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Abstract
The modern warehouse is partially automated by robots. Instead of letting human workers walk
into shelfs and pick up the required stock, big groups of autonomous mobile robots transport
the inventory to the workers. Typically, these robots have an electric drive and need to recharge
frequently during the day. When we scale this approach up, it is essential to place recharging
stations strategically and as soon as needed so that all robots can survive. In this work, we
represent a warehouse topology by a graph and address this challenge with the Online Connected
Dominating Set problem (OCDS), an online variant of the classical Connected Dominating Set
problem [10]. We are given an undirected connected graph G = (V,E) and a sequence of subsets
of V arriving over time. The goal is to grow a connected subgraph that dominates all arriving
nodes and contains as few nodes as possible. We propose an O(log2 n)-competitive randomized
algorithm for OCDS in general graphs, where n is the number of nodes in the input graph. This
is the best one can achieve due to Korman’s randomized lower bound of Ω(logn logm) [14] for the
related Online Set Cover problem [2], where n is the number of elements and m is the number
of subsets. We also run extensive simulations to show that our algorithm performs well in a
simulated warehouse, where the topology of a warehouse is modeled as a randomly generated
geometric graph.
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1 Introduction

Ever wondered what happens in a warehouse when Amazon orders are placed? Modern
warehouses (so-called pick-pack-and-ship warehouses [20]) are nowadays run by hundreds of
mobile robots (cf. swarm robotics [4]). A popular example is the Kiva system [6, 11] that is
used by the Amazon.com corporation. When orders are placed, robots bring inventory to
warehouse workers while workers stay stationary. Since robots need to act autonomously, the
system is considered as a multi-agent system that requires rather complex path planning and
resource allocation. In this paper, we focus on the specific issue of recharging robots. The
robots have rechargeable lead-acid batteries that need to be recharged frequently throughout
the day. In the case of Kiva robots, for example, they recharge every 55 minutes for five
minutes. Once a robot detects a low battery level, it drives autonomously to the next charging
station. Such warehouses can have several 10,000 square meters and do 200,000 picks per
day [11]. When one wants to scale up, it will get important to position the recharging
stations strategically, otherwise the system’s efficiency will decrease or robots will even run
out of energy before they reach a charging station. In addition, extreme differences in the
distribution shipping volumes per day are typical for Internet retailers, for example, before
Christmas. Hence, it is important to be able to scale up on demand.

In a hypothetical scenario, one can imagine a huge warehouse where certain areas are
more busy during the week than others. Hence, it would be useful to have movable charging
stations and to position them on demand in the respective busy areas. In addition, one can
assume that any two charging stations should not be too far apart from each other, because
robots may be required to move from any of these busy areas to any other (i.e., there may
be a massive task allocation going on, which is however beyond this paper’s scope). As
robots may not always be fully charged when they start their travel and because we want
to be scalable to huge warehouses, robots may even require to recharge on their move. So
besides positioning charging stations at busy areas we also may position charging stations in
between busy areas as kind of relay stations to guarantee reachability of all busy areas. We
represent the warehouse topology as a graph whose nodes represent potential locations for
recharging stations and busy areas. Recharging stations are placed sequentially on the nodes
depending on current demands. The edges in the graph represent distances that can safely
be covered by robots with a battery of average charge. A sequence of requests arrives over
time such that a request consists of a subset of nodes representing busy areas that require a
charging station nearby. These areas cannot be known in advance and must be provided with
a charging station as soon as revealed. Charging stations need to be placed on a small subset
of nodes such that all busy areas have a nearby station. Moreover, to guarantee reachability
of all busy areas, we require that the subset of nodes induces a connected subgraph (see
Fig. 1). The goal is to serve all requests upon their arrival by placing as few recharging
stations as possible and without knowing future busy areas. At the core of this scenario we
have a complex online optimization problem, the Online Connected Dominating Set problem
(OCDS), defined as follows.

