ θ̃` ≤ θ̃`−2 + 1.
This paper is organized as follows. In Section 2 we introduce several lemmas needed later

on to show the main results. In Section 3 we present the proof of the main result.
We conclude the introduction by giving notation used in this paper. We use the notation

∂t := ∂
∂t

and ∂x := ∂
∂x

. We denote several positive constants by C and Ci (i = 1, 2, 3, . . .).
The constant may change from line to line. Important dependencies of constants are denoted
by C = C(. . . ). Lp and Hs are the standard Lebesgue and Sobolev spaces, respectively.
We denote the Fourier and the Fourier inverse transforms by F and F−1 and the Fourier
transform of a function f by f̂ .

2 Preliminaries

In this section we introduce some useful lemmas and linear estimates. To derive the decay
estimate for nonlinear problem, we use the following modified Nakao inequality introduced
by Ono [10].

Lemma 2.1 ([10, Lemma 2.1]). Let φ be a nonnegative function on [0,∞), satisfying

sup
s∈[t,t+1]

φ(s)2 ≤ {k0φ(t) + k1(t+ 1)−a}{φ(t)− φ(t+ 1)}+ k2(t+ 1)−b

for some k0, k1, k2, a and b ≥ 0. Then φ has the decay property

φ(t) ≤ C(t+ 1)−θ, θ = min {a+ 1, b/2} ,

where C denotes a positive constant depending on φ(0) and the known constants a, b, . . .
appearing. In the case k2 = 0, (2.1) holds for θ = a+ 1.

The following inequalities are well-known and useful for the estimate of the nonlinear
terms.

Lemma 2.2 (see e.g. [11, Lemma 2.4]). 1. Let a > 0 and b > 0 with min{a, b} > 1. It holds∫ t

0

(t− s+ 1)−a(s+ 1)−bds ≤ C(t+ 1)−min{a,b}.

2. Let 1 > a ≥ 0, b > 0 and c > 0. It holds∫ t

0

e−c(t−s)(t− s)−a(s+ 1)−bds ≤ C(t+ 1)−b.

3



For short, throughout this paper we often denote

I(u) :=

∫
R
|∂xu|2dx, Ĩ(u) :=

∫
R
∂xu∂t∂xudx. (2.1)

We define the mild solution to (1.2) in the case ρ > 0 by the solution of the following integral
equation in the L2-sense

u(t) = K0(t)f +K1(t)g +
1

ρ

∫ t

0

K1(t− s){βI(u) + γηĨ(u)}∂2xu(s)ds, (2.2)

where K0(t)f := F−1
[
K0(t, ξ)f̂

]
and K1(t)f := F−1

[
K1(t, ξ)f̂

]
with

K0(t, ξ) := e−
1
2
a(ξ)t e

√
a(ξ)2−4b(ξ)

2
t + e−

√
a(ξ)2−4b(ξ)

2
t

2

+
a(ξ)e−

1
2
a(ξ)t

2
√
a(ξ)2 − 4b(ξ)

(
e

√
a(ξ)2−4b(ξ)

2
t − e−

√
a(ξ)2−4b(ξ)

2
t

)
,

(2.3)

K1(t, ξ) :=
e−

1
2
a(ξ)t√

a(ξ)2 − 4b(ξ)

(
e

√
a(ξ)2−4b(ξ)

2
t − e−

√
a(ξ)2−4b(ξ)

2
t

)
, (2.4)

a(ξ) :=
δ

ρ
+
η

ρ
ξ4, b(ξ) :=

κ

ρ
ξ4 +

α

ρ
ξ2. (2.5)

To prove a local existence theorem and decay estimates, we use L2-L2 estimate which
can be proved by the standard Fourier splitting method. Although we could derive Lp-Lq

estimate by using the Carlson-Beurling inequality as in [7] and [11], we only state L2-L2 case
for simplicity because we use only this case in this article.

Proposition 2.3. Let k be an any nonnegative integer and K0 and K1 be defined by (2.3)
and (2.4).
1. If η = 0, then it holds that for 0 ≤ ` ≤ k and 0 ≤ n ≤ min{k, 2}∥∥∂kxK0(t)f

∥∥
L2 ≤

C

(t+ 1)
`
2

‖∂k−`x f‖L2 + Ce−Ct‖∂kxf‖L2 , (2.6)

∥∥∂kxK1(t)f
∥∥
L2 ≤

C

(t+ 1)
`
2

‖∂k−`x f‖L2 + Ce−Ct‖∂k−nx f‖L2 . (2.7)

∥∥∂kx∂tK0(t)f
∥∥
L2 ≤

C

(t+ 1)
`
2
+1
‖∂k−`x f‖L2 + Ce−Ct‖∂kxf‖L2 , (2.8)

∥∥∂kx∂tK1(t)f
∥∥
L2 ≤

C

(t+ 1)
`
2
+1
‖∂k−`x f‖L2 + Ce−Ct‖∂kxf‖L2 . (2.9)
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2. If η > 0, then it holds that for 0 ≤ `,m ≤ k and 0 ≤ n ≤ min{k, 4}∥∥∂kxK0(t)f
∥∥
L2 ≤

C

(t+ 1)
`
2

‖∂k−`x f‖L2 + Ce−Ct‖∂kxf‖L2 , (2.10)

∥∥∂kxK1(t)f
∥∥
L2 ≤

C

(t+ 1)
`
2

‖∂k−`x f‖L2 + Ce−Ct‖∂k−nx f‖L2 , (2.11)

∥∥∂kx∂tK0(t)f
∥∥
L2 ≤

C

(t+ 1)
`
2
+1
‖∂k−`x f‖L2 + Ce−Ct‖∂kxf‖L2 , (2.12)

∥∥∂kx∂tK1(t)f
∥∥
L2 ≤

C

(t+ 1)
`
2
+1
‖∂k−`x f‖L2 +

C

eCt
‖∂k−nx f‖L2 +

C

tm/4eCt
‖∂k−mx f‖L2 . (2.13)

Proof. We first prove the inequalities (2.10)-(2.13) for the case η > 0. Since from (2.5)

a(ξ)2 − 4b(ξ) =
η2

ρ2
ξ8 +

(
2δη

ρ2
− 4κ

ρ

)
ξ4 − 4α

ρ
ξ2 +

δ2

ρ2
,

we may choose r ≤ 1 small satisfying a(ξ)2 − 4b(ξ) ≥ ∃cr > 0 for all |ξ| ≤ r, and large

R > max
{√

δκ
αη
, 1
}

satisfying a2(ξ)− 4b(ξ) ≥ ∃cR|ξ|8 > 0 for all |ξ| ≥ R.

