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RELAXING THE NONSINGULARITY ASSUMPTION FOR
INTERVALS OF TOTALLY NONNEGATIVE MATRICES

MOHAMMAD ADM*, KHAWLA AL MUHTASEB!, AYED ABEDEL GHANI!, AND
JURGEN GARLOFF$

Abstract. Totally nonnegative matrices, i.e., matrices having all their minors nonnegative, and
matrix intervals with respect to the checkerboard partial order are considered. It is proven that if the
two bound matrices of such a matrix interval are totally nonnegative and satisfy certain conditions,
then all matrices from this interval are totally nonnegative and satisfy these conditions, too, hereby
relaxing the nonsingularity condition in a former paper [M. Adm, J. Garloff, Intervals of totally
nonnegative matrices, Linear Algebra Appl. 439 (2013), pp.3796-3806].

Key words. Matrix interval, Checkerboard partial order, Totally nonnegative matrix, Cauchon
matrix, Cauchon Algorithm, Descending rank conditions.
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1. Introduction. A real matrix is called totally nonnegative if all its minors
are nonnegative. Such matrices arise in a variety of ways in mathematics and its
applications. For background information the reader is referred to the monographs
[9], [15]. In [2], the following interval property was shown: Consider the checkerboard
order which is obtained from the usual entry-wise order on the set of the square real
matrices of fixed order by reversing the inequality sign for each entry in a checkerboard
fashion. If the two bound matrices of an interval with respect to the checkerboard
order are nonsingular and totally nonnegative, then all matrices lying between the
two bound matrices are nonsingular and totally nonnegative, too. The purpose of
this paper is to relax the nonsingularity assumption on the two bound matrices and
to allow rectangular matrices instead of square matrices. For a collection of various
classes of matrices which enjoy an interval property see [11].

We mention a closely related problem, viz. given a totally nonnegative matrix,
find for each of its entries the maximum allowable perturbation such that the per-
turbed matrix remains totally nonnegative. This problem was solved in [3] for the
tridiagonal totally nonnegative and in [7] for the general totally nonnegative matrices.
For the totally positive matrices, i.e., matrices having all their minors positive (here
the perturbed matrix has in turn to be totally positive), it was established in [10], see
also [9, Section 9.5], for a few specified entries and in [6] for arbitrary entries. The
similar problem for a uniform perturbation of all the coefficients of a totally positive
matrix was considered in [13, Section 7).

The organization of our paper is as follows. In Section 2, we introduce our notation
and give some auxiliary results which we use in the subsequent sections. In Section 3,
we recall the condensed form of the Cauchon Algorithm and some of its properties. In
Section 4, we present our new results on the application of the Cauchon Algorithm,
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and apply them in the last section to the above mentioned interval problem.
2. Notation and auxiliary results.

2.1. Notation. We introduce the notation used in our paper. For integers
n,m, Kk, we denote by S the set {1,...,n—1} x {1,...,m — 1}, and by Qs ,, the set
of all strictly increasing sequences of « integers chosen from {1,2,...,n}. Let A be a
real n-by-m matrix. For a = {a1,a2,...,0x} € Qun, B ={B1,02,...,8u} € Qum,
we denote by A[a|f] the x-by-p submatrix of A contained in the rows indexed by
aq, o, ..., 0, and columns indexed by 81, fa,...,B8,. We suppress the curly brack-
ets when we enumerate the indices explicitly. A measure of the gaps in an index
sequence o € @y is the dispersion of «, denoted by d(c), which is defined by
dla) == a, —ag —k+ 1. If d(a) = 0, we call o contiguous, if d(a) = d(B) = 0, we
call the submatrix A[«a|8] contiguous, and in the case k = pu, we call the correspond-
ing minor contiguous. For any contiguous k-by-x submatrix Afa|8] of A, we call the
submatrix

Alag, .., an,ae+ 1.0 n |1, 81— 1,01,...,08x]

of A having A[«|f] in its upper right corner the left shadow of Ala|f], and, analogously,
we call the submatrix

A[lv"'7a1_17ala-"aan|Bla"'a5ﬁ’mﬁfc+17"'am]

having A[a|f] in its lower left corner the right shadow of Ala|5]. By E;; we denote
the matrix in R™™ which has in position (i,j) a one, while all other entries are
zero. A matrix A € R™™ is called totally nonnegative (abbreviated TN henceforth)
if detAla|8] > 0, for all @, 8 € Qr sy K = 1,2,..., 0/, where n/ := min{n,m}. If a
totally nonnegative matrix is also nonsingular, we write NsTN. If n = m, we set
A# = TAT, where T = (t;;) is the permutation matrix of order n (antidiagonal
matrix) with ¢;; := 6; n_j41, 4,7 =1,...,n. If Ais TN, then A% is TN, too, e.g., [9,
Theorem 1.4.1 (iii)].

We endow R™™ with two partial orders: Firstly, with the usual entry-wise partial
order: For A = (ay;), B = (by;) € R™™

ASB@ ;5 Sbij,i:].,...,n, ]:1,,777,
Secondly, with the checkerboard partial order, which is defined as follows
A<*B:ie (-D)May < (-1)™Mbyi=1,...,n, j=1,...,m.

We denote by I(R™™) the set of all matriz intervals of order n-by-m with respect to
the checkboard partial order

[A,B] :={Z e R"™ | A<* Z <* B}.

2.2. Auxiliary results. In this subsection we list some facts that will be em-
ployed in Sections 4 and 5. We will often make use of the following determinantal
identity.

LEMMA 1. (Sylvester’s Determinantal Identity), see, e.g., [9, pp.29-30]
Partition A € R™™, n > 3, as follows:

& Alg d
A= A21 A22 A23 )
e Az f
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where Aoy € R"2772 gnd c,d, e, f are scalars. Define the submatrices

A A d
C = & 12 D= 12
( Aoy Agp )7 < Azp Ao ’

A21 A22 A22 A23
FE = F = .
( e Asz )’ ( Az f
Then if det Aag # 0, the following relation holds

detCdet F —det Ddet E

det A =
¢ detAQQ

The following two lemmata provide information on the rank of certain submatrices
of TN matrices.

LEMMA 2. [9, Theorem 7.2.8] Suppose that A € R™™ is TN, B := Ala | 8] is a
contiguous, rank deficient submatriz of A, and both A[l,...,n|f] and Ala | 1,...,m]
have greater rank than B. Then either the left shadow or the right shadow of B has
the same rank as B.