I Definition 1. (Online Connected Dominating Set problem - OCDS) Given an undirected
connected graph G = (V,E) and a sequence of subsets of V arriving over time. In each step,
nodes from V are revealed and need to be dominated by a connected subgraph of G - a
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Figure 1 Warehouse topology modeled as a graph. Nodes represent busy areas and potential
locations for recharging stations. Three recharging stations are placed (in red) one of which acts as
a relay station.

subset is dominated if each node in it is either in the subgraph or adjacent to a node in the
subgraph. OCDS asks to grow a connected subgraph containing as few nodes as possible
without knowing future nodes in advance.

OCDS is an online variant of the classical Connected Dominating Set problem (CDS). Given
a graph G = (V,E), CDS asks to construct a minimum subset S of V such that each node in
V is dominated and the subgraph induced by S is connected. CDS has been widely studied
in both theory and practice, with various applications in wireless networks [21]. It is NP-
complete even in planar graphs [9]. For general graphs, it admits an O(ln ∆)-approximation,
where ∆ is the maximum node degree of the input graph [10]. This is the best possible unless
NP ⊂ DTIME(nlog n log n) [10]. We propose a randomized online algorithm for OCDS and
evaluate it using the classical notion of competitive analysis. Given an input sequence σ,
let CA(σ) and COP T (σ) denote the cost incurred by an algorithm A and an optimal offline
algorithm OPT , respectively. Algorithm A is said to be c-competitive (or has competitive
ratio c) if there exists a constant α such that CA(σ) ≤ c · COP T (σ) +α for all input sequences
σ. We show that our proposed algorithm is O(log2 n)-competitive against an oblivious
adversary, where n is the number of nodes in the input graph. This is the best one can
achieve due to Korman’s randomized lower bound for the related Online Set Cover problem
(OSC) [2], an online variant of the classical Set Cover problem. OSC is defined as follows.
Given a universe U of elements and a collection S of subsets of U . In each step, elements
from U are revealed and need to be covered by subsets from S. OSC asks to cover all given
elements while minimizing the total number of chosen subsets. Korman [14] has shown a
randomized lower bound of Ω(logn logm) for OSC, where n is the number of elements and
m is the number of subsets. It has been shown that the Set Cover problem can be reduced
to CDS [8, 10, 15]. By a similar argumentation, a reduction from OSC to OCDS can be
made, implying a randomized lower bound of Ω(log2 n) for OCDS. We also run extensive
simulations to show that our algorithm performs well in a simulated warehouse, where the
topology of a warehouse is modeled as a randomly generated geometric graph.
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2 Related Work

In this section, we give an overview of literature related to online connected dominating sets
and robot warehouses, respectively.

2.1 Online Connected Dominating Sets
While there are many works that address CDS and its variants in the offline setting [10, 21],
only few consider the online setting. Eidenbenz [7] has studied an online variant of CDS, in
which the input graph is restricted to a class (tree, unit disk graph, bounded degree graph)
and is not known in advance. It is revealed over time such that in each step a node is either
inserted or deleted. The goal is to maintain a connected subgraph that contains as few nodes
as possible and dominates all present nodes. Eidenbenz has shown that a simple greedy
approach attains a (1 + 1

OPT )-competitive ratio in trees - where OPT is the cost of the
optimal offline solution, an (8 + ε)-competitive ratio in unit disk graphs - for arbitrary small
ε > 0, and b-competitive ratio in b-bounded degree graphs. Note that in OCDS, the input
graph is given in advance (offline) and only the nodes that need to be dominated are revealed
over time (online). For the Online Set Cover problem defined earlier, Alon et al. [2] have
proposed an O(logn logm)-competitive deterministic algorithm, where m is the number of
sets and n is the number of elements. They have also shown a nearly matching deterministic
lower bound of Ω( log n log m

log log n+log log m ) for interesting values of m and n. Naor et al. [17] have
studied an online variant of the classical Steiner Tree problem with weighted nodes and
edges, the Online Node-Weighted Steiner Tree problem (ONWST), defined as follows.