We start proving the inequality (2.11). Observe that ||ξ|ke−C|ξ|at| ≤ C/tk/a and that for
a2 − 4b > 0

a(ξ)

2
−
√
a2(ξ)− 4b(ξ)

2
=

2b(ξ)

a(ξ) +
√
a2(ξ)− 4b(ξ)

≥ b(ξ)

a(ξ)
. (2.14)

Since b(ξ)
a(ξ)

= κξ4+αξ2

δ+ηξ4
≥ α

δ+ηr4
ξ2 (|ξ| ≤ r), we have

∣∣|ξ|kK1(t, ξ)
∣∣ ≤ ∣∣∣∣∣ |ξ|k√

a2(ξ)− 4b(ξ)

{
e
−
(
a(ξ)
2
−
√
a2(ξ)−4b(ξ)

2

)
t
− e

−
(
a(ξ)
2

+

√
a2(ξ)−4b(ξ)

2

)
t

}∣∣∣∣∣
≤ e

α
δ+ηr4

r2
∣∣∣∣ |ξ|k√cr e− α

δ+ηr4
ξ2(t+1)

∣∣∣∣+
|r|k
√
cr
e−

δ
2ρ
t ≤ C

(t+ 1)
k
2

(|ξ| ≤ r).

(2.15)

We see that for |ξ| ≥ R

a(ξ)

2
−
√
a2(ξ)− 4b(ξ)

2
≥ κ

η
, (2.16)

since ηb(ξ) ≥ κa(ξ) holds by the assumption on R. Then for |ξ| ≥ R we have

e
−
(
a(ξ)
2
−
√
a2(ξ)−4b(ξ)

2

)
t
≤ e−

κ
η
t, e

−
(
a(ξ)
2

+

√
a2(ξ)−4b(ξ)

2

)
t
≤ e−

δ
2ρ
t.

Therefore we obtain∣∣|ξ|kK1(t, ξ)
∣∣ ≤ |ξ|k
√
cR|ξ|4

(e−
κ
η
t + e−

δ
2ρ
t) ≤ C|ξ|k−4e−Ct. (2.17)

Since the function sinhx
x

is bounded on bounded sets, we see that for r ≤ |ξ| ≤ R

∣∣|ξ|kK1(t, ξ)
∣∣ ≤ t|ξ|k

2
e−

a(ξ)
2
t

∣∣∣∣∣∣e
√
a2(ξ)−4b(ξ)

2
t − e−

√
a2(ξ)−4b(ξ)

2
t

√
a2(ξ)−4b(ξ)

2
t

∣∣∣∣∣∣ ≤ C|R|kte−
δ
2ρ
t ≤ Ce−Ct. (2.18)
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Consequently it follows from Plancherel’s theorem that

‖∂kxK1(t)f‖L2 ≤ sup
|ξ|≤r

∣∣|ξ|kK1(t, ξ)
∣∣ ‖f‖L2 + sup

r≤|ξ|≤R

∣∣|ξ|kK1(t, ξ)
∣∣ ‖f‖L2

+ sup
R≤|ξ|

∣∣|ξ|4K1(t, ξ)
∣∣ ‖∂k−4x f‖L2 ≤ C

(t+ 1)
k
2

‖f‖L2 + Ce−Ct‖∂k−4x f‖L2 ,

due to (2.15), (2.17) and (2.18). This proves (2.11).
Next we show (2.10). From the same argument as (2.15) we have for |ξ| ≤ r∣∣|ξ|kK0(t, ξ)

∣∣ ≤ C(|ξ|k + |ξ|k+2 + |ξ|k+4)e
− α
δ+ηr4

ξ2(t+1)
+ Ce−

δ
2ρ
t ≤ C

(t+ 1)
k
2

. (2.19)

Since a(ξ)√
a2(ξ)−4b(ξ)

≤ δ+η|ξ|4
ρ
√
cR|ξ|4

(|ξ| ≥ R), we have∣∣|ξ|kK1(t, ξ)
∣∣ ≤ C(|ξ|k−4 + |ξ|k)(e−

κ
η
t + e−

δ
2ρ
t) ≤ C|ξ|ke−Ct (|ξ| > R), (2.20)

in a similar manner to (2.17). It holds that for r ≤ |ξ| ≤ R

∣∣|ξ|kK0(t, ξ)
∣∣ ≤ Rk

e
δ
2ρ
t

∣∣∣∣∣∣e
√
a(ξ)2−4b(ξ)

2
t + e−

√
a(ξ)2−4b(ξ)

2
t

2

∣∣∣∣∣∣+
tRka(R)

4e
δ
2ρ
t

∣∣∣∣∣∣e
√
a2(ξ)−4b(ξ)

2
t − e−

√
a2(ξ)−4b(ξ)

2
t

√
a2(ξ)−4b(ξ)

2
t

∣∣∣∣∣∣
≤ Ce−Ct + Cte−Ct ≤ Ce−Ct.

(2.21)

Then (2.10) follows from (2.19), (2.20) and (2.21).
Next, we show the estimate (2.12). Observe that

∂tK0(t, ξ) = − b(ξ)√
a(ξ)2 − 4b(ξ)

e−
a(ξ)
2
t

(
e

√
a(ξ)2−4b(ξ)

2
t − e−

√
a(ξ)2−4b(ξ)

2
t

)
. (2.22)

We have
∣∣|ξ|k∂tK0(t, ξ)

∣∣ ≤ κ+α
ρ
√
cr
|ξ|k+2e

− α
δ+ηr4

ξ2t
+ b(r)rk√

cr
e−

δ
2ρ
t ≤ C

(t+1)
k
2 +1

(|ξ| ≤ r ≤ 1), and∣∣|ξ|k∂tK0(t, ξ)
∣∣ ≤ (

α|ξ|k+2+κ|ξ|k+4

2ρ
√
cRξ4

)(
e−

κ
η
t + e−

δ
2ρ
t
)
≤ C|ξ|ke−Ct (|ξ| ≥ R). From the same

argument as in the estimates for K1 ((2.18)), it immediately follows that
∣∣|ξ|k∂tK0(t, ξ)

∣∣ ≤
Cte−Ct ≤ Ce−Ct for r ≤ |ξ| ≤ R. Then we arrive at (2.12).