LEMMA 3. E.g., [15, Theorem 1.13] All principal minors of an NsTN matrixz are
positive.

Monotonicity properties of the determinant through matrix intervals are given in
the next two lemmata.

LEMMA 4. [2, Lemma 3.2] Let [A,B] € I(R™"), A be NsST'N, and B be TN.
Then for any Z € [A, B], the following inequalities hold

det A < det Z < det B.

LEMMA 5. Let [A,B] € [(R™"), A and B be TN, and A[2,...,n] be nonsingular.
Then for any Z € [A, B], the following inequalities are true

det A det Z det B
det A[2,...,n] — det Z[2,...,n] ~— det B[2,...,n]

Proof. Put Ay := A+ ¢eEyy, Z1 := Z + eE11, and By := B+ e¢F1; for some € > 0.
Then Ay <* Z; <* By, Ay is NsTN since A[2,...,n] is nonsingular, and B; is TN.
By [2, Lemma 3.2]

(1) det Al det Z1 det Bl
det A1[2,...,n] — det Z1[2,...,n] — det B1[2,...,n]

By Laplace expansion along the first row of A; we obtain det A} = det A+edet A[2,...,n] ]}
with similar expansions of det Z;, and det By, which we substitute into (1) to get

det A det Z det B

< <
det A[2,...,n] tes det Z[2,...,n] tes det B[2,...,n]

+ €,
from which the claim follows. 0

Finally, we recall a certain type of rank conditions associated with the rank of
sets of submatrices of a matrix.

This manuscript is for review purposes only.
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DEFINITION 6. Let A € R™™. Then A satisfies the descending rank conditions
if for alll with 1 <1 < n—1, for all z with 0 < z < [ —1, and for all p with
l—2<p<n-—z—1, the following two sets of inequalities are satisfied

rankAlp+1,...,p+2z+11,...,]] <rankAlp,...,p+ z|1,...,1],

rankA[l,... llp+1,...,p+ 2z +1] <rankA[l,...,I|p,...,p+ 2].

3. The condensed form of the Cauchon Algorithm and some of its
properties.

3.1. The condensed form of the Cauchon Algorithm. We recall the defini-
tion of Cauchon diagrams and from [4] the condensed form of the Cauchon Algorithm
which reduces the complexity of the orginal algorithm [12], [14].

In order to formulate the Cauchon Algorithm we need the following notation. We
denote by < and <, the lexicographic and colexicographic orders, respectively, on N2,
ie.,

(g,h) < (3,4) & (g <i)or (g =dand h < j),

(9,h) <c (4,j) : & (h < j)or (h=jand g <1i).

DEFINITION 7. An n-by-m Cauchon diagram C' is an n-by-m grid consisting of
n - m squares colored black and white, where each black square has the property that
either every square to its left (in the same row) or every square above it (in the same
column) is black.

We denote by C,, ., the set of all n-by-m Cauchon diagrams. We fix positions in
a Cauchon diagram in the following way: For C' € C,,, and i € {1,...,n},j €
{1,...,m},(i,7) € C if the square in row 4 and column j is black. Here we use the
usual matrix notation for the (4, ) position in a Cauchon diagram, i.e., the square in
the (1,1) position of the Cauchon diagram is in its top left corner.

DEFINITION 8. Let A € R™™ and let C' € Cy, . We say that A is a Cauchon
matrix associated with the Cauchon diagram C' if for all (i,7), i € {1,...,n}, j €
{1,...,m}, we have a;; = 0 if and only if (i,5) € C. If A is a Cauchon matriz
associated with an unspecified Cauchon diagram, we just say that A is a Cauchon
matrix.

We conclude this subsection with two results on the application of the Cauchon
Algorithm, see Algorithm 1, to TN matrices.

THEOREM 9. [12, Theorem B4J,[1/, Theorem 2.6] Let A € R™™. Then A is TN
if and only if A is an (entry-wise) nonnegative Cauchon matriz.

3.2. TN cells. For R™™_ fix a set F of minors. The T'N cell corresponding to
the set F is the set of the n-by-m TN matrices for which all their zero minors are
just the ones from F. In [14], it is proved that the Cauchon Algorithm provides a
bijection between the nonempty T'N cells of R™™ and C,, ,,. The following theorem
gives more details about this mapping.

THEOREM 10. [14, Theorem 2.7]

(i) Let A, B € R™™ be TN. Then A, B belong to the same TN cell if and only
if A, B are associated with the same Cauchon diagram.

(i1) Let A € R™™. Then A is contained in the TN cell associated with C € C,, 1,
if and only if a;; =0 if (4,5) € C and a;; > 0 if (4,5) ¢ C.

This manuscript is for review purposes only.
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INTERVALS OF TOTALLY NONNEGATIVE MATRICES 5

Algorithm 1 (Condensed form of the Cauchon Algorithm) [1, Algorithm 3.3], [4,
Algorithm 3.2]

Let A= (a;;) € R™™. Set A = A.

For k=n—1,...,1 define A®) = (az(-f)) € R™™ as follows:
Forj=1,....m—1,

set s; := min {h e{j+1,...,m}| agfll,)l #+ 0} (set s; := oo if this set is empty),

fori=1,...,k,

(k1) Q(FH1)  (RF1)

k+1,7%,s. .
(k) . a;; - —m—, if 55 < o0,
a‘ij = ak+1,3j

a§§+1), if s; = oo,
and fori=k+1,...,n,5=1,....m,andi=1,...,k, j=m

agf) = al(»fﬂ).

Put A:= AW,

3.3. Lacunary sequences. We recall from [14] the definition of a lacunary
sequence associated with a Cauchon diagram.

DEFINITION 11. Let C € Cy . We say that a sequence

(2) Y= ((Zky.]k)v k:O’L"'at)v

which is strictly increasing in both arguments is a lacunary sequence with respect to
C if the following conditions hold:

1. (ik,jk)géC,k:l,...,t;
2. (i,j) € C foriz <i<n and j: <j <m.

3. Let se{1,...,t —1}. Then (i,j) € C if
(a) either for all (i,j), is < i <isy1 and js < J,
or for all (i,7), is < i <is+1 and jo < J < Jst1
and
(b) either for all (i,7), is <i and js < j < js+1
or for all (i,7), i <ist1, and js < j < jst1-

We call t the length of ~.

We recall now from [4] and [8] the construction of two special lacunary sequences.
In the first case, let d;; := det A[ig, %1,...,%p | Jo,J1,---,Jp) be the minor of A associ-
ated to the sequence v given by (2) starting at position (i, j) = (g, jo) which is formed
by the following procedure. We explain the construction only from the starting pair
to the next index pair. The process is then continued analogously.