I Definition 2. (Online Node-Weighted Steiner Tree problem - ONWST) Given a graph
G = (V,E) with weighted nodes and edges. In each step, nodes from V (called terminals)
are revealed and need to be connected to each other. ONWST asks to grow a subgraph S
(called a Steiner tree) that connects all terminals while minimizing the total cost of edges
and nodes in S.

Naor et al. [17] have given an O(logn log2 k)-competitive randomized algorithm for
ONWST, where k is the number of terminals and n is the number of nodes in the input
graph. A special case of ONWST in which all edges have cost 0 and all nodes have cost 1
can be reduced to OCDS by setting the nodes to be dominated as terminals. This variant
will appear in the analysis of our algorithm in Section 4.

2.2 Robot Warehouses
Even though it may seem a rather specialized problem of positioning charging stations
for multi-robot and swarm systems, there is a rich literature about this problem. Kannan
et al. define the Autonomous Recharging Problem (ARP) as the problem of planning and
coordinating when, where, and how to recharge robots [13]. They consider both static and
mobile charging stations and how to find recharging schedules to maximize efficiency of the
system. Couture-Beil and Vaughan argue that suboptimal positioning of the charging station
may cause spatial interference. Therefore, they study an adaptive mobile charging station [5]
where the charging station itself is a mobile robot. They argue that in a dynamic task the
correct and adaptive placement of the charging station is even more important. A similar
approach is studied by Arvin et al. for recharging a robot swarm with a mobile charging
station [3]. Kamagaew et al. discuss the problem of how to switch from a central approach
to a multiplicity of small self-organizing transport units in the warehouse [12]. They study
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a decentralized control system for autonomous vehicle swarms and how methods of swarm
intelligence can help. In summary, the Autonomous Recharging Problem and in particular
the optimal positioning of charging stations in multi-robot systems is relevant and currently
investigated intensively.

3 Online Algorithm

In this section, we propose an online algorithm for OCDS. Given an undirected connected
graph G = (V,E). In each step t, a subset Dt ⊆ V of nodes is given. Let St denote the set
of nodes selected by the algorithm in step t. Let S :=

∑
t St, ∀t be the solution set and

D :=
∑

t Dt, ∀t be the demand set. We fix a cost cj = 1 to each i ∈ V . The algorithm runs
in two phases. In the first phase, it dominates each node in Dt with a subset S′t ⊆ V . In the
second phase, it connects the nodes in S′t with an additional subset S′′t ⊆ V , forming the set
St = S′t∪S′′t . We call the set of nodes that can dominate i the candidates of i and denote it as
Qi. The algorithm uses a randomized rounding approach commonly used in designing online
algorithms [17], in both of its phases. In Phase 1, to dominate a given node i, the algorithm
buys fractions of i’s candidates until they sum up to 1. These fractions are then rounded
using a randomized process in attempt to add at least one candidate into the solution. If the
latter does not happen, the algorithm arbitrary adds one of the candidates into the solution.
In Phase 2, for each node j selected by the algorithm in Phase 1, the algorithm chooses a
representative node k from D that is dominated by j and connects k to the current solution
S, as follows. The minimum cut value (or maximum flow) between a node k and a set S is the
smallest total weight of edges which if removed would disconnect k from S. These edges form
a minimum cut. The algorithm transforms the weights of the graph from the nodes to the
edges such that the weight of an edge (u, v) is set to min{wu, wv}, where wu and wv are the
weights of u and v, respectively. If either u or v is in S, the weight of edge (u, v) is set to the
weight of the one not in S. It then constructs a minimum cut C between k and S by running
the algorithm by Schroeder et al. for undirected connected edge-weighted graphs [19]. For
an edge (u, v) ∈ C and wu < wv, u is called a minimum cut node. As long as the maximum
flow between k and S is less than 1, the algorithm constructs a minimum cut and increases
the weights of the corresponding minimum cut nodes. Then, it rounds these weights using a
randomized process in attempt to add at least one path connecting k to S into the solution. If
the latter does not happen, the algorithm adds a cheapest path that connects k to S into the
solution. For Phase 1, we maintain a fraction fi to each node i ∈ V , initially set to zero and
non-decreasing throughout the algorithm. We define a random variable µ as µ := min{X(q)}
such that 2 dlog(n+ 1)e independent random variables X(q) are distributed uniformly in the
interval [0, 1] and 1 ≤ q ≤ 2 dlog(n+ 1)e. As for Phase 2, we maintain a weight wi to each
i ∈ V , initially set to zero and non-decreasing throughout the algorithm. We define a random
variable µ′ as µ′ := min{X(q)} such that 2 dlog(n+ 1)e independent random variables X(q)
are distributed uniformly in the interval [0, 1] and 1 ≤ q ≤ 2 dlog(n+ 1)e. The two phases of
the algorithm are depicted in Algorithm 1 below. Fig. ?? shows the result of a two-step
run on a randomly generated connected graph of 10 nodes.

