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We investigate the properties of membranes under tension by Monte Carlo simulations of a generic
coarse-grained model for lipid bilayers. We give a comprising overview of the behavior of several
membrane characteristics, such as the area per lipid, the monolayer overlap, the nematic order, and
pressure profiles. Both the low-temperature regime, where the membranes are in a gel Ly phase,
and the high-temperature regime, where they are in the fluid L, phase, are considered. In the Lg
state, the membrane is hardly influenced by tension. In the fluid state, high tensions lead to structural
changes in the membrane, which result in different compressibility regimes. The ripple state Pg,
which is found at tension zero in the transition regime between L, and L, disappears under tension
and gives way to an interdigitated phase. We also study the membrane fluctuations in the fluid phase.
In the low-tension regime the data can be fitted nicely to a suitably extended elastic theory. At higher
tensions the elastic fit consistently underestimates the strength of long-wavelength fluctuations.
Finally, we investigate the influence of tension on the effective interaction between simple
transmembrane inclusions and show that tension can be used to tune the hydrophobic mismatch

interaction between membrane proteins. © 2010 American Institute of Physics.

[doi:10.1063/1.3352583]

I. INTRODUCTION

Biological membranes are made of lipid bilayers with
incorporated proteins. These barriers define the inside and
outside of a cell, separate the functional compartments in
cells, and are indispensable for life." The microscopic surface
tension of membranes is usually
altogether,2 but there may also be situations where mem-
branes are under considerable stress due to osmotic pressure
differences. For example, epithelial cells exposed to trans-
membrane osmotic gradients can be expected to develop a
state of tension under physiological conditions.? Similarly,
osmotically induced tension may play a decisive role during
conformational changes, fission or fusion of cells.*> Another
situation where membranes experience stress is under the
influence of ultrasonic pulses.6 Applied perpendicular to a
lipid membrane, shock pulses can promote significant struc-
tural changes similar to those induced by lateral tension. The
effect of such pulses on membranes is of considerable medi-
cal interest. In this context Koshiyama et al.” studied phos-
pholipid bilayers under the action of a shock wave in atom-
istic molecular dynamics simulations.

Despite the advances in computer technology throughout
the past decades, atomistic modeling of lipid bilayers on
length scales of a few nanometers still requires huge com-
puting resources or even goes beyond the current capabilities
of high performance architectures. This motivates the use of
coarse-grained models. They can give fundamental insights
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into the physics of a certain system; moreover, they provide
powerful tools for the interpretation of the behavior of com-
plex systems, such as lipid membranes.* ™!

The aim of the work presented here is to study the effect
of an externally applied tension on the physical properties of
a model bilayer and on the behavior of incorporated model
proteins. We employ a generic coarse-grained model of am-
phiphiles developed in a top-down approach.]2 For tension-
less systems this model has already been used very success-
fully to reproduce various bilayer phases including the
symmetric and asymmetric “rippled” Pg states''* and to
study membrane-protein interactions."”” Recent simulations
on membranes under mechanical stress have often dealt with
the formation, structure, and stability of hydrophilic
poreslé*18 or with the influence of surface tension on trans-
membrane channel stability and function.'*® In this paper,
we will primarily be concerned with the structural changes in
pure membranes in response to lateral stresses, focusing on
unporated systems. Since our model exhibits a rather realistic
phase behavior of the model membrane at different tempera-
tures, we can study different membrane states, i.e., the liquid,
the ripple, and the gel state.

Our paper is organized as follows: First we describe the
underlying lipid model and outline the simulation methods.
Then the simulation results are presented starting with a phe-
nomenological introduction, where the effects of an external
tension on the model bilayer in different phases are de-
scribed. Thereafter a quantitative analysis of these bilayers is
performed and the characteristics of the bilayers are exam-
ined with respect to their behavior under external tension. In
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the last part we show the influence of tension on the effective
interaction potential of two simple model proteins. A brief
summary concludes our paper.

