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On the Floquet Exponents of Hill’s Equation Systems

By Robert Denk of Regensburg

(Received December 1, 1993)

Abstract. For the k × k-matrix-valued version of Hill’s equation it is shown that the dimension of

the matrix needed to compute the Floquet exponents can be reduced from 2k to k. Also the existence of

periodic solutions is equivalent to the non-invertibility of certain k × k-matrices.

1. Introduction

In this paper we consider a matrix-valued version of Hill’s equation, i.e. the following second
order system of ordinary differential equations

y′′(x) + G(x) · y(x) = 0 (x ∈ IR) .(1)

Here G is an even k× k-matrix-valued function with period T . We assume that the entries
of G are Lebesgue-integrable on the interval [0, T ].

In the case where k equals 1 equation (1) was investigated first by Hill [5] in 1886. Since
then the scalar form of (1) has been an important field of research, for results concerning
this case the reader is referred to the book of Magnus and Winkler [7]. The matrix
case where k is an arbitrary positive integer, however, can hardly be found in literature.
Whereas the general theory of linear ODE systems with periodic coefficients can be applied
(this theory is described in the book of Yakubovich and Starzhinskii [12]), the symmetry
properties of (1) allow us to obtain more specific results. For applications of equation (1)
or some generalized form of it to the mechanics of gearings see, for instance, [1], [11].

Due to the periodicity of the function G, the theory of Floquet can be applied. The
famous theorem of Floquet-Lyapunov (Theorem 2 below) tells us that stability properties
and existence of periodic solutions of (1) are connected with the so-called Floquet exponents
(characteristic exponents) of this equation. These are defined as the complex numbers ν
where a solution y(x) of (1) exists with y(x + T ) = eiTνy(x). According to the Floquet-
Lyapunov theorem the Floquet exponents can be calculated as the eigenvalues of a 2k×2k-
matrix.

In Section 2 of this paper we show that it is sufficient to consider the eigenvalues of a
k× k-matrix (Theorem 3). The proof of this theorem uses the symmetry of the function G
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and bases on a comparison of the eigenvalues of the matrix solutions of (1) which form the
matrizant of this equation. The main part of the proof is done in Lemma 1. In Section 3
we consider the question of periodic or antiperiodic solutions of equation (1). Theorem 4
shows some factorizations for the determinants of the corresponding matrix solutions. As
a corollary of this theorem, the existence of periodic/antiperiodic solutions can be reduced

to the question if the matrix solutions are nonsingular at the point
T

2
.

This paper contains some part of the author’s thesis [3], the results in sections 2 and 3
are generalizations of the classical results in the case k = 1 (cf. [7], [8]).

2. Floquet exponents and fundamental solutions

In the following M(k×k, C) stands for the set of all k×k-matrices with complex coefficients.
Let Y1,2 : IR → M(k × k, C) be the matrix solutions of system (1) with the initial values

Y1(0) = Ik , Y2(0) = 0 ,

Y ′
1(0) = 0 , Y ′

2(0) = Ik ,

where Ik denotes the unit matrix. The fundamental solution or matrizant of (1) is defined
by

Y (x) :=
(

Y1(x) Y2(x)
Y ′

1(x) Y ′
2(x)

)
.

We first mention some properties of Y (x) (cf. [4, V.1], [12, II.3.9]):

Theorem 1.
a) For all x ∈ IR we have det Y (x) = 1.

b) Let H :=
( −Ik 0

0 Ik

)
. Then Y (x) = H Y (−x) H and Y (x± T ) = Y (x) Y (±T ). In

particular we have Y (−T ) = Y (T )−1 and

Y

(
T

2

)
= Y

(
−T

2

)
Y (T ) .(2)

The following theorem summarizes some results of Floquet theory (cf. [2], [9], [12])
concerning the stability and the existence of periodic/antiperiodic solutions of (1). (A
solution y(x) is called T -antiperiodic if y(x + T ) = −y(x) for all x ∈ IR.)

Theorem 2.
a) ν is a Floquet exponent of (1) if and only if eiTν is an eigenvalue of Y (T ).

b) There exists a T -periodic [T -antiperiodic] solution of (1) if and only if ν = 0
[
ν =

π

T

]

is a Floquet exponent of (1).
c) All solutions of (1) are bounded if and only if the following condition holds: All Floquet

exponents are real and for every eigenvalue of Y (T ) the algebraic and geometric multiplici-
ties are equal.
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Remark 1. Theorem 2a) enables us to calculate the Floquet exponents by numerical
integration on the interval [0, T ]. From part b) of Theorem 1 we see that

Y (T ) = H Y

(
T

2

)−1

H Y

(
T

2

)
.(3)

Therefore the Floquet exponents of (1) can be computed by numerical integration on the

interval
[
0,

T

2

]
.

For the next theorem we need the following auxiliary result (here tr denotes the trace of
a matrix).