4 Competitive Analysis

We dedicate this section to showing that the algorithm above is O(log2 n)-competitive for
OCDS, where n is the number of nodes in the input graph. Recall that Ω(log2 n) is a lower
bound for OCDS [14].
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Algorithm 1
Phase 1. For each i ∈ Dt not dominated by some node in S ∪ S′t,

Step 1: while
∑

j∈Qi
fj < 1,

for each j ∈ Qi: fj = fj · (1 + 1/cj) + 1
|Qi|·cj

Step 2: add j ∈ Qi to S′t if fj > µ

Step 3: if i is not dominated by some node in S′t, add an arbitrary j ∈ Qi to S′t
Phase 2. For each j ∈ S′t, if it is adjacent to some node in S, add j to S, else,

Step 1: choose a node k from the set Dt dominated by j and add it to S′′t
Step 2: if k is not connected to S,
While the maximum flow between k and S is not 1,
- Construct a minimum cut and select the minimum cut nodes K ⊆ V \ S
- For each i ∈ K, set wi = wi · (1 + 1/ci) + 1

|K|·ci

Add v ∈ V to S′′t if wv > µ′

If k is still not connected via nodes in S′′t , choose a shortest path connecting k to S
and add its nodes to S′′t

Step 3: Add j and the nodes in S′′t that connect j to S, to S

I Lemma 3. The expected cost C1 of the algorithm in Phase 1 is at most O(log2 n) · OPT ,
where OPT is the cost of the optimal offline solution.

Proof. Let C1 be the expected cost of the algorithm in Phase 1 and let OPT be the cost of
the optimal offline solution. For any j ∈ V , the probability that the algorithm adds j into
the solution is the probability that fj > µ, which is at most 2 log(n+ 1) · fj . Adding up over
all j ∈ V , the expected cost C1 of the algorithm will be at most:∑

j∈V

2 log(n+ 1) · fj = 2 log(n+ 1) ·
∑
j∈V

fj (1)

Next we bound
∑

j∈V fj . Whenever we want to dominate a node i ∈ V not yet dominated,
we increase the fraction corresponding to each of its |Qi| candidates. The fraction fj of each
candidate j ∈ Qi is increased by

(
fj

cj
+ 1
|Qi|·cj

)
. Summing up over all i’s candidates, we get

an overall fractional increase of:∑
j∈Qi

(
fj

cj
+ 1
|Qi| · cj

)
≤ 2 (2)

The above inequality holds since
∑

j∈Qi
fj ≤ 1 before any fractional increase and cj = 1:

∀j ∈ V . An optimal solution must contain at least one node. Let us fix any such node
p ∈ Qi (OPT ≥ cp). The fraction fp corresponding to p becomes at least 1 after at most
OPT · log |Qi| fractional increases and hence no further fractional increases can be made.
With this observation together with inequality 2, we conclude that:∑

j∈V

fj ≤ OPT · 2 · log (∆ + 1) (3)