PROCEDURE 12. [4, Procedure 5.2] Construction of the sequence v given by (2)
starting at (io, jo) to the next index pair (i1,71) for the n-by-m TN matriz A.
Ifip=norjo=morld :={(,7)|ioc<i<n, jo<j<m, and 0 < d;;} is
void then terminate with p := 0;
else

This manuscript is for review purposes only.
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if 0;5, =0 for alli=1ip+1,...,n then put (i1,j1) == minlf with
respect to the colexicographic order
else
put ¢ :=min{k | iy < k < n such that 0 < dyj, },
J :={k | jo < k < mmboxsuchthat 0 < 0y 1 };
if J is not void then put (i1, j1) := (', min J)
else put (i1, 1) := minl with respect to the lexicographic order;
end if
end if
end if.

The following proposition provides a representation of the determinant of the
submatrix associated to a lacunary sequence with respect to C';.

PROPOSITION 13. [8, Corollary 3.3] Let A € R™™ be such that A is a Cauchon
matriz and let v = ((i0, jo), (11,41), - - -, (3¢, Jt)) be a lacunary sequence with respect to
C;. Then the representation

(3) detA[i()?ilv s 7it|j05.j17 s ’jt] = &i07j0 : dilajl T dimjt
holds.
The following proposition shows that a certain sequence of zeros in a column or

a row of A is the result of a zero column or row or submatrix in the bottom left or
top right part of A.

PROPOSITION 14. Let A € R™™ be such that A € R™™ js a Cauchon matriz.
Then

(i) If Ali,...,n | j] = 0
entries of Ali,...,n |
=0

(ii) If Afi | j,....m]

for some i € {1,...,n} and j € {1,...,m}, then all
1,...,7] are zero or the jth column of A is zero.
for some i € {1,...,n} and j € {1,...,m}, then all

entries of A[l,...,i|j4,...,m] are zero or the ith row of A is zero.

Proof. We only give the proof for (i) since the proof of (ii) is parallel. Since A
is a Cauchon matrix and Afi,...,n | j] = 0, we have Afi,...,n | 1,...,5] = 0 or
All,...,n | j] = 0. In the following we assume that A[i,...,n | 1,...,5] = 0. We
proceed by decreasing induction on the row index to show that ag; =0, s =14,...,n,

t =1,...,j. For s = n, by Algorithm 1, a,y = G, = 0, ¢t = 1,...,j. Assume
that aj, =0, h =s+1,...,n,t = 1,...,j5. We show that agy =0, ¢t =1,...,7.
From each position (s,t), ¢ = 1,...,4, we construct by Procedure 12 a lacunary
sequence vgt = ((8,1),(s1,t1), ..., (sp, tp)) with respect to C';. If v = ((s,1)), then
by Proposition 13
as = det A[s | t] = ase = 0.

Therefore, we assume in the following that 7, has positive length. By the induc-
tion hypothesis and Laplace expansion along the first column of Als,s1,...,s, |
t,t1,...,tp), we obtain

det A[s,s1,...,8p | t,t1,...,tp] = asedet Als1,...,sp | t1,...,Tp).

Since s and ((s1,%1), .- -, (Sp, tp)) are lacunary sequences, it follows from Proposition
13 that
(4) det Afs,s1,...,8p |t b1, . tp] = Qo - sy -~ Gt

=0-det A[s1,...,8p | t1,...,tp).

This manuscript is for review purposes only.
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INTERVALS OF TOTALLY NONNEGATIVE MATRICES 7

Moreover, det A[s1,...,sp | t1,...,tp] # 0 since ((s1,%1),...,(Sp,tp)) is a lacunary
sequence that starts from a nonzero entry. Therefore, we conclude from (4) that
asg = 0. Since t € {1,...,j} was chosen arbitrarily, we conclude that A[s,...,n |
1,...,4] = 0. If the jth column of A is zero we proceed as above to show that then
also the jth column of A is zero, which completes the proof. 0

Let A € R™™ be such that A is a Cauchon matrix. Then by the following
procedure a uniquely determined lacunary sequence is constructed which is related to
the rank of A.

PROCEDURE 15. Let A € R™™ be a Cauchon matriz. Construct the sequence

(5) Y= ((ipajp)a"'v(i07j0))

as follows:
e Put (i_1,j_1):=(n+1,m+1).
e Fork=0,1,..., define

M ={(,5) |1 <i<ip_1, 1 <7 <jr1, @ #0}.

If My = ¢, put p := k — 1. Otherwise, put (ig,jr) := max My, where the
mazimum is taken with respect to the lexicographic order.

PROPOSITION 16. Let A € R™™ be such that A is a Cauchon matriz. Then for

all (i,5) € S

rank(Afi,i+1,...,n|1,2,...,7]) =n+ 1,
where 1 is the length of the sequence that is obtained by application of Procedure 15
to Ali,i+1,...,n|1,2,...,5], provided that Ali,i+1,...,n|1,2,...,j] #0.

Proof. The matrix that is obtained by application of Algorithm 1 to B := Ali, i+
L,...,n|1,2,...,m] coincides with Afi,i+1,...,n[1,2,...,m]. Hence if we apply
Procedure 15 to B[1,...,n—i+1]|1,...,j] = A[i,i+1,...,n| 1,2,..., 4] and proceed
parallel to the proof of [8, Theorem 3.4], we are done. d

COROLLARY 17. Let A € R™™ be such that A is a Cauchon matriz. Then for all
(1,j) €S

rank(A[l,2,...,i| 5,7+ 1,...,m])=n+1,
where 1 is the length of the sequence that is obtained by application of Procedure 15
to A[1,2,...,i| 4,5+ 1,...,m], provided that A[1,2,...,i|4,j+1,...,m]#0.

THEOREM 18. [8, Theorem 3.2] Let A € R™™ be such that A is a Cauchon
matriz. Then fori=1,...,n and 0 <1 <n —i, the rows i,i+1,...,i+1 of A are
linearly independent if and only if application of Procedure 15 to Afi, ..., i+l1|1,...,m]
results in a sequence of length .

COROLLARY 19. [8, Corollary 3.2] Let A € R™™ be such that A is a Cauchon ma-
triv. Then for j =1,...,m and 0 <1 <m—j, the columns j,j +1,...,5 +1 of A are
linearly independent if and only if application of Procedure 15 to A[1, ... ,n|j,...,j+I]
results in a sequence of length I.