Next we show (2.13). Observe that

∂tK1(t, ξ)

=

{
e
√
a(ξ)2−4b(ξ)

2
t + e−

√
a(ξ)2−4b(ξ)

2
t

2
− a(ξ)

2
√
a(ξ)2 − 4b(ξ)

(
e

√
a(ξ)2−4b(ξ)

2
t − e−

√
a(ξ)2−4b(ξ)

2
t

)}
e−

1
2
a(ξ)t

=
−2b(ξ)√

a(ξ)2 − 4b(ξ)
(√

a(ξ)2 − 4b(ξ) + a(ξ)
)e−(a(ξ)2

−
√
a2(ξ)−4b(ξ)

2

)
t

+

√
a(ξ)2 − 4b(ξ) + a(ξ)

2
√
a(ξ)2 − 4b(ξ)

e
−
(
a(ξ)
2

+

√
a2(ξ)−4b(ξ)

2

)
t
.

(2.23)
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We have for |ξ| ≤ r ≤ 1

∣∣|ξ|k∂tK1(t, ξ)
∣∣ ≤ κ+ α

ρcr
|ξ|k+2e

− α
δ+ηr4

ξ4t
+
a(r)rk
√
cr

e−
δ
2ρ
t ≤ C

(t+ 1)
k
2
+1
, (2.24)

because ∣∣∣∣∣∣ 2b(ξ)√
a(ξ)2 − 4b(ξ)

(√
a(ξ)2 − 4b(ξ) + a(ξ)

)
∣∣∣∣∣∣ ≤ b(ξ)

a(ξ)2 − 4b(ξ)
≤ κ+ α

ρcr
ξ2,

∣∣∣∣∣
√
a(ξ)2 − 4b(ξ) + a(ξ)

2
√
a(ξ)2 − 4b(ξ)

∣∣∣∣∣ ≤ a(ξ)√
a(ξ)2 − 4b(ξ)

≤ a(r)
√
cr
.

For |ξ| ≥ R ≥ 1 we obtain from (2.16)∣∣∣∣∣∣ 2b(ξ)√
a(ξ)2 − 4b(ξ)

(√
a(ξ)2 − 4b(ξ) + a(ξ)

)e−(a(ξ)2
−
√
a2(ξ)−4b(ξ)

2

)
t

∣∣∣∣∣∣
≤ b(ξ)

a(ξ)2 − 4b(ξ)
e−

κ
η
t ≤ κ+ α

ρcR
e−

κ
η
tξ−4

and ∣∣∣∣∣a(ξ) +
√
a2(ξ)− 4b(ξ)

2
√
a2(ξ)− 4b(ξ)

e
−
(
a(ξ)
2

+

√
a2(ξ)−4b(ξ)

2

)
t

∣∣∣∣∣ ≤ a(ξ)√
a2(ξ)− 4b(ξ)

e−
a(ξ)
2
t

≤ δ + η

ρ
√
cR
e−

δ
2ρ
te−

η
2ρ
ξ4t ≤ Ce−Ct|ξ|−m

∣∣∣|ξ|me−Ctξ4∣∣∣ ≤ C

tm/4eCt
|ξ|−m.

Then we obtain for nonnegative integers k and ` and an integer n ∈ [0, 4]

∣∣|ξ|k∂tK1(t, ξ)
∣∣ ≤ ∣∣∣∣∣ |ξ|k−4√

cR

(
a(ξ)

2
−
√
a2(ξ)− 4b(ξ)

2

)
e
−
(
a(ξ)
2
−
√
a2(ξ)−4b(ξ)

2

)
t

∣∣∣∣∣
+

∣∣∣∣∣ |ξ|k−4√
cR

(
a(ξ)

2
+

√
a2(ξ)− 4b(ξ)

2

)
e
−
(
a(ξ)
2

+

√
a2(ξ)−4b(ξ)

2

)
t

∣∣∣∣∣ ≤ C

eCt
|ξ|k−n +

C

tm/4eCt
|ξ|k−m.

From the same argument as in (2.21) we see that
∣∣|ξ|k∂tK1(t, ξ)

∣∣ ≤ Cte−Ct+Ce−Ct ≤ Ce−Ct

(r ≤ |ξ| ≤ R). Then we can establish (2.13).
In the last part of the proof, we consider now the case η = 0. The inequalities (2.6) and

(2.7) can be found in Propositions 3.1 and 3.2 in [11] as a special case (q = r = 2). Therefore
we only show (2.8) and (2.9). Let us choose small r < 1 satisfying a2− 4b(r) > 0 and R > 1
satisfying a2 − 4b(R) < 0. We write c̃r := a2 − 4b(r) and define c̃R by a positive constant
satisfying a2 − 4b(ξ) < −c̃Rξ4 for all |ξ| > R. Recalling (2.22), we have for |ξ| < r < 1

∣∣|ξ|k∂tK0(t, ξ)
∣∣ ≤ 2(κ+ α)|ξ|k+2√

a2 − 4b(r)
e−

α
δ
ξ2t +

b(r)√
a2 − 4b(r)

e−
δ
2ρ
t ≤ C

(t+ 1)
k
2
+1
.

7



It holds that for |ξ| > R > 1

∣∣|ξ|k∂tK0(t, ξ)
∣∣ ≤ 2(κ+ α)|ξ|k+4

√
c̃Rξ2

e−
δ
2ρ
t

(∣∣∣∣e√4b(ξ)−a2
2

it

∣∣∣∣+

∣∣∣∣e√4b(ξ)−a2
2

it

∣∣∣∣) ≤ C|ξ|k+2e−Ct.

In an argument similar to (2.18) for r ≤ |ξ| ≤ R we see

∣∣|ξ|k∂tK0(t, ξ)
∣∣ ≤ tRkb(R)

2
e−

δ
2ρ
t

∣∣∣∣∣∣e
√
a2−4b(ξ)

2
t − e−

√
a2−4b(ξ)

2
t

√
a2−4b(ξ)

2
t

∣∣∣∣∣∣ ≤ Ce−Ct, (2.25)

with the help of the boundedness of the functions sinhx
x

and sinx
x

in bounded sets.
Lastly we show (2.9). Recalling (2.23) and letting η = 0 in (2.24), we have for |ξ| ≤ r

∣∣|ξ|k∂tK1(t, ξ)
∣∣ ≤ 2(κ+ α)

ρ(a2 − 4b(r))
|ξ|k+2e−

α
δ
ξ2t +

a(r)rk
√
cr

e−
δ
2ρ
t ≤ C

(t+ 1)
k
2
+1
, (2.26)

and for |ξ| ≥ R ∣∣|ξ|k∂tK1(t, ξ)
∣∣ ≤ C|ξ|ke−

δ
2ρ
t.