The above inequality holds since |Qi| ≤ ∆ + 1, where ∆ is the maximum number of nodes
adjacent to any node in V . So far we have measured the cost of the algorithm during the
first two steps. Equations 1 and 3 yield a cost of O(log2 n) · OPT . It remains to measure
the additional cost incurred by Step 3 of Phase 1, which is necessary to guarantee a feasible
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Figure 2 Two-step run of Algorithm 1 on randomly generated connected graph with |V | = 10.
Nodes in red or with red border represent demand nodes and nodes in green represent solution
nodes.

solution. For a single 1 ≤ q ≤ 2 dlog(n+ 1)e, the probability that a node i is not covered is
at most:∏

j∈Qi

(1− fj) ≤ e−
∑

j∈Qi
fj ≤ 1/e

The last inequality holds because the algorithm guarantees in the first step that
∑

j∈Qi
fj ≥

1. Hence, the probability that i is not covered, for all 1 ≤ q ≤ 2 dlog(n+ 1)e, is at most
1/n2. The additional expected cost for each of the at most n nodes is then upper bounded
by n · 1/n2 · OPT , since the cost of adding one additional node is clearly less than OPT .
Therefore, we conclude that C1 ≤ O(log2 n) · OPT . J

I Lemma 4. The expected cost C2 of the algorithm in Phase 2 is at most C1+O(log2 n)·OPT ,
where OPT is the cost of the optimal offline solution and C1 is the expected cost of the
algorithm in Phase 1.

Proof. in Appendix A. J

Adding C1 and C2 from Lemma 3 and Lemma 4, respectively, ultimately leads to the
theorem below.

I Theorem 5. There is an optimal O(log2 n)-competitive randomized algorithm for the
Online Connected Dominating Set problem (OCDS).

5 Simulation Study

In this section, we show that our proposed algorithm for OCDS performs well in a simulated
warehouse, where the topology of a warehouse is modeled as a randomly generated connected
geometric graph.

Since no other algorithm has been proposed for OCDS in the literature, the only algorithm
we could compare to is offline, that is, an algorithm for CDS. Since the latter is NP-complete,
the comparison is made against an optimal O(ln ∆)-approximation algorithm for CDS, based
on a greedy approach, following Guha et al. [10]. Recall that an input to CDS is a graph
G = (V,E) in which all nodes need to be dominated and to which the algorithm reacts once.
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In OCDS, we are given a graph G = (V,E) and the nodes to be dominated are given in
steps. The algorithm needs to react to each step without knowing about future steps. The
comparison is made at the final step, after which the algorithm had accumulated its solution
over the steps. Without loss of generality, we assume all nodes at this step have been asked
to be dominated in at least one of the steps. We perform our simulation study in five different
settings, each with different number of nodes (i.e., potential locations for recharging stations):
|V | ∈ {50, 100, 150, 200, 250}. For each setting, we perform 100 runs. Since the algorithm is
randomized, we run it 10 times for each instance and observe its mean, best, and worst case
performance. In each simulation run, we generate a connected geometric graph G = (V,E)
whose nodes are placed uniformly at random in a unit square Euclidean plane (see Fig. 2).
The connectivity threshold r is set to a small value of 0.17 to provide graphs with minimal
number of edges. A value below 0.17 decreases the chance to generate geometric graphs that
are connected. The input to the approximation algorithm is G = (V,E) whereas the input to
the online algorithm is composed of offline and online parts. The offline part is G = (V,E)
and the online part is the sequence of subset of nodes revealed over time. In each step t, a
subset Dt of nodes is revealed (i.e., the current demand of recharging stations at step t).

The cardinality of Dt is uniformly sampled from the interval
[

0,
|V | −

∑i=t−1
i=1 |Di|
2

]
. The

subset Dt excludes previously given nodes and is sampled randomly.

Results. The boxplots in Fig. 3 show the performance of the online algorithm and the
offline approximation algorithm for |V | = 50, 100, 150, 200, and 250. For each |V |, 100
instance graphs are generated.

The online algorithm is run 10 times for each instance graph: its mean, best, and worst
case performance for each of the 100 instances are recorded.
The offline approximation algorithm is run for each instance graph: its performance for
each of the 100 instances is recorded.
The datasets represented by the boxplots shown in Fig. 3 are all pairwise statistically
significantly different (i.e., all p-values ≤ 0.05 based on Wilcoxon signed-rank test).