3.4. Descending rank conditions. In this subsection, we link the descending
rank conditions, see Definition 6, to Algorithm 1.

THEOREM 20. [8, Theorem 4.4] Let A € R™" and B := A#. If A satisfies the
descending rank conditions, then the following statements hold:

This manuscript is for review purposes only.
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8 M. ADM, K. MUHTASEB, A. ABDELGHANI, AND J. GARLOFF

(i) Ifl;ij =0 for some i > j, then byy = 0 for all t < j;
(i1) if bi; =0 for some i < j, then by; =0 for all t < i;
(i) B is a Cauchon matriz.

THEOREM 21. [8, Theorem 4.8] Let A € R™" and B := A¥. Then the following
statements are equivalent:

(a) A satisfies the descending rank conditions.

(b) B satisfies (i) and (ii) in Theorem 20.

4. Relaxing nonsingularity to linear independence of certain rows and
columns. For the rest of the paper, we assume for the ease of presentation that the
given TN matrices do not contain a zero row or column. This is not a restriction
because after deletion of the respective rows and columns the resulting matrix is again
TN.

DEFINITION 22. Let A € R™™ be such that A is a Cauchon matriz. For a given

lacunary sequence v = ((40, jo), (¢1,71)s - - -, (ip, Jp)), the order of the sequence is given
by
(6) | = min{k | Alig +1,...,0k] =0 or Afligljs +1,...,m] :o};

we set | := p if the set in (6) is empty.
Condition I. Let A € R™™ be such that A is a Cauchon matrix. For all (i,7) € S,
the rows ¢ +1,...,i + £ and columns j + 1,...,5 + £ of A are linearly independent

provided that ¢ > 0, where ¢ is the smallest among the orders of all the lacunary
sequences with respect to C'; that start from (¢, j).

In the sequel, it will always be clear from the context to which pairs (i,j) € S
the quantity ¢ refers. Therefore, it will not be necessary to indicate this dependency.

LEMMA 23. Let A € R™™ be such that A is a Cauchon matriz and assume that
Condition I holds. Then for any (i,7) € S with £ > 0, there exists a lacunary sequence
v =((4,4), (t1,91), .- -, (ip, Jp)) with respect to C; of order £ starting from (i,j) such
that

(7) d(iailr'-aif)zo or d(jvjla"'vje):(L

where £ is given as in Condition I.

Proof. Suppose on the contrary that there exists (ig,jo) € S with £ > 0 such
that for any lacunary sequence v = ((4o, jo), (¢1,71), - - - » (ip, jp)) With respect to C'; of
order ¢ we have d(ig,i1,...,i¢) > 0 and d(jo, j1,---,j¢) > 0. Moreover, assume that
~v is chosen in such a way that (i, jo) is the maximum such pair with respect to the
lexicographic order. Therefore, we may conclude that

d(il,...,ig>=0 or d(]l,,jg):()

Without loss of generality we may assume that d(ji,...,j¢) = 0 and j; = jo + 2.
Case l. iy=noras; =0,s=14+1,...,n.

If 4o, = 0, s = ig + 1,...,n, then it follows that Alip +1,...,n | 1,...,5,] = 0
because A is a Cauchon matrix. Hence, in either case it is easy to see that (ig, jg) is
the maximum pair with respect to the lexicographic order of the set

{(u,v) | 1<u<n, 1<v<jp, Qyy #0}.

This manuscript is for review purposes only.
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Moreover, since d(j1,...,7¢) = 0 and v = ((4,7), (41,41),-- -, (ip, Jp)) is a lacunary
sequence with respect to Cy, for s = 1,...,¢ — 1, we have (i, js) is the maximum
pair with respect to the lexicographic order of the set

{(U,’U) | 1§U<is+17 1S”<js+17 dU1,§£O}

Therefore, the sequence which is obtained by the application of Procedure 15 to the
columns ji, ja, ..., j¢ coincides with the sequence ((i1,j1), (i2,42),..., (i¢,je)). Now
we apply Procedure 15 to the columns jy + 1,59 + 2, ..., jo + £ which coincide with
the columns jo +1 =71 — 1,52 — 1,...,j¢ — 1. This results in the lacunary sequence
((1,71)s -+, (G, 4r)), where 7 < £. If 7 < £ — 1, then by Corollary 19, the columns
Jo+1,50+2,...,jo+¢ are linearly dependent which contradicts Condition I. Therefore,
we have 7 = £ and hence j;, = jr — 1, k = 1,2,..., £ = 7. Since 7 is a lacunary
sequence, £ > 1, A does not have a zero row or column, and j; = jo + 2, we have

Grjoi1 =0, t=1,2,... i3 —1,

which implies that i > 4. Since application of Procedure 15 to the columns jy, jo, . . ., jili
results in the sequence ((i1,71), (i2,42),- .., (ie,j¢)) and d(j1,...,7¢) = 0, we con-
clude that for ¢ = 0,1,...,¢ — 1, if d(ig,ig4+1) > 0, then it follows that a,, = 0,
u=1ig+1,...,9g41 —1,v=1,...,i541 — 1. Therefore, we may conclude that

io=ig, k=1,2,..., =T

Hence the sequence which is obtained by appending ((Zo, jo), (¢,41),- -, (i}, 7;)) to a

lacunary sequence which starts from (i, j;) is a lacunary sequence with respect to
C';, has order ¢, and d(jo, ji,--.,j;) = 0 which contradicts our assumption.

Case 2. jy=mora;s=0,s=j,+1,...,m.