Il. MODEL AND METHODS

In our model’' the lipid molecules are represented by
chains made of one head bead and six tail beads, and we
have additional solvent beads. Hence we have three types of
beads, &, t, and s for head, tail, and solvent beads, respec-
tively. Within the lipid chains, neighbor beads at a distance
r interact via a finite extensible nonlinear elastic (FENE)
potential

F—ry)?
_Q)’ (1)

1
Vepng(r) = — EGFENE(Ar max)21n<1 2
with the spring constant €ggng, the equilibrium bond length
(BL) ry, and the cutoff Ar,,. The angles 6 between subse-
quent bonds in the lipid are subject to a stiffness potential

Via(6) = €p,(1 —cos 6), 2)

with the stiffness parameter eg,. Beads of types i and j
which are not direct next neighbors in a chain interact via a
truncated and shifted Lennard-Jones (LJ) potential,

12 6
O g
6_1L_2_11>_Vci- lf r<rci~
VLJ(I’/O'U)z (rlz r6 M Y (3)
0 otherwise.

The offset V.. ;; is chosen such that Vy;(r/ o;j) is continuous at
the cutoff r. ;. The parameter o,;=(0;+0;)/2 is the arith-
metic mean of the diameters o; of the interaction partners,
and r,;=10y; for all partners (ij) except () and (ss): r.,
=20, and r.,,=0. Hence tail beads attract one another, all
other interactions are repulsive, and solvent beads do not
interact at all with each other. This way of modeling the
solvent environment (the so-called phantom solvent)12 com-
bines the advantages of explicit and implicit solvent models:
Like implicit solvent models, the solvent environment does
not develop any artificial internal structure, and it is very
cheap (in Monte Carlo or Brownian dynamics simulations,
less than 10% of the total computing time is spent on the
solvent beads). Like explicit solvent models, the model can
be used to study solvent-mediated phenomena such as the
effect of hydrodynamic interactions on membrane dynamics.
This is much more difficult with solvent-free models. We
should note, however, that we mainly consider static mem-
brane properties in the present work, using Monte Carlo
simulations.

We use the model parameters21 o,=1.10,, ry=0.70,
Arp.=0.20, eFENE=1006/0f, and egpy=4.7€. At the pres-
sure P=2.0€/ 0,3 , the model reproduces the main phases of
phospholipids, i.e., a high-temperature fluid L, phase at tem-
perature kzT>kgT,, ~ 1.2€ and a low-temperature tilted gel
(Lg) with an intermediate modulated ripple (Pg) phase.13
The energy and length scales can be mapped to SI units" by
matching the bilayer thickness or, alternatively, the area per
lipid and the temperature of the main transition to those of
dipalmitoylphosphatidylcholine (DPPC), giving lo,~6 A
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and 1e~0.36 X 1072° J. The elastic properties of the mem-
branes in the fluid state were then also found to be compa-
rable to those of DPPC membranes."’

Unless stated otherwise, the systems were studied by
Monte Carlo simulations at constant normal pressure Py
=2.0€/ a’? and constant temperature 7 with periodic boundary
conditions in a simulation box of variable shape and size. We
set the tension into effect by an additional energy term —I"'A
to the Hamiltonian of the system, where A is the projected
area of the bilayer onto the xy plane. This alters the lateral
components of the pressure tensor within the membrane. The
noninteracting solvent particles, which probe the free volume
and force the lipids to self-assemble, are not affected by this
additional energy contribution. They ensure that the normal
pressure Py is kept fixed at the required value. Thus, we are
performing Monte Carlo simulations in an NPyI'T ensemble
with effective Hamiltonian

H.s=E+ PyV—TA - NkgT In(V/V,), (4)

where E is the interaction energy, V is the volume of the
simulation box, V; is an arbitrary reference volume, and N is
the total number of beads. In contrast to the experimental
situation, where the lateral pressure of a lipid bilayer cannot
be controlled very easily,22 our implementation of the tension
is straightforward. Since we are in full control of the lateral
pressure, we can gain insight into states and structures of
lipid bilayers by means of computer simulations, which are
difficult to investigate in experimental setups.