From the same argument as above, we see
∣∣|ξ|k∂tK1(t, ξ)

∣∣ ≤ Ce−Ct (r ≤ |ξ| ≤ R). Then we
obtain (2.9). This completes the proof of Proposition 2.3.

An existence result in a suitable setting can be found in Brito [4] for the case η = 0 and
in Ball [2] for the case η > 0, for bounded domains. Although the proof for the unbounded
domain case is also not too difficult, we show it here in both cases η = 0 and η > 0,
respectively, for self-containedness. By using the local existence and the decay estimate for
nonlinear problem given later, the unique global existence can then easily be shown.

Proposition 2.4 (Local existence and uniqueness). Let k be an any nonnegative integer.

1. Let η ≥ 0. For any (f, g) ∈ Hk+2 × Hk, there exists T = T (‖f‖Hk+2 , ‖g‖Hk) such
that there exists a unique mild solution u to (1.2) satisfying u ∈ C([0, T ], Hk+2), ∂tu ∈
C([0, T ], Hk).

2. Let η > 0. For any (f, g) ∈ Hk+2 × Hk+2, there exists T = T (‖f‖Hk+2 , ‖g‖Hk+2)
such that there exists a unique mild solution u to (1.2) satisfying u ∈ C([0, T ], Hk+2),
∂tu ∈ C([0, T ], Hk+2).

We remark that we regard Ĩ(u) as −
∫
R ∂tu∂

2
xudx for the problem with η > 0 in k = 0 .

Proof. 1. To establish the local existence result, we define a nonlinear mapping by:

Φ[u] := K0(t)f +K1(t)g +
1

ρ

∫ t

0

K1(t− s){βI(u(s)) + γηĨ(u(s))}∂2xu(s)ds

8



and the ball XT := {u | ‖u‖X ≤ M}, where ‖u‖X := ‖u‖L∞T Hk+2 + ‖∂tu‖L∞T Hk . We shall
show that the map Φ is a contraction mapping on XT . From Proposition 2.3 it obviously
holds that

‖K0(t)f‖Hk+2 + ‖K1(t)g‖Hk+2 ≤ C(‖f‖Hk+2 + ‖g‖Hk),

‖∂tK0f‖Hk + ‖∂tK1(t)g‖Hk ≤ C(‖f‖Hk + ‖g‖Hk),∥∥∥∥∫ t

0

K1(t− s){βI(u(s)) + γηĨ(u(s))}∂2xu(s)ds

∥∥∥∥
Hk+2

≤ C

∫ t

0

(‖∂xu(s)‖2L2 + ‖∂tu(s)‖L2‖∂2xu(s)‖L2)‖u(s)‖Hk+2ds,∥∥∥∥∂t ∫ t

0

K1(t− s){βI(u(s)) + γηĨ(u(s))}∂2xu(s)ds

∥∥∥∥
Hk

≤ C

∫ t

0

(‖∂xu(s)‖2L2 + ‖∂tu(s)‖L2‖∂2xu(s)‖L2)‖u(s)‖Hk+2ds.

where in the last inequality we have used the fact K1(0) = O. Then we have

‖Φ[u]‖X ≤ C(‖f‖Hk+2 + ‖g‖Hk) + CT‖u‖3X .

From the same argument we easily deduce that

‖Φ[u]− Φ[ũ]‖X ≤ C sup
0≤t≤T

∫ t

0

‖(βI(u) + γηĨ(u))∂2xu− (βI(ũ) + γηĨ(ũ))∂2xũ‖L2ds

≤ CT (‖u‖2X + ‖ũ‖2X)‖u− ũ‖X .

This implies the desired result by choosing M = 2C(‖g‖Hk + ‖f‖Hk+2) and T < 1/(2CM2).
2. The same argument as above with the help of the estimate (2.13) yields the result for
η > 0. Indeed, if we set ‖u‖X := ‖u‖L∞T Hk+2 + ‖∂tu‖L∞T Hk+2 (k ≥ 0), then by (2.13) as
n = m = 2 we have∥∥∥∥∂k+2

x ∂t

∫ t

0

K1(t− s){βI(u(s)) + γηĨ(u(s))}∂2xu(s)ds

∥∥∥∥
L2

≤ C

∫ t

0

(
1 +

1

(t− s)1/2eC(t−s)

)
(‖∂xu(s)‖2L2 + ‖∂tu(s)‖L2‖∂2xu(s)‖L2)‖∂k+2

x u(s)‖L2ds

≤ C‖u‖3X(T + T 1/2).

Therefore by choosing small T satisfying CM2(T + T 1/2) < 1/2, we have desired result.

3 Asymptotic behavior

Unique local in time existence of mild solution has been proved in Section 2, and hence, once
we show a priori estimates corresponding to the local existence results, we can extend the
local solution to a global one. Therefore, we concentrate on the topics on the derivation of
the decay estimates (3.10) of the solution to (1.2).
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As we have already seen in Proposition 2.3, we should split the arguments into the case
η = 0 and the case η > 0. However, the decay of the energy Eρ(t) which is defined by

Eρ(t) :=
ρ

2
‖∂tu‖2L2 +

κ

2
‖∂2xu‖2L2 +

α

2
‖∂xu‖2L2 +

β

4
‖∂xu‖4L2 (3.1)

can be proved by the same arguments.

Lemma 3.1 (Decay of energy). Let η ≥ 0. Assume that (f, g) ∈ H2 × L2. Then the
solution to (1.2) constructed in Proposition 2.4 satisfies Eρ(t) ≤ C2(t + 1)−1, where C2 =
C(‖f‖H2 , ‖g‖L2).

Proof. Multiplying (1.2) by ∂tu yields

∂tEρ(t) + A(t) = 0, (3.2)

where A(t) := δ‖∂tu‖2L2 + η‖∂t∂2xu‖2L2 + γη
(∫

R ∂xu∂t∂xudx
)2

. Next, multiplying (1.2) by u,
we obtain

∂t

(
η

2
‖∂2xu‖2L2 + ρ

∫
R
u∂tudx+

γη

4
‖∂xu‖4L2 +

δ

2
‖u‖L2

)
+ κ‖∂2xu‖2L2 + α‖∂xu‖2L2 + β‖∂xu‖4L2 = ρ‖∂tu‖2L2 .