The proof is parallel to the one of Case 1. O

LEMMA 24. Let A € R™™ be TN and suppose Condition I holds. Then for any
(i,7) € S with £ > 0 we have

det Ali+1,i+2,....i4+L|j+1,7+2,...,5+¢ >0,

where £ is given as in Condition I.
Proof. By Theorem 9, A is a Cauchon matrix. Suppose on the contrary that
there exists (ig, jo) € S such that the determinant of the matrix

BZA[10+1,20+2,,Zo+£|jo+1,jo+2,,j0—|—€]

vanishes. Moreover, assume that (ig,jo) is the maximum such pair with respect to
the lexicographic order and let v = ((%0,Jo), (41,71),---, (ip,Jp)) be an associated
lacunary sequence with respect to C'; of order ¢ > 0 with d(ig,%1,...,4¢) = 0 or
d(jo,j1,---,j¢) = 0 which exists by Lemma 23. Without loss of generality, we may
assume that d(jo,j1,.--,J¢) = 0. By Lemma 2 and Condition I, the left or the right
shadow of B has rank at most £—1. Since ((i1, j1),. .., (ip, jp)) is a lacunary sequence
with a;, ;, # 0, we have by Proposition 13

detA[il,...,ip|j1,...,jp] 7&0,

and we conclude by Lemma 3 that

detA[il,...,ie|j1,---ajZ] #O
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10 M. ADM, K. MUHTASEB, A. ABDELGHANI, AND J. GARLOFF

Because Aliy,...,i¢ | J1,-- -, je] lies completely in the left shadow of B, the left shadow
of B has rank at least . By Theorem 18, application of Procedure 15 to the rows
t0+1,...,70+L results in the lacunary sequence ((ig+1, 51), (i0+2, B2), . . ., (i0+¥, Be)).
If 81 > jo, then by Corollary 17 the right shadow of A[ig+1,i0+2,...,i0+£|jo+1, jo+
2,...,j0 + €] has rank at least £. Now we assume that 8; < jo. Let s € {1,2,...,¢}
be the smallest integer such that S5 > jo. Note that s > 2. Define (i(, 54) = (i0, jo)
and for k=1,2,...,7, let

(k> di) :=min { (i, 5) | i = i}y + 1, J > jr—1, @i >0},

237 where the minimum is taken with respect to the lexicographic order. Consider the
238 sequence ((i(,74), (¢4, 41),---, (&4, 42)). If j~ = m, then this sequence is a lacunary
239 sequence with respect to C'; since for each t =0,1,...,7 —1,4;,; =4, + 1 and there
210 exists {41 < ji,q such that ELiQH,ng > 0. Otherwise, we append it to a lacunary
241 sequence starting from (i’, j”) such that the resulting sequence is a lacunary sequence
242 with respect to C';. Hence the order of this sequence is 7 which is less than ¢ and
243 d(ig, 4}, ..,4) = 0 which contradicts our assumption. Therefore, 51 > jo and the
244 right shadow of B has rank at least ¢ which implies by Lemma 2 that det B > 0, a
245 contradiction. Since we have obtained a contradiction both in the event of a left and

246 right shadow, the proof is completed. O
247 Now we turn to the construction of a lacunary sequence with the properties stated
248 in Lemma 23. The procedure is based on the following lemma.

249 LEMMA 25. Let A € R™™ be such that A is a Cauchon matriz and suppose
250  Condition I holds. Then for all (i,7) € S such that Ali +1,...,n|j+1,...,m] #0,
251 let

252 sjr=min{k e {i+1,...,n} | ar; # 0},

253 t;:=min{k € {j+1,...,m} | a; # 0},

provided that both sets are not empty. Then it follows that
as; j+1 70 or ajr14, #0.

Proof. Suppose on the contrary that there exists (ig,jo) € S such that Alig +
L...,nljo+1,...,m] # 0 and ds; j,+1 = 0 and @;y4+1,4,, = 0. Hence Afig + 1,4 +

NN
ot ot
C W~

256 2,...,5j0|j0 + l,jo + 27~--7ti0] 7é 0, A[ZQ + 1,29 + 2,...,8j0‘j0 + 1] =0, and A[’LO +
257 1ljo+ 1,70+ 2,...,t;,] = 0 since A is a Cauchon matrix, Qs .jo 7 0, and @iy ¢, # 0.
258 Therefore, for any lacunary sequence v = ((4o, jo), (¢1,71), - - -, (ip, jp)) that starts from
259 (4o, jo) we have d(ig,%1,...,%¢) > 0 and d(jo, j1,---,je) > 0, where £ is the order of 7,
260  which contradicts Lemma 23. O
261 PROCEDURE 26. Construction of a lacunary sequence vy = ((io, jo), (41, 71); - - - » (ips 3p)

262 starting at (o, jo) € S to the next index pair (i1, j1) in the n-by-m matriz A such that
263 A is a Cauchon matriz and A satisfies Condition I.

264 If U:={(,j)]io<i<n,jo<j<m, and 0<a,,} is void then termi-
265 nate with p := 0;

266 else

267 if a; j, =0 foralli =iy +1,...,nor a;; =0 forall j=jo+1,...,m
268 then put (i1, 71) := minld with respect to the colexicographic order and
269 lexicographic order, respectively;

This manuscript is for review purposes only.
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INTERVALS OF TOTALLY NONNEGATIVE MATRICES 11

else put

i' :=min{k | ig < k < n such that ay ;, # 0},
J =min{k | jo < k < m such that a;, ; # 0};

if di,’j0+1 7é 0 then put (ilajl) = (i/,jo + ].),
else put (i1, 1) := (io +1,5');
end if
end if
end if.

5. Application to intervals of totally nonnegative matrices. In this sec-
tion, we consider matrices that satisfy Condition I. In [2], the proof of the interval
property of the NsTN matrices relies on the fact that the entries of A obtained from
A by application of Algorithm 1 can be represented as a ratio of contiguous minors
of A. If we relax the nonsingularity assumption and would like to employ such a
representation, we have to avoid division by a zero minor. We accomplish this by
using Lemma 2, where the linear independence of the respective rows and columns is
assured by Condition I. Then only the vanishing of the left or the right shadow of a
zero contiguous minor has to be considered.

Let A € R™™ be TN. For any (ig,jo) € S, we can construct a lacunary se-
quence ((ig, jo), (41, J1)s - - - » (ip, jp)) with respect to the Cauchon diagram C';, and by
Proposition 13 we may conclude that

det Alfig, i1, .-, 0p|70, 515 - -5 Jp) = Gigjo = iy jy =~ iy -

Hence by application of this representation to the lacunary sequence ((i1,j1),. .., (ip,
Jp)) we obtain that

~ detA[i07i1,...,i |j0,j1,...,j]
(8) Qig,j0 = Al e ~f
det Afi, - ipljis- -+ Jy)

Therefore, each entry of A can be represented as a ratio of two minors. We want to
strengthen this representation in that each entry of A can even be represented as a
ratio of two contiguous minors. We call p the order of the representation (8).