In practice, two main types of Monte Carlo moves were
proposed and then accepted or rejected according to a
Metropolis criterion, namely, (1) translational local moves of
the beads and (2) global moves that change the volume of the
simulation box or its shape.2] During one Monte Carlo step
(MCS) there is, on average, one attempt to move each bead.
Since the global moves require rescaling of all particle coor-
dinates, which is rather expensive from a computational
point of view, they are performed only every 50th MCS on
average. The volume and shear moves are necessary to main-
tain the desired surface tension. An advantage of our scheme
is that the correct area per lipid required by the external
tension is adopted by construction. There is no need for
searching the required state by testing various values of fixed
area per lipid. We also implemented flip-flop moves with an
inversion of the end-to-end vector of a complete lipid chain
in its last tail bead, but found the acceptance rate of this
“molecular” move due to the density of the bilayer far too
small.

In some cases it turned out to be more convenient to
keep the box height L, fixed and vary only the planar exten-
sion given by L, and L. In this case, the number of phantom
solvent particles was allowed to fluctuate, i.e., additional
Monte Carlo moves were attempted where solvent particles
were removed from the system or randomly inserted (semi-
grand canonical simulations). The solvent chemical potential
was set to

o = kp In(VoPrlkyT). (5)

Now, the semigrand canonical Hamiltonian reads
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FIG. 1. Snapshots (top view) of a rupture event at kzT=1.4€ and

I'=3.0e/ 0',2 The underlying curve shows the corresponding evolution
of the area per lipid. At about 430%, the area per lipid levels off because a
restriction was imposed on the minimal size of the simulation box in the
z direction.

H, g =E+PyV—TA—uN—kgT In[(VIV)"IN!], (6)

where N, is the momentary number of solvent particles in the
system.

When the system sizes were very large (Sec. III D), the
simulations were carried out on parallel processors using a
domain decomposition scheme described in Ref. 21, which
ensures that every Monte Carlo move fulfills detailed bal-
ance exactly (in most other decomposition schemes proposed
in literature, detailed balance is violated at the boundaries
between the domains). We have checked by comparison with
single-processor simulations that the results were not af-
fected by the parallelization.

In this paper the results presented in Sec. Il E were
obtained using the semigrand canonical solvent model, and
the diffusivity measurements (Sec. IIIC) in the
NVT-ensemble (in the latter case, only local bead translations
were attempted and all simulations were run on a single pro-
cessor). The other simulations used the NPyl T-ensemble.

The simulations of stressed membranes were carried out
for a duration of at least 4 X 10° MCS, and we checked that
the observed quantities did not show any tendency for drift.
In particular, we have examined in detail the long-
wavelength undulations of the membranes, which are pre-
sumably the slowest relaxation modes in the system. After an
equilibration time of 2 X 10® MCS the results from two suc-
cessive runs of length 2 X 10° MCS were identical within the
error. Hence the analyzed systems can be assumed to be in a
stable state.

I'=00¢/0?

I'=10¢/0? I'=20¢/0}

FIG. 2. Snapshots of bilayer configurations in the fluid phase at kzT=1.3€.
Gray scale coding: light gray molecules point upward from head to tail, dark
gray molecules point downward. At increasing tension the two monolayers
partly interdigitate. The sizes of the beads are not to scale.
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I'=1.0¢/0? T =20¢/0?

FIG. 3. Snapshots of bilayer configurations in the ripple phase at kT
=1.2€ (gray scale coding as in Fig. 2). On the left the tensionless system
with a pronounced ripple is depicted. This ripple vanishes as tension is
applied, giving way to a completely interdigitated structure (middle and
right figures).

lll. SIMULATION RESULTS

We have applied tensions of up to F=3.Oe/a',2, corre-
sponding to 30 mN/m, which is close to the threshold for
rupture in the fluid phase in our model: The membranes re-
mained stable up to temperatures kz7=1.3€ but ruptured at
kgT=1.4€ (see Fig. 1). This is consistent with atomistic
simulations of Leontiadou et al.,17 who found a critical ten-
sion for stable porated bilayers of =38 mN/m in the context
of pore formation with an atomistic model of DPPC. In con-
trast, the bilayer in the gel phase can sustain much higher
tensions and stays stable for values of I" up to 4.06/0‘,2 and
higher. The areal expansion and reduction in thickness of the
bilayer is substantial. In our simulations, we observe an in-
crease in area per lipid of more than 40% and a decrease in
bilayer thickness of more than 30% for high tensions, where
the systems can still be found in nonrupturing configurations.
In other simulation studies a comparable or even larger in-
crease in the area per lipid was observed under tension with-
out rupturing of the bilayer. Groot and Rabone® reported an
areal expansibility of more than 70% for mixed membranes
before these are finally ripped apart. Grafmiiller et al.* saw
an areal gain of 60% under tension for one of their parameter
sets.