(3.3)

Integrating the resulting equality (3.3) with respect to time variable over [0, t], we have the
following inequality

η

2
‖∂2xu(t)‖2L2 +

γη

4
‖∂xu(t)‖4L2 +

δ

2
‖u(t)‖2L2 ≤

η

2
‖∂2xf‖2L2 +

γη

4
‖∂xf‖4L2 +

δ

2
‖f‖2L2

+ ρ‖f‖L2‖g‖L2 + ρ‖u(t)‖L2‖∂tu(t)‖L2 + ρ

∫ t

0

‖∂tu(s)‖2L2ds ≤ C + C‖u(t)‖L2 ,

with the help of the boundedness of ‖∂tu(t)‖L2 and
∫ t
0
‖∂tu(s)‖2L2ds, due to (3.2). Therefore

we obtain
η

2
‖∂2xu(t)‖2L2 +

γη

4
‖∂xu(t)‖4L2 +

δ

2
‖u(t)‖2L2 ≤ C. (3.4)

We shall show that

sup
s∈[t,t+1]

Eρ(s) ≤ C {Eρ(t)− Eρ(t+ 1)}+ C
√
Eρ(t)− Eρ(t+ 1). (3.5)

From (3.2) we have Eρ(t) − Eρ(t + 1) =
∫ t+1

t
A(s)ds. Using the mean value theorem, there

exist τ1 ∈ [t, t+ 1/4] and τ2 ∈ [t+ 3/4, t+ 1] satisfying 1
4
A(τ1) =

∫ t+ 1
4

t
A(s)ds and 1

4
A(τ2) =∫ t+1

t+ 3
4
A(s)ds. Then we obtain

1

4
max {A(τ1), A(τ2)} ≤ Eρ(t)− Eρ(t+ 1). (3.6)
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Here, from (3.3) we have∫ τ2

τ1

(
ρ‖∂tu‖2L2 + κ‖∂2xu‖2L2 + α‖∂xu‖2L2 + β‖∂xu‖4L2

)
ds

= −δ
∫ τ2

τ1

∫
R
u∂tudxds+ ρ

∫
R
u(τ1)∂tu(τ1)dx− ρ

∫
R
u(τ2)∂tu(τ2)dx

− η
∫ τ2

τ1

∫
R
∂2xu∂t∂

2
xudxds− γη

∫ τ2

τ1

(∫
R
∂xu∂t∂xudx

∫
R
(∂xu)2dx

)
ds+ 2ρ

∫ τ2

τ1

‖∂tu(s)‖2L2ds

≤ δ

∫ t+1

t

‖u(s)‖L2‖∂tu(s)‖L2ds+ ρ‖u(τ1)‖L2‖∂tu(τ1)‖L2 + ρ‖u(τ2)‖L2‖∂tu(τ2)‖L2

+ η

∫ t+1

t

‖∂2xu(s)‖L2‖∂t∂2xu(s)‖L2ds+ γη

∫ t+1

t

∣∣∣∣∫
R
∂xu∂t∂xudx

∣∣∣∣ ‖∂xu(s)‖2L2ds

+ 2ρ

∫ t+1

t

‖∂tu(s)‖2L2ds

≤ C

(∫ t+1

t

‖∂tu(s)‖2L2ds

) 1
2

+ C‖∂tu(τ1)‖L2 + C‖∂tu(τ2)‖L2 + C

(∫ t+1

t

‖∂t∂2xu(s)‖2L2ds

) 1
2

+ C

(∫ t+1

t

∣∣∣∣∫
R
∂xu∂t∂xudx

∣∣∣∣2 ds
) 1

2

+ 2ρ

∫ t+1

t

‖∂tu(s)‖2L2ds

≤ C
√
Eρ(t)− Eρ(t+ 1) + C{Eρ(t)− Eρ(t+ 1)},

due to (3.4). Thus we conclude that∫ τ2

τ1

Eρ(s)ds ≤ C
√
Eρ(t)− Eρ(t+ 1) + C{Eρ(t)− Eρ(t+ 1)}.

By using the mean value theorem again, there exists τ0 ∈ [τ1, τ2] satisfying (τ2− τ1)Eρ(τ0) =∫ τ2
τ1
Eρ(s)ds. Since τ2 − τ1 ≥ 1/2 > 0, we have Eρ(τ0) ≤ C

√
Eρ(t)− Eρ(t+ 1) + C{Eρ(t)−

Eρ(t+ 1)}. From (3.2) for any τ ∈ [τ0, t+ 1]

Eρ(τ0) = Eρ(τ) +

∫ τ

τ0

A(s)ds ≥ Eρ(τ), (3.7)

and for any τ ∈ [t, τ0]

Eρ(τ) ≤ Eρ(τ0) +

∫ t+1

t

A(s)ds = Eρ(τ0) + {Eρ(t)− Eρ(t+ 1)}. (3.8)

Combining (3.7) and (3.8) yields (3.5). It follows from (3.5) that

sup
s∈[t,t+1]

Eρ(s)
2 ≤

[
C{Eρ(t)− Eρ(t+ 1)}+ C

√
Eρ(t)− Eρ(t+ 1)

]2
≤ C {Eρ(t)− Eρ(t+ 1)}2 + C {Eρ(t)− Eρ(t+ 1)}
≤ C {Eρ(t)− Eρ(t+ 1)} {Eρ(t)− Eρ(t+ 1) + 1}
≤ C {Eρ(t)− Eρ(t+ 1)} {Eρ(t) + 1} .

(3.9)

Then by Lemma 2.1 we have the desired result.
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From Lemma 3.1 we have the following a priori estimates:

‖u(t)‖L2 ≤ C2, ‖∂xu(t)‖L2 + ‖∂tu(t)‖L2 + ‖∂2xu(t)‖L2 ≤ C2(t+ 1)−
1
2 . (3.10)

By applying Proposition 2.3 to the Duhamel formula (2.2), we can increase the decay rate
of ‖∂tu(t)‖L2 and ‖∂tu(t)‖L2 , and particularly in the case η > 0 also ‖∂t∂2xu(t)‖L2 .