Now let A in addition satisfy Condition I with ¢ > 0. Then by Procedure 26, for
any (i, jo) € S we can construct a lacunary sequence ((io, jo), (¢1, 1), - - -, (ip, Jp)) of
order ¢ with (7). Without loss of generality, we may assume that d(jo,j1, - ,J¢) =0
holds. By Proposition 14, Afig+1,...,n|1,...,j¢ =0or A[1,...,4 | je+1,...,m] =
0 holds. By (8) and the zero-nonzero pattern of A, we have

i = detA[io,zil,...,i.p|j'0,j1,..'.,jp]
’ det Afit, ... iplj1,. .-, Jp)

- detA[io,il,...,Zj‘jo,jl,...,jg]thA[ig.;,.h...,ip|jg+1,...,jp]
~ det Afin, ..y ieldt, oy Jel det Aligst, -y iplJetts - - - )

) _ detA[io,i.l,...,i'g\j‘o,jl,..‘.,jg]
det Aliy, ... i¢l51,-- -, Je]

This manuscript is for review purposes only.
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12 M. ADM, K. MUHTASEB, A. ABDELGHANI, AND J. GARLOFF

PROPOSITION 27. Let A = (a;;) € R™™ be TN and suppose Condition I holds.
Then the entries a;; of the matriz A can be represented as

(10) &___detA[i,i+1,...,i+€\j,j+1,...,j+€]
ST et Ali4 1, i L+ 1,4l

where £ is given in Condition I and is assumed to be positive.

Proof. By Theorem 9, A is a nonnegative Cauchon matrix. By the preced-
ing consideration, for each position (ig,jo) € S, there exists a lacunary sequence
((i0, Jo), (41, 41)s - - - » (ip, Jp)) With respect to the Cauchon diagram C'; of order ¢ such
that

5 det Alig, i1, ..., 00lGos 1 je
(1) g go = A 1l
det [7,1,...,Zg|j1,...,jg]

Using Lemma 23, we can assume without loss of generality that d(jo, j1,...,j¢) = 0.
By Proposition 13 and Lemma 3, det A[i1,ia,...,%¢|j1,72,--,7¢) # 0 holds, since
((1,71)s- -+, (ip, Jp)) is a lacunary sequence and det Afi1, ia, ..., iplj1,72: - -, Jp] # O.
By Proposition 16, the rank of the matrix B := Afig + 1,40 +2,...,n|1,2,...,7¢] is
¢. Let Rij41,Riy+2,..., R, be the rows of the matrix B. Hence we may represent
Ry, = Zf,:l apsRi., h =19+ 1,99+ 2,...,i + £. Therefore, we may conclude

Alio+ 1,90+ 2,...,00+ €] 1,2,...,50 = CAliv, ..., 10]1,2,..., je],
where C' = (cthtz) € R with Ctyty = Qligtty tos ti,to =1,2,... 4.
In particular, we obtain for a special choice of the column vectors
Aliog + 1,40 +2,... 30 + €)jo + 1, jo +2,...,jo + 4] = CAliy,ia,...,i|jo + 1,50 +2,...,50 + {]

= CA[ilaiQa sy if'jlajéa .. aj@]a
whence
(12) det Alig + 1,i0+2,...,50 + lljo+ 1,50+ 2,...,jo + ¢] =
det C'det A[i1, 7:2, ST ,ig‘jl,jQ, [SPN ,jg].
Since by Lemma 24
det Alig + 1,i0 + 2,...,90 + £jo+ 1,50 + 2,...,50 + €] #0
and
detA[ila i27 e 7if|j17j27 e 7j€] 7é Ov

we conclude that det C' # 0.
Moreover, we obtain

A[iOai0+1a"'77;0+€|j07j0+1a"'aj0+€]:C/A[i()aila"'aif|j0aj1a"'a.j€]a
where ¢/ € RAH1LA ig given by
, (1 0
=15 ¢

(13) detA[iO,iO + 1,"'3210 +‘€|j03.j0 + 17"',j0 +€]
= det C’ det Alig, i1, .., 4|40, 1, - - - » Je)-

which yields

Since det C" = det C, the representation follows now from (11)-(13) . d
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INTERVALS OF TOTALLY NONNEGATIVE MATRICES 13

THEOREM 28. Let A = (ag;), B = (by;) € R™™ be TN such that Condition I
holds and A <* B. Then A <* B and the entries ax; and by; of A and B, respectively,
can be represented as ratios of contiguous minors of the same order, k = 1,...,n,
j=1...,m.

Proof. Let A and B be TN. Then by Theorem 9, A and B are nonnegative
Cauchon matrices. We show by decreasing induction with respect to the lexicographic
order on (k,j) that if @y, and by; have representations as in (10) of order [ and [,
respectively, then both of them can be represented as ratios of contiguous minors
of the same order and (—1)*"a,; < (—=1)¥*iby;. For k = n or j = m, the result
is trivial and follows by the application of Algorithm 1 and the assumption that
A <* B. Suppose the claim holds for all (k°,j°) such that (k°,j°) > (k,j) with
respect to the lexicographic order. We show that the claim holds for the entries in the
pOSitiOH (kvj) Let ((k,]), (klvjl)a cee (kpvjp)) and ((kaj)a (kllvji)a RS (k;ﬂvj;/;/)) be
the lacunary sequences that start from the position (k, j) with respect to the Cauchon
diagrams C'; and Cj, respectively. Then by Proposition 27, ax; and by; allow the
following representations’

det A[k,....k+1j,...,5+]]

14 iy =
(14) U= Qb Ak + 1, kAl L. 4]

~ det Blk,....k+1U|j,..., 5+ ]
(15) b = 2 ]
det Blk+1,...,k+Ulj+1,....5+1]

where [ and [’ are defined as in Condition I.

Let k4 j be even; the proof of the case that £+ j is odd is parallel. Then the following
three cases are possible:

Case 1: Suppose that [ =1’. Then by (14), (15), and Lemma 5, we have

agj < b

Case 2: Suppose that | < I’ By Lemma 23 and without loss of generality, we
may assume that d(jo,j1,.-.,51) = 0. If k = n—1, then I’ = 1, | = 0. Hence
An|1,...,5]=0o0r A[1,...,n—1] j+1,...,m] = 0 which implies by Proposi-
tion 14 that A[n | 1,...,j] =0or A[l,...,n—1]j+1,...,m] = 0. In particular,
anj = 0 or ap—1,j4+1 = 0. Thus b,; = 0 or by_1 ;41 = 0 since n + j is odd and
A <* B which implies that B[n | 1,...,5]=0or B[l,....,n—1]|j+1,....,m] =0.
Therefore, B[n | 1,...,5] = 0 or E[l,...,n —11]j4+1,...,m] = 0. Whence
! = 0 which is a contradiction. Let h := min{s: ag,+1,,, = 0}. The sequence

((kn+1,4n), (knt1, dn+1)s - - - (kp, Jp)) 1s a lacunary sequence since d(jo, j1, - -, je) = 0.
Because a,+1,5, = 0 and d(jo, ji,-..,j¢) = 0, we conclude by the induction hypoth-
esis and Proposition 13 that

det Alkp, + 1,kp +2,...,kp +14+1—hljn,jn+1,...,Jn+1—h] =0.
Since kp, = k+ h and j;, = j + h, we obtain
det Alk+h+1,k+h+2,....k+14+1lj+h,j+h+1,...,5+1=0.
By Lemma 3, it follows that
det Ak +1,....k+1+1]j,....5+1 =0,

Hfl =0 or I’ =0, we employ the convention that the respective denominator is 1.