We define two performance measures:
1. the percentage difference, which is the number of nodes the online algorithm outputs

more, in comparison to the offline algorithm, in percentage.
2. the average competitive ratio, which is the ratio of the number of nodes outputted by the

online algorithm to that by the offline approximation algorithm.

Table 1 shows the two performance measures for each |V | in the mean, best, and worst
cases, evaluated by taking the average over all 100 instance graphs. Notice that the percentage
difference never exceeds 51.08% in the worst case. For |V | = 50, it is as small as 11.10% in the
best case. Moreover, as |V | grows, the percentage difference does not increase significantly.
Instead, it sometimes gets smaller - for instance, in the mean case as |V | grows from 150 to
250 (from 34.25% to 32.15% to 30.84%). One reasoning for the latter might be the following.
Recall that the connectivity threshold r is set to 0.17 for all |V | and the nodes are placed
uniformly at random in a bounded region. Thus the generated graphs become denser as |V |
grows, resulting in less complex solutions.

In terms of average competitive ratio, notice that the online algorithm’s worst output is
at most 6.83 times the output of the offline algorithm. Moreover, for |V | = 50, the online
algorithm is nearly optimal with an average competitive ratio of 1.63 and 1.29 in the mean
and best cases, respectively.
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Figure 3 Boxplots showing the performance of the online algorithm (mean, best, and worst cases)
and the offline algorithm for |V | = 50, 100, 150, 200, and 250. All datasets are pairwise statistically
significantly different (p ≤ 0.05, Wilcoxon signed-rank test).

6 Open problems

We have presented a provably optimal online approach to positioning recharging stations
in a robot warehouse. Partially automated robot warehouses are state-of-the-art and in
the future they will need to scale up. The problem of correctly placing charging stations
is highly relevant and intensively studied. Efficient online algorithms for placing charging
stations are essential to ensure scalability and efficiency. This work has been a small attempt
towards this goal. There is certainly much more to do. As a first next step, it would be
interesting to target better competitive ratios for OCDS in restricted graph classes, e.g., by
employing properties of geometric graphs. Another important direction is to consider stations
that do not serve forever but are renewed whenever needed. A related model is Meyerson’s
leasing model [16], that has been studied in the context of many optimization problems
such as the Online Set Cover problem [1], in which sets can cover elements for limited
duration and costs are incurred accordingly. Furthermore, our simulation results show that,
even without knowing the demands of the day, an efficient placement of charging stations
can be done using our algorithm. Moreover, our random-geometric-graph based simulated
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Table 1 Percentage difference and average competitive ratio for |V | = 50, 100, 150, 200, and 250
in the mean, best, and worst cases.

Mean Performance |V | Percentage Difference Average Competitive Ratio
50 23.74 1.63
100 31.37 2.51
150 34.25 3.43
200 32.15 3.96
250 30.84 4.52

Best Performance
50 11.10 1.29
100 14.96 1.72
150 16.32 2.16
200 12.21 2.12
250 10.30 2.18

Worst Performance
50 35.78 1.95
100 46.91 3.26
150 50.79 4.61
200 51.09 5.71
250 51.08 6.83

warehouse arguably generalizes topologies of warehouses and the modeled temporal evolution
of incoming demands is based on rather rough assumptions. Still, it would be interesting to
extend our simulation study to include data acquired from actual Internet retailers. Therefore,
the model would be refined so that it resembles actual evolutions of demands during the day
or week in automated warehouses. Also an application to the domain of swarm robotics for
any scenario, such as collective transport, collective construction, etc., may be possible and
advantageous either with manually placed or autonomous mobile charging stations [3, 4]. We
have also skipped the required task allocation for the robots in this study. An interesting
extension hence can be a combined analysis of task allocation algorithms together with the
challenge of positioning charging stations. Besides central task allocation algorithms, there
are decentralized approaches to task allocation that don’t require global information and
scale up well [18].
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A Proof of Lemma 4