Lemma 3.2. Let η ≥ 0. Assume that (f, g) ∈ H2×L2. Then the solution for (1.2) satisfies

‖∂tu(t)‖L2 + ‖∂2xu(t)‖L2 ≤ C2

t+ 1
. (3.11)

In addition, in the case η > 0, if we assume g ∈ H2, the solution also satisfies

‖∂2x∂tu(t)‖ ≤ C̃2

(t+ 1)2
. (3.12)

Proof. From (3.10) we see that |I(u(t))| + |Ĩ(u(t))| ≤ C/(t + 1). By applying Proposition
2.3 to the Duhamel formula (2.2), we have

‖∂2xu(t)‖ ≤
∥∥∂2xK1(t)g

∥∥
L2 +

∥∥∂2xK0(t)f
∥∥
L2 +

∫ t

0

C

s+ 1
‖∂2xK1(t− s)∂2xu(s)‖L2ds

≤ C

t+ 1
(‖f‖H2 + ‖g‖L2) +

∫ t

0

C‖∂xu(s)‖L2

(s+ 1)(t− s+ 1)
3
2

ds+

∫ t

0

C‖∂2xu(s)‖L2

(s+ 1)eC(t−s)ds

≤ C

t+ 1
+

∫ t

0

C

(t− s+ 1)
3
2 (s+ 1)

3
2

ds+

∫ t

0

C

(s+ 1)
3
2 eC(t−s)

ds

≤ C

t+ 1
+

C

(t+ 1)
3
2

≤ C

t+ 1
,

(3.13)

thanks to Lemma 2.2, where we have used (2.7) of (2.11) as k = 4, ` = 3 and n = 2 in the
nonlinear term. By differentiating (2.2) with respect to the time variable, we also obtain

‖∂tu(t)‖ ≤ ‖∂tK1(t)g‖L2 + ‖∂tK0(t)f‖L2 +

∫ t

0

C

s+ 1
‖∂tK1(t− s)∂2xu(s)‖L2ds

≤ C

t+ 1
(‖f‖H2 + ‖g‖L2) +

∫ t

0

C‖∂xu(s)‖L2

(s+ 1)(t− s+ 1)
3
2

ds+

∫ t

0

C‖∂2xu(s)‖L2

(s+ 1)eC(t−s)ds

≤ C

t+ 1
+

∫ t

0

C

(t− s+ 1)
3
2 (s+ 1)

3
2

ds+

∫ t

0

C

(s+ 1)2eC(t−s)ds

≤ C

t+ 1
+

C

(t+ 1)
3
2

≤ C

t+ 1
,

thanks to (2.8), (2.9) (or (2.12), (2.13)) and (3.13). Observe that the estimate (2.13) is the
same as (2.9) if we choose n = m = 0. This implies the estimate (3.11).
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Next, we show the decay estimate (3.12) for ‖∂2x∂tu‖L2 in the case η > 0. By the Duhamel
formula we obtain

‖∂2x∂tu(t)‖L2 ≤ C

(t+ 1)2
(‖f‖H2 + ‖g‖H2)

+

∫ t

0

C

s+ 1

(
‖∂2xu(s)‖L2

(t− s+ 1)
2
2
+1

+
‖∂2xu(s)‖L2

eC(t−s) +
‖∂2xu(s)‖L2

(t− s)1/2eC(t−s)

)
ds

≤ C

(t+ 1)2
+

∫ t

0

(
C

(s+ 1)2(t− s+ 1)2
+

C

(s+ 1)2(t− s)1/2eC(t−s)

)
ds ≤ C

(t+ 1)2
,

with the help of (2.13) in ` = m = n = 2. This completes the proof.

Higher-order energy estimates help us to show decay estimate of higher-order norms of
the solution.

Lemma 3.3. Suppose that k ≥ 3, and the exponents θk and θ̃k are given by (1.3).
1. Let η = 0. If we assume (f, g) ∈ Hk ×Hk−2, the mild solution for (1.2) satisfies

‖∂k−2x ∂tu(t)‖L2 + ‖∂kxu(t)‖L2 ≤ Ck
(t+ 1)θk

.

2. Let η > 0. If we assume (f, g) ∈ Hk × Hk, the mild solution u ∈ C([0,∞);Hk) ∩
C1([0,∞);Hk) for (1.2) satisfies

‖∂kxu(t)‖L2 ≤ C̃k

(t+ 1)θ̃k
, ‖∂kx∂tu(t)‖L2 ≤ C̃k

(t+ 1)θ̃k+2

.

Proof. The case η > 0 is rather easy, we show it first. Let k ≥ 3. From the Duhamel formula
(2.2) and Proposition 2.3 with n = 3 we see that

‖∂kxu(t)‖L2 ≤
∥∥∂kxK1(t)g

∥∥
L2 +

∥∥∂kxK0(t)f
∥∥
L2 +

∫ t

0

C

s+ 1
‖∂kxK1(t− s)∂2xu(s)‖L2ds

≤ C

(t+ 1)
k
2

(‖f‖Hk + ‖g‖Hk) +

∫ t

0

C

s+ 1

(
‖∂k+2−`

x u(s)‖L2

(t− s+ 1)
`
2

+
‖∂k−1x u(s)‖L2

eC(t−s)

)
ds.

For k = 3, choosing ` = 3∫ t

0

‖∂2xu(s)‖L2

(s+ 1)(t− s+ 1)
3
2

ds ≤
∫ t

0

C

(s+ 1)2(t− s+ 1)
3
2

ds ≤ C

(t+ 1)
3
2

,

so we obtain

‖∂3xu(t)‖L2 ≤ C

(t+ 1)
3
2

+
C

(t+ 1)
3
2

+
C

(t+ 1)2
≤ C

(t+ 1)
3
2

.

We show that θ̃k is non-decreasing. From the definition we immediately see that θ4 = 2.
For some k ≥ 5, we assume that θ̃k−1 ≥ θ̃k−2 ≥ · · · ≥ θ̃0. Then from the definition of θ̃k we
have

θ̃k = max
j=2,...,k−1

min

{
θ̃(k−1)+2−j + 1,

j + 1

2

}
≥ max

j=3,...,k−1
min

{
θ̃(k−1)+2−j + 1,

j

2

}
= θ̃k−1,
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which implies θ̃k ≥ θ̃k−1 ≥ · · · ≥ θ̃0 for any k by induction. Moreover, it follows from the
definition and the non-decreasing property that

θ̃k ≤ min{θ̃k−1 + 1, k/2}. (3.14)

Since from Lemma 2.2∫ t

0

‖∂k+2−`
x u(s)‖L2

(s+ 1)(t− s+ 1)
`
2

ds ≤
∫ t

0

C

(s+ 1)θ̃k+2−`+1(t− s+ 1)
`
2

ds ≤ C

(t+ 1)min{θ̃k+2−`+1, `/2}
,

and ∫ t

0

‖∂k−1x u(s)‖L2

(s+ 1)eC(t−s)ds ≤
∫ t

0

C

(s+ 1)θ̃k−1+1eC(t−s)
ds ≤ C

(t+ 1)θ̃k−1+1
,

we obtain

‖∂kxu(t)‖L2 ≤ C

(t+ 1)k/2
+

C

(t+ 1)θ̃k
+

C

(t+ 1)θ̃k−1+1
≤ C

(t+ 1)θ̃k
,

due to (3.14).
Similarly, from (2.12) and (2.13) with n = m = 2,

‖∂kx∂tu(t)‖L2 ≤
∥∥∂kx∂tK1(t)g

∥∥
L2 +

∥∥∂kx∂tK0(t)f
∥∥
L2 +

∫ t

0

C

s+ 1
‖∂kx∂tK1(t− s)∂2xu(s)‖L2ds

≤ C

(t+ 1)
k
2
+1

(‖f‖Hk + ‖g‖Hk)