This manuscript is for review purposes only.
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and consequently by Lemma 4,
detBlk+1,...,k+14+1lj,...,7+1 =0

344  since otherwise we would have det A[k+1,...,k+1+1|j,...,j+1] > 0. By using
345  Sylvester’s Identity and again Lemma 3, we obtain

N det Blk, ..., k+Ulj,....j+1]

Ll Py 1 VR Sy Sy 71 VR SO ST

. _ det Blk,....,k+1U —1|j,...,j+ U —1]det Blk+1,...,k+U|j+1,...,5+ ]
det Blk+1,...,k+U|j+1,...,5+U]det Blk+1,....k+U =17+ 1,...,5+1' —1]

e B det Blk,...,k+1 —1|j+1,...,5+U]det Blk +1,....k+1Ulj,...,5 +1 —1]
det Blk+1,...,k+U|j+1,...,5+U]|det Blk+1,....k+U =17+ 1,...,5+1' —1]

o det Blk,...,k+1 —1]j,...,5 +1' —1]

T detBlk+1,..  k+U—1j+1,....5+0—1]

If ! =141, then Bkj has order [. Otherwise, apply Sylvester’s Identity repeatedly to
obtain the required order.

Case 3: Suppose that I’ < I. Without loss of generality assume that d(j}, ji,...,7,) =
0. Let Ay := Alk+1...,k+l|j+1,...,5+] and By := Blk+1... k+I|j+1,...,5+],
then A; is NsT N and A; <* B;. By Lemma 4, we obtain

0 < det A; < det B;.

We conclude that B; is nonsingular.
Let h:= max {s: d(k{, k7,...,k.) = 0}. Then define the sequence

((k;b + la.];L)a (k;z+1aj;z+1)a sy (k;)’m];:;’))

350 which is a lacunary sequence. By the induction hypothesis, det B[k}, + 1,...,k} +
51 Ulgpy -y jp+1'—1] = 0. By Lemma 3, det Bk}, +1, ...k}, +U+s|j,, ..., j,+—1+s] =
352 0,s=1,2,....
53 By using Sylvester’s Identity if [ =1’ + 1, we obtain

- %‘:dﬁB%w+1”Wk+V+1Mj+L”wj+F+H
- I et B+ 1, kAL U]
detBlk,k+ 1. k41, 41,5+
" detBlk4 1. ki 41, +]]

357 If 1> 1"+ 1, we apply Sylvester’s Identity repeatedly to arrive at the required order.O

8 THEOREM 29. Let A, B,Z € R™™ be such that A <* Z <* B. Let A, B be TN
9 and satisfy the descending rank conditions, and let A%, B¥ satisfy Condition I. Then
360 Z is TN and satisfies the descending rank conditions.

361 Proof. Put A, := A% B, := B#,7, :== Z#. Then A, <* Z; <* By, A}, B, are
362 TN, and by assumption, Condition I holds for both A; and B;. Then by Theorem
363 9, Ay = (a;;) and B; = (b;;) are nonnegative Cauchon matrices and satisfy condi-
364 tions (i)-(ii) in Theorem 20. By Theorems 9 and 21 it suffices to show that Z; is a
365 nonnegative Cauchon matrix and satisfies conditions (i)-(ii) in Theorem 20.
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INTERVALS OF TOTALLY NONNEGATIVE MATRICES 15
By Theorem 28, a;; and Bz‘j can be represented as ratios of contiguous minors of
the same order, i.e.,

U det Afi+ 1, i+ L+, f+ L]

i

= detBifi i+ 1, i+l 1.0+
Y detBili 41, .. iH i1, 4]

for some ¢. By Lemma 5,

)

(16) Ay <* 7' <F By,

where Z' = (z;;) with

Z/ L detZl[Z,l+1,7l+€|Ja]+]—,a]+£]
U det Zy[i+ 1, il 41, 4+ 1]

From (16) it follows that Z’ > 0. If 2z}, = 0, then by (16), a;; = 0. Since A satisfies the
descending rank conditions we can apply Theorem 20 to conclude that as; = a;; = 0,
s, t =1,...,4. Again by (16), we conclude that b;,_1 ; = b; ;1 = 0 and since B satisfies

the descending rank conditions, we obtain that biy = bs; = 0,s,t=1,...,i—1. Hence
zjy =2, =0, s,t=1,...,i. We proceed in the same way if 2{; =0, i < j or i > j, to
obtain:

(i) If 2;; = 0 for some i > j, then z;, = 0 for all ¢ < j;
(ii) if 2{; = 0 for some 7 < j, then 2z;; = 0 for all £ <.
Therefore, Z' is a Cauchon matrix. If we are able to show that Z' = Z, then by
Theorems 9 and 21 we are done.
Claim: 7' = Z,.
We proceed by decreasing induction with respect to the lexicographic order on the

pairs (4,7), i,j = 1,...,n. By definition, 2, = 2,; = Z,; for all j = 1,...,n.
Suppose that we have shown the claim for each pair (i°, °) such that i°® =i+1,...,n,
j° =1,...,nand i® =14, j° = 7+ 1,...,n. Without loss of generality we may
assume that i + j is even. Let ((4,7), (i{,47),---, (i,,,Jpy,)) be a lacunary sequence
with respect to Cz/ such that ¢ is the minimum order and d(i,4,...,i),) = 0 or

d(4,77, ..., jp) = 0. Without loss of generality, assume that d(j, j{, ..., jj,) = 0 and
i > j. By (9) we have the following representation

sl -1/ - /] -1
o detZ1[Z,Zl, . 72@//|‘],]1 goue ’]Z”]

17 Zij =
(17) ij det Zo [, if Gl di]
By Proposition 16, rank(Z,[i{,i{ +1,...,n|57,...,j/]) = £ since the lacunary se-
14 1 ‘
quence ((#/,77), ..., (@9, ) coincides with the one that is constructed by Procedure