Proof. Let C2 be the expected cost of the algorithm in Phase 2 and let OPT be the cost of
the optimal offline solution. Phase 2 connects the nodes in S′t : ∀t that were not connected
to S in Phase 1. For each such node u, Step 1 chooses a representative node k from D

that is dominated by u. These representative nodes are then connected in Step 2 and form
the terminals of a special case instance of the Online Node-weighted Steiner Tree problem
(ONWST) (Definition 2), in which all nodes have cost 1 and all edges have cost 0. Let
R be the set of these representative nodes. By similar arguments as in Phase 1, we show
that Step 2 of Phase 2 admits an O(log2 n)-competitive algorithm for this special case of
ONWST. Let CSt be the expected cost of the Steiner tree constructed in Step 2 of Phase
2 and let OPT St be the cost of an optimal Steiner tree. For any i ∈ V , the probability
that the algorithm adds i into the solution is the probability that wi > µ′, which is at most
2 log(n+ 1) · wi. Adding up over all i ∈ V , the expected cost CSt will be at most:∑

i∈V

2 log(n+ 1) · wi = 2 log(n+ 1) ·
∑
i∈V

wi (4)

Next we bound
∑

i∈V wi. To connect a node k ∈ V not yet connected, the algorithm
constructs a minimum cut. Let Pk denote the corresponding minimum cut nodes of such a
cut. We increase the weight corresponding to each node in Pk. The weight wi of each i ∈ Pk

is increased by
(

wi

ci
+ 1
|Pk|·ci

)
. Summing up over all the nodes in Pk, we get an overall weight

increase of:∑
i∈Pk

(
wi

ci
+ 1
|Pk| · ci

)
≤ 2 (5)

The above inequality holds since
∑

i∈Pk
wi ≤ 1 before any weight increase and ci = 1: ∀i ∈ V .

An optimal Steiner tree must contain at least one node p ∈ Pk, in order to connect k. The
weight wp corresponding to p becomes at least 1 after at most OPT St · log |Pk| weight
increases and hence no further weight increases can be made. The weight of wp becomes 1
and so it cannot belong to any other minimum cut chosen afterwards, since the algorithm
constructs a minimum cut only if the maximum flow is less than one. The same argument
holds for all minimum cuts chosen afterwards such that each can contain a distinct node in
the optimal solution. With this observation together with inequality 5, we conclude that:

∑
i∈V

wi ≤ OPT St · 2 · logn (6)

The above inequality holds since |Pk| ≤ n. Equations 4 and 6 yield a cost of O(log2 n) ·
OPT St. Let i ∈ Pk be a node with weight wi > µ′. Now, we need to measure the additional
cost incurred in the last part of Step 2, which is necessary to guarantee a feasible solution.
Note that, we have that the weight of each node in a path connecting k to S must be at least
the flow going through the path. For a single 1 ≤ q ≤ 2 dlog(n+ 1)e, the probability that a
node k is not connected is at most:∏

i∈Pk

(1− wi) ≤ e
−
∑

i∈Pk
wi ≤ 1/e

The last inequality holds since the algorithm guarantees that
∑

i∈Pk
wi ≥ 1. Hence,

the probability that k is not connected, for all 1 ≤ q ≤ 2 dlog(n+ 1)e, is at most 1/n2.
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The additional expected cost for each of the at most n nodes is then upper bounded by
n · 1/n2 · OPT St, since the cost of adding one additional node is clearly less than OPT St.
Therefore, we conclude that:

CSt ≤ O(log2 n) · OPT St (7)

Thus, we have C2 ≤ C1 + CSt ≤ C1 +O(log2 n) · OPT St, where C1 results from adding
at most one node for each node in S′t. Moreover, since an optimal offline solution for OCDS
dominates all the given nodes and is connected, it forms a Steiner tree over the demand set
D and consequently over the set R of representative nodes. Hence, OPT St ≤ OPT and
therefore:

C2 ≤ C1 +O(log2 n) · OPT (8)
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