+

∫ t

0

C

s+ 1

(
‖∂k+2−`

x u(s)‖L2

(t− s+ 1)
`
2
+1

+
‖∂kxu(s)‖L2

eC(t−s) +
‖∂kxu(s)‖L2

(t− s) 1
2 eC(t−s)

)
ds

≤ C

(t+ 1)
k
2
+1

+

∫ t

0

C

(s+ 1)θ̃k+2−`+1(t− s+ 1)
`
2
+1
ds+

∫ t

0

C

(s+ 1)θ̃k+1eC(t−s)
ds

+

∫ t

0

C

(s+ 1)θ̃k+1(t− s) 1
2 eC(t−s)

ds.

We easily deduce that max`=3,4,...,k+2 min
{
θ̃k+2−` + 1, `

2
+ 1
}

= θ̃k+2 and θ̃k+2 ≤ θ̃k + 1.

Therefore from Lemma 2.2 we conlude that

‖∂kx∂tu(t)‖ ≤ C

(t+ 1)
k+2
2

+
C

(t+ 1)θ̃k+2

+
C

(t+ 1)θ̃k+1
≤ C

(t+ 1)θ̃k+2

,

which completes the proof in the case η > 0.
Next we show the estimate in the case η = 0. By using the Duhamel formula (2.2),

Lemma 2.2 and Proposition 2.3 again, we have

‖∂k+2
x u(t)‖ ≤

∥∥∂k+2
x K1(t)g

∥∥
L2 +

∥∥∂k+2
x K0(t)f

∥∥
L2 +

∫ t

0

C

s+ 1
‖∂k+2

x K1(t− s)∂2xu(s)‖L2ds

≤ C

(t+ 1)
k+2
2

(‖f‖Hk+2 + ‖g‖Hk) +

∫ t

0

C

s+ 1

(
‖∂k+4−`

x u(s)‖L2

(t− s+ 1)
`
2

+
‖∂k+2

x u(s)‖L2

eC(t−s)

)
ds.

(3.15)
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Similarly, from (2.8) and (2.9)

‖∂kx∂tu(t)‖ ≤
∥∥∂kx∂tK1(t)g

∥∥
L2 +

∥∥∂kx∂tK0(t)f
∥∥
L2 +

∫ t

0

C

s+ 1
‖∂kx∂tK1(t− s)∂2xu(s)‖L2ds

≤ C

(t+ 1)
k
2
+1

(‖f‖Hk + ‖g‖Hk) +

∫ t

0

C

s+ 1

(
‖∂k+2−`

x u(s)‖L2

(t− s+ 1)
`
2
+1

+
‖∂k+2

x u(s)‖L2

eC(t−s)

)
ds.

(3.16)

We write uk := ∂kxu and

Eρ,k(t) :=
ρ

2
‖∂tuk‖2L2 +

κ

2
‖∂2xuk‖2L2 +

α

2
‖∂xuk‖2L2 +

β

2
‖∂xu‖2L2‖∂xuk‖4L2 . (3.17)

We shall show the decay of the energy (3.17) under the assumptions

‖∂k+1
x u‖L2 ≤ C

(t+ 1)θk−1
, ‖∂kxu‖L2 ≤ C

(t+ 1)θk−2
. (3.18)

By differentiating the equation (1.2), we see that

ρ∂2t uk + κ∂4xuk + δ∂tuk =

(
α + β

∫
R
|∂xu|2dx

)
∂2xuk. (3.19)

Multiplying with ∂tuk yields

∂tEρ,k(t) + δ‖∂tuk‖2L2 = Bρ,k(t), (3.20)

where Bρ,k(t) := β‖∂xuk‖2L2

∫
R ∂t∂xu∂xudx. Multiplying uk to (3.19) yields

δ

∫
R
uk∂tukdx+ ρ∂t

∫
R
uk∂tukdx+ κ‖∂2xuk‖2L2 +α‖∂xuk‖2L2 + β‖∂xu‖2L2‖∂xuk‖2L2 = ρ‖∂tuk‖2L2 .

(3.21)
By the mean value theorem, there exist τ1 ∈ [t, t+ 1/4] and τ2 ∈ [t+ 3/4, t+ 1] satisfying

1

4
‖∂tuk(τ1)‖2L2 =

∫ t+ 1
4

t

‖∂tuk(s)‖2L2ds,
1

4
‖∂tuk(τ2)‖2L2 =

∫ t+1

t+ 3
4

‖∂tuk(s)‖2L2ds.

Then we obtain from (3.20)

δ

4
max

{
‖∂tuk(τ1)‖2L2 , ‖∂tuk(τ2)‖2L2

}
≤ Eρ,k(t)−Eρ,k(t+ 1) +

∫ t+1

t

Bρ,k(s)ds =: Fρ,k(t) (≥ 0).

15



Here from (3.21) we have∫ τ2

τ1

(
ρ‖∂tuk‖2L2 + κ‖∂2xuk‖2L2 + α‖∂xuk‖2L2 + β‖∂xu‖2L2‖∂xuk‖2L2

)
(s)ds

≤ δ

∫ t+1

t

‖uk(s)‖L2‖∂tuk(s)‖L2ds+ ρ‖uk(τ1)‖L2‖∂tuk(τ1)‖L2

+ ρ‖uk(τ2)‖L2‖∂tuk(τ2)‖L2 + 2ρ

∫ t+1

t

‖∂tuk(s)‖2L2ds

≤ C

(t+ 1)θk−2

(∫ t+1

t

‖∂tuk(s)‖2L2ds

) 1
2

+
C

(t+ 1)θk−2
‖∂tuk(τ1)‖L2

+
C

(t+ 1)θk−2
‖∂tuk(τ2)‖L2 + 2ρ

∫ t+1

t

‖∂tuk(s)‖2L2ds.