15 applied to the columns j{,...,jy, of Z’'. Hence

Zhli+1i+2, i+ i+, 5+2. 0,0+ = CZy i, i, oo ign|dy s gy ooy Gl
for some C € R"¢"
Case 1: (= /("

We get from Lemma 4

. We distinguish the following three cases:

0<det Ay[i+1,i+2,....i+0lj+1,j+2...,j+
<det Zyfi+1,i+2,...,i+"|j+1,5+2...,5+"]
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and conclude that det C' # 0. Proceeding as in the proof of Proposition 27, we arrive
at
det Zy[i,i4 1. 04 L5, 41544

T et Zyfi b L it Lt

Case 2: (" < /{
By Lemma 3,

det Ajfi+1,....6 4+ +s|j+1,....5+€"+5>0

because A1[i+1,...,i+¢"+s|j+1,...,5+ " +s] are leading principal submatrices
in Ajfi+1,...,i+£4]j+1,...,5+ forall s=0,1,...,¢ —¢". By Lemma 4,

det Z1[i+1,....i+ 0" +s|j+1,....,54+¢" +5 >0, s=0,1,...,.0—¢".
We proceed parallel to Case 1 to arrive at

S det Z[i,d, ..., i |5, 375 - do]
" det Z1[iY, ..., i |y g]
Cdet Zy[i i+ 1, i+ 05,541, 5+ L]

18 =
(18) det Z1[i+1,...,i+ "5+ 1,...,5+¢"]

By the induction hypothesis, Zi[i+1,...,n | j,7+1,...,n] is TN. By argueing as in
Case 3 in the proof of Theorem 28 we may conclude that det Zy[i +1,...,0+ ¢ + 1|
j,7+1,...,7+¢"] =0. By Lemma 3, we have

det Z1[i+1,...,i+0"+1+s|j,j+1,....54+0"+s]=0, s=1,....0—0"—1.

Application of Sylvester’s Identity step by step to the representation of Z;; that is
given in (18), we obtain

N det Zy[i,i+1,...,a+ 0" 5,5+ 1,...,5+ "]
3. =
” det Zy[i+1,...,0+L"j+1,...,5+ "]
Cdet Zyfi i+ 1, i+ 0+ 15,5+ 1, G+

det Ze[i+1,...,0+ 0"+ 1|7+ 1,...,5+ "+ 1]

(19) :
Cdet Zyfi i+ 1, il 4, ]
T odet Zy[i+ 1, i+l 4]

_
= Zz;j-

Case 3: £ < ("

Define W := Z1[i+1,i+2,...,i+0"|j+1,j+2...,j+L"]. If det W # 0, then Z;; can
be written as in (18). Otherwise, by [15, Proposition 1.15] the rows i +1,...,i+¢" of
7, are linearly dependent or the right shadow of Win Zy[i+1,i+2,...,n|1,2...,m)]
has rank at most £ — 1 since by the induction hypothesis the later submatrix is TN
and d(j,j{,...,jp) = 0. If i = j, then define (ag, o) := (¢,7) and for k =1,...,T,
let

(ak,Br) :==min{(a,8) | =ap_1+1, B> Be_1, 24,53 #0},

where the minimum is taken with respect to the lexicographic order. This sequence
is a lacunary sequence or a part of a lacunary sequence of order 7 since the entries of
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7' satisfy the conditions (i) and (ii) above with possible gaps between columns and
7 < ¢ which is a contradiction. Hence if i = j, det W #£ 0. If ¢ > j, then j <i—1
since i + j is even. It is easy to see that the order of the sequence at the position
(i,7) is less than or equal to that of (i,j + 1). Hence by the induction hypothesis,
the rows i + 1,...,7 + £’ cannot be linearly dependent and the right shadow of W in
Zili+1,i+2,...,n|1,2...,m] has not rank less than ¢’. Thus det W # 0 and we
conclude that det C' # 0. Therefore, Z;; can be written as in (18). Proceeding as in
the proof of Theorem 28, Case 2 and by Lemma 3, we arrive at

det Zy[i+1,....i+0+1+s|j....5+€+s] =0, s=0,1,...,0" —¢—1.

Now use Sylvester’s Identity to decrease step by step the order of the representation
similarly as in (19) to obtain Z;; = 2j;. This completes the proof. d

THEOREM 30. Let A, B,Z € R™™ be such that A <* Z <* B. If A, B are TN,
belong to the same TN cell, and both satisfy Condition I, then Z is TN, satisfies
Condition I, and belongs to the same T'N cell that includes A and B.

The proof of this theorem is parallel to the proof of the Theorem 29 and therefore
omitted.

The follwing example illustrates the difference between Theorem 29 and Theorem
30.

EXAMPLE 31. Let

1 1 1 1 1 1 1 1 1
A=1|2 3 3|, B=1|2 3 3|, and Z=12 3 3
2 3 3 2 3 7 2 3 4
Then we have
A<*7Z<*B
and obtain
) $ 01 ) 0 1
A=10 0 3| and B=1|0 2 3
2 3 3 2 3 7

A, B are TN but belong to two different TN cells and satisfy the descending rank
conditions. A%, B¥# fulfill Condition I. Z is TN.

In [2], two relaxations of the nonsingularity assumption are presented. The fol-
lowing example shows that Theorem 29 covers a different situation.

EXAMPLE 32. Let

1 2 1 2 2 1
A=15 10 5 and B=15 10 5
1 2 1 1 2 13

Then we have
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and obtain
3 0 0 1 ~ 1 0 1
A=10 0 5| and B=|0 2 5
1 2 1 1 2 13

A and B are TN, both A(= A#) and B(= B#) satisfy Condition I as well as the
descending rank conditions. Hence all matrices in [A, B] are TN . Neither [2, Theorem
3.6] nor [2, Corollary 3.7] can be used to draw this conclusion since A is singular and

det A[1, 2] = det A[2,3] = 0.

Unfortunately, Condition I alone is not strong enough to guarantee the interval
property as the following example documents.

EXAMPLE 33. Let

3 2 2 2 4 2 2 1 5 2 21
A=16 5 5 5|, Z=1(6 5 5 5|, and B=|5 5 5 5
3 3 3 3 3 3 3 3 3 3 3 3

A and B are TN, satisfy Condition I, and A <* Z <* B. But Z is not TN since
det Z[1,2,3]1,2,4] = -3 < 0.
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