We begin with giving a qualitative overview over the
behavior observed in the different bilayer phases. Figures
2—-4 show configuration snapshots of bilayers under tension
at the temperatures kzT=1.3¢€, corresponding to a fluid state,
kgT=1.2¢, corresponding to a rippled state, and kzT=1.1¢,
corresponding to a tilted gel state, respectively.

In the fluid phase (Fig. 2), the membrane stretches under
tension and the two monolayer leaflets become less well
separated (right). Thus high tensions change the structure of
the membrane. This effect is even more pronounced in the
rippled state (Fig. 3; here the original rippled structure was
obtained by cooling tensionless equilibrated configurations
from the fluid phase at kzT=1.3€ down to kzT=1.2€). Under
tension, the ripple unravels and gives way to an interdigi-
tated phase. In contrast, the gel state (Fig. 4) is hardly af-
fected under tension. The two monolayers remain well sepa-
rated. Only the average lipid tilt away from the bilayer

I'=0.0¢/0? I'=1.0¢/0?

T'=20¢/0?

FIG. 4. Snapshots of bilayer configurations in the gel phase kzT=1.1€
(gray scale coding as in Fig. 2). No interdigitation at increasing tension is
observed.
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TABLE I. Mean area compressibility modulus k, over the whole range of
tensions.

kyT [€] 1.0 1.1 13 1.4
ky [e/ 0] 40 32 43 4.6

normal is slightly enhanced from (6#)=23° in the tensionless
state to (#)=30° at the tension I'=3.0€/ 0}2 (snapshot not
shown). After this qualitative overview, we turn to a more
quantitative analysis of the behavior of bilayers under ten-
sion.

A. Global characteristics of pure membranes

We first consider the area per lipid, which is obtained by
dividing the projected area of the bilayer in the xy plane by
half the number of lipids in the system. We note that the
difference between the number of lipids in the upper and the
lower monolayer was always very small. “Flip-flop” moves
are practically never observed for systems in the gel phase.
In the fluid phase, about 10% of the lipids were exchanged
between the monolayers during 10 MCS, but fluctuations of
the average number of lipids in each monolayer are still less
than 2%.

We do not observe any dependence of the area per lipid
on the system size. For the temperature kz7=1.3€, we have
compared data from four different system sizes, ranging
from 200 to 7200 lipids; the results were identical within the
statistical error (=1%). These results are in agreement with
the findings of Marrink and Mark? in atomistic simulations,
or with those of Kranenburg et al.,26 who studied a coarse-
grained model of amphiphilic surfactants by a combined
Dissipative Particle Dynamics (DPD) and Monte Carlo
scheme, imposing the surface tension in a way similar to
ours.

Assuming that the area per lipid A depends linearly on
the applied tension I, one can calculate the mean area com-
pressibility modulus k, using the relation k,=A,Al'/AA,
where A, is the equilibrium area of the tensionless mem-
brane. This yields the values of &, listed in Table I. Here only
data from configurations which remained stable for long
simulation runs (up to 107 MCS) have been taken into
consideration, i.e., the data for the state point kzg7=1.4€,
F=3.06/of, which lie beyond the rupture threshold, were
omitted.

For membranes in the gel phase (kzT=1.0€ and kzT
=1.1¢), the number k4 fully characterizes the behavior of the
area per lipid over the whole investigated range of tensions
(data not shown). The extensibility of the bilayer in the gel
phase is significantly smaller than in the fluid phase, and
constant over the whole range of tensions under investiga-
tion. The most noticeable effect of the tension is the increase
in tilt angle of the lipids mentioned earlier, which leads to a
slightly reduced membrane thickness. The behavior of mem-
branes in the fluid or ripple state is more complicated. Figure
5 shows the corresponding data for the area per lipid as a
function of the applied tension.

We first discuss the situation at the temperature kgT
=1.2¢, where the tensionless membrane is in the ripple
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FIG. 5. Area per lipid A vs tension I' for two different temperatures as
indicated, together with