Thus we conclude that
∫ τ2
τ1
Eρ,k(s)ds ≤ C

(t+1)θk−2

√
Fρ,k(t) + CFρ,k(t). By using the mean

value theorem, there exists τ0 ∈ [τ1, τ2] satisfying (τ2 − τ1)Eρ,k(τ0) =
∫ τ2
τ1
Eρ,k(s)ds. Since

τ2 − τ1 ≥ 1/2 > 0, we see

Eρ,k(τ0) ≤
C

(t+ 1)θk−2

√
Fρ,k(t) + CFρ,k(t).

It follows from integrating (3.20) that for any τ ∈ [τ0, t+ 1]

Eρ,k(τ0) +

∫ τ

τ0

B(s)ds = Eρ,k(τ) + δ

∫ τ

τ0

‖∂tu(s)‖2L2ds ≥ Eρ,k(τ). (3.22)

Since Fρ,k(t) = δ
∫ t+1

t
‖∂tuk(s)‖2L2ds, we have for any τ ∈ [t, τ0]

Eρ,k(τ) = Eρ,k(τ0) + δ

∫ τ0

τ

‖∂tuk(s)‖2L2ds−
∫ τ0

τ

Bρ,k(s)ds ≤ Eρ,k(τ0) + Fρ,k(t) +

∫ t+1

t

|Bρ,k(s)|ds.

(3.23)

Combining (3.22) and (3.23) yields

sup
τ∈[t,t+1]

Eρ,k(τ) ≤ C

(t+ 1)θk−2

√
Fρ,k(t) + CFρ,k(t) +

∫ t+1

t

|Bρ,k(s)|ds.

From (3.11) and the assumption (3.18) we see that

|Bρ,k(t)| ≤ ‖∂xuk(t)‖2L2‖∂tu(t)‖L2‖∂2xu(t)‖L2 ≤ C

(t+ 1)2θk−1+2
,

and from this we also have

Eρ,k(t+ 1)− Eρ,k(t) ≤
C

(t+ 1)2θk−1+2
, Eρ,k(t+ 1) ≤ C. (3.24)
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Therefore, we obtain

sup
τ∈[t,t+1]

Eρ,k(τ)2 ≤ C

(t+ 1)2θk−2
Fρ,k(t) + CFρ,k(t)

2 +
C

(t+ 1)4θk−1+4

≤ C

(
Eρ,k(t) +

1

(t+ 1)2θk−2

)
{Eρ,k(t)− Eρ,k(t+ 1)}+

C

(t+ 1)2θk−1+2
,

where we have used the fact that from (3.24)

Fρ,k(t)
2 ≤ C{Eρ,k(t)− Eρ,k(t+ 1)}2 +

C

(t+ 1)4θk−1+4

= CEρ,k(t){Eρ,k(t)− Eρ,k(t+ 1)}+ CEρ,k(t+ 1){Eρ,k(t+ 1)− Eρ,k(t)}+
C

(t+ 1)4θk−1+4

≤ CEρ,k(t){Eρ,k(t)− Eρ,k(t+ 1)}+
C

(t+ 1)2θk−1+2

follows. Thus we conclude from Lemma 2.1 that Eρ,k(t) ≤ C

(t+1)min{2θk−2+1,θk−1+1} , so we have

‖∂kx∂tu(t)‖L2 + ‖∂k+2
x u(t)‖L2 ≤ C

(t+ 1)min{θk−2+1/2, (θk−1+1)/2} .

For k = 1, it holds that min{θ−1 + 1/2, (θ0 + 1)/2} = 1. Substituting this into (3.15) with
k = 1 and ` = 4, we get

‖∂3xu(t)‖ ≤ C

(t+ 1)
3
2

+

∫ t

0

C

s+ 1

(
‖∂xu(s)‖L2

(t− s+ 1)2
+
‖∂3xu(s)‖L2

eC(t−s)

)
ds

≤ C

(t+ 1)
3
2

+

∫ t

0

C

(t− s+ 1)2(s+ 1)3/2
ds+

∫ t

0

C

eC(t−s)(s+ 1)2
ds ≤ C

(t+ 1)
3
2

,

and substituting it into (3.16) with k = 1 and ` = 2, we have

‖∂x∂tu(t)‖ ≤ C

(t+ 1)
3
2

+

∫ t

0

C

s+ 1

(
‖∂xu(s)‖L2

(t− s+ 1)2
+
‖∂3xu(s)‖L2

eC(t−s)

)
ds ≤ C

(t+ 1)
3
2

.

So we have θ1 = 3/2. Similarly, for k = 2, it holds that min{θ0 + 1/2, (θ1 + 1)/2} = 5/4.
Substituting this into (3.15) and (3.16) again, for k = 2, ` = 4 and k = 2, ` = 2, respectively,
we have

‖∂4xu(t)‖ ≤ C

(t+ 1)2
+

∫ t

0

C

s+ 1

(
‖∂2xu(s)‖L2

(t− s+ 1)2
+
‖∂4xu(s)‖L2

eC(t−s)

)
ds

≤ C

(t+ 1)2
+

∫ t

0

C

(t− s+ 1)2(s+ 1)2
ds+

∫ t

0

C

eC(t−s)(s+ 1)1+
5
4

ds ≤ C

(t+ 1)2
,

and

‖∂2x∂tu(t)‖ ≤ C

(t+ 1)2
+

∫ t

0

C

s+ 1

(
‖∂2xu(s)‖L2

(t− s+ 1)2
+
‖∂4xu(s)‖L2

eC(t−s)

)
ds ≤ C

(t+ 1)2
.
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So we have θ2 = 2. Similarly, in k = 3, it holds that min{θ1 + 1/2, (θ2 + 1)/2} = 3/2.
Substituting this into (3.15) and (3.16) as k = 3, ` = 4 and k = 3, ` = 2, respectively, we
have

‖∂5xu(t)‖ ≤ C

(t+ 1)
5
2

+

∫ t

0

C

s+ 1

(
‖∂3xu(s)‖L2

(t− s+ 1)2
+
‖∂5xu(s)‖L2

eC(t−s)

)
ds

≤ C

(t+ 1)
5
2

+

∫ t

0

C

(t− s+ 1)2(s+ 1)
5
2

ds+

∫ t

0

C

eC(t−s)(s+ 1)1+
5
4

ds ≤ C

(t+ 1)2
,

‖∂3x∂tu(t)‖ ≤ C

(t+ 1)2
.

Then we see θ3 = 2. For k ≥ 4, since θk−2 = θk−1 = 2 which is the same situation as k = 3,
we only show by iterating the same procedure as above that ‖∂k+2

x u(t)‖L2 + ‖∂kx∂tu(t)‖L2 ≤
C(t+ 1)−2 (k ≥ 4). This completes the proof of Lemma 3.3.
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