Lemma 1.
a) For all n ∈ IN we have tr (Y1(T )n) = tr (Y ′

2(T )n).
b) Y1(T ) and Y ′

2(T ) have the same eigenvalues with the same algebraic multiplicities.

Proof. a) From (3) it follows that Y (T )H is similar to H. Therefore tr (Y (T ) H) = 0
and the stated equality for n = 1 follows.

Let n = 2m (m ∈ IN). According to Y (T )−1 = Y (−T ) = HY (T )H we have

Y1(T )2 − Y2(T )Y ′
1(T ) = Ik

and

Y ′
2(T )2 − Y ′

1(T )Y2(T ) = Ik .

Substituting these expressions for Y1(T )2 and Y ′
2(T )2, using the linearity of the trace func-

tion and the fact that tr (MN) = tr (NM) for matrices M,N ∈ M(k × k, C), we can
write

tr (Y1(T )2m) = tr [(Ik + Y2(T )Y ′
1(T ))m] =

m∑

j=0

(
m

j

)
tr [(Y2(T )Y ′

1(T ))j ] =

= tr [(Ik + Y ′
1(T )Y2(T ))m] = tr (Y ′

2(T )2m).

If n = 2m + 1 (m ∈ IN), we get

tr (Y1(T )2m+1) =
m∑

j=0

(
m

j

)
tr [Y1(T )(Y2(T )Y ′

1(T ))j ] =

=
m∑

j=0

(
m

j

)
tr [Y ′

2(T )(Y ′
1(T )Y2(T ))j ] = tr (Y ′

2(T )2m+1)

where the second equality follows from the case n = 1 for j = 0 and from

Y1(T )Y2(T ) = Y2(T )Y ′
2(T )

(cf. Theorem 1 b)) for j > 0.
b) If we write

det(M − z Ik) =
k∑

j=0

αj(M) zk−j for M ∈ M(k × k, C)
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the following identity holds [6, p. 117]:

αj(M) =
(−1)j

j!
det




σ1 1 0 · · · 0
σ2 σ1 2 0
...

...
. . .

...

σj−1 σj−2
. . . j − 1

σj σj−1 · · · σ1




,

with σj := tr (M j). From this and a) we see that

det(Y1(T )− z Ik) = det(Y ′
2(T )− z Ik) . 2

Remark 2. a) If one of the matrices Y ′
1(T ) or Y2(T ) is non-singular, the result of

Lemma 1 b) is an immediate consequence of Theorem 1 b).
b) In the scalar case k = 1 we get the well-known equality Y1(T ) = Y ′

2(T ) (cf. [8, 2.12]).

Theorem 3. ν is a Floquet exponent of (1) if and only if cos(Tν) is an eigenvalue of
Y1(T ). More precisely, we have

det(Y (T )− eiTν · I2k) = (−2)keiTνk det(Y1(T )− cos(Tν) · Ik) .(4)

Proof. If λ := eiTν is no eigenvalue of Y1(T ), Lemma 1 b) tells us that also Y ′
2(T )− λIk

is nonsingular and we can write

det(Y (T )− λI2k) =(5)
= det[Y ′

2(T )− λIk] det[(Y1(T )− λIk)− Y2(T )(Y ′
2(T )− λIk)−1Y ′

1(T )] .

From Y (T )−1 = Y (−T ), making some elementary calculations, we obtain

(Y1(T )2 − Ik) (Y1(T )− λIk)−1 = Y2(T )(Y ′
2(T )− λIk)−1Y ′

1(T ) .

With (5) and Lemma 1 b) we get

det(Y (T )− λI2k) =

= det[Y ′
2(T )− λIk] det[(Y1(T )− λIk)− (Y1(T )2 − Ik)(Y1(T )− λIk)−1] =

= det[(λ2 + 1)Ik − 2λY1(T )] =

= det
[
2eiTν

((
1
2
eiTν +

1
2
e−iTν

)
Ik − Y1(T )

)]

= (−2)keiTνk det[Y1(T )− cos(Tν) · Ik] .

As both sides of (4) are holomorphic in ν, we get the theorem for arbitrary values of
ν ∈ C . 2

The preceeding theorem is a generalization of the condition cos(Tν) = Y1(T ) in the case
k = 1 [8, 2.13]. In that case the proof is much simpler and uses only the equalities

Y1(T ) = Y ′
2(T ) and Y ′

1(T )Y2(T ) = Y1(T )2 + 1 .

The first of these equalities, for instance, is an immediate consequence of the case n = 1 in
Lemma 1 a).
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3. Existence of periodic solutions

Due to Floquet’s theory, there exists a solution y of (2) with period T if and only if 0
is a Floquet exponent, i.e. if and only if 1 is an eigenvalue of Y1(T ). We now show that
the existence of periodic solutions can be checked by the determinants of the fundamental

solutions Y1(x), Y2(x) and their derivatives for x =
T

2
. This is based on Theorem 4 that

shows some factorizations not for the fundamental solutions themselves, but for their de-
terminants. As we will see in Lemma 2, more specific statements can be made concerning
the existence of even/odd solutions with period T .

Theorem 4. We have the following factorizations:

(i) det(Y1(T )− Ik) = 2k detY ′
1

(
T

2

)
detY2

(
T

2

)
,

(ii) det(Y1(T ) + Ik) = 2k detY1

(
T

2

)
detY ′

2

(
T

2

)
,

(iii) det Y ′
1(T ) = 2k detY1

(
T

2

)
detY ′

1

(
T

2

)
,

(iv) det Y2(T ) = 2k detY2

(
T

2

)
detY ′

2

(
T

2

)
.

Proof. We write Y

(
T

2

)−1

=:
(

Z11 Z12

Z21 Z22

)
. First we show that

det Z12 = (−1)k · detY2

(
T

2

)
.(6)

If det Y2

(
T

2

)
6= 0 we have

(7)

Y

(
T

2

)
=




Y2

(
T

2

)
0

Y ′
2

(
T

2

)
Ik







Ik −Y2

(
T

2

)−1

Y1

(
T

2

)

0 −Y ′
1

(
T

2

)
+ Y ′

2

(
T

2

)
Y2

(
T

2

)−1

Y1

(
T

2

)







0 Ik

−Ik 0


 .

With Theorem 1a) we see that

det Y2

(
T

2

)
= det

(
−Y ′

1

(
T

2

)
+ Y ′

2

(
T

2

)
Y2

(
T

2

)−1

Y1

(
T

2

))−1

.

Inverting both sides of (7) yields

−Z12 =

(
−Y ′

1

(
T

2

)
+ Y ′

2

(
T

2

)
Y2

(
T

2

)−1

Y1

(
T

2

))−1

and therefore (6).
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Now let det Y2

(
T

2

)
= 0. If we assume det Z12 6= 0, a similar calculation shows

(Z21 − Z22Z
−1
12 Z11)Y2

(
T

2

)
= Ik

which is a contradiction.
With (3) we have

Y (T )− I2k =



−2Z12 Y ′

1

(
T

2

)
−2Z12 Y ′

2

(
T

2

)

−2Z21 Y1

(
T

2

)
−2Z21 Y2

(
T

2

)


 .(8)

From this and (6) we get

det(Y1(T )− Ik) = det
(
−2Z12Y

′
1

(
T

2

))
= 2k detY2

(
T

2

)
· detY ′

1

(
T

2

)

which was the equality in part (i). The rest of the proof can be made in the same way. 2

Theorem 4 (i) tells us in connection with Theorem 3 that a nontrivial T -periodic solution

of (1) exists if and only if one of the determinants detY ′
1

(
T

2

)
or det Y2

(
T

2

)
vanishes.

Part (ii) can be interpreted analogously. The following lemma characterizes the different
cases where periodic/antiperiodic solutions of (1) exist. For k = 1 this lemma can be found
in [10], for instance.

Lemma 2. Equation (1) has an

a) even T -periodic solution if and only if detY ′
1

(
T

2

)
= 0.

b) odd T -periodic solution if and only if detY2

(
T

2

)
= 0.

c) even T -antiperiodic solution if and only if detY1

(
T

2

)
= 0.

d) odd T -antiperiodic solution if and only if det Y ′
2

(
T

2

)
= 0.

Proof. a) Each even solution y(x) can be written in the form Y1(x) c with some c ∈
C k\{0}. The periodicity of y implies

Y1(T ) c = c and Y ′
1(T ) c = 0 .
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With equation (2) in Theorem 1 we get

2 Y ′
1

(
T

2

)
c = Y ′

1

(
T

2

)
(Y1(T ) + Ik) c = Y ′

2

(
T

2

)
Y ′

1(T ) c = 0

and therefore det Y ′
1

(
T

2

)
= 0. On the other hand, from (8) and

Z21Y1

(
T

2

)
= −Z22Y

′
1

(
T

2

)

we see that any nontrivial c with Y ′
1

(
T

2

)
c = 0 defines an even T -periodic solution Y1(x) c

of (1).
The other statments are proved similarly, for the proof of c) and d) we use the identity

Y (T ) + I2k =




2Z11 Y1

(
T

2

)
−2Z12 Y ′

2

(
T

2

)

−2Z21 Y1

(
T

2

)
2Z22 Y ′

2

(
T

2

)


 . 2

Final remarks. As we have seen, the Floquet exponents of (1) can be calculated by

(numerical) integration either on the interval
[
0,

T

2

]
with 2k different initial values or on

the interval [0, T ] with k different initial values (cf. Remark 1 and Theorem 3, respectively).
A completely different way of computing the Floquet exponents was introduced by Hill
himself, using infinite determinants. In [3] we consider infinite determinants corresponding
to the matrix form of Hill’s equation and prove some fundamental results that enables us
to use the determinantal method in the case of arbitrary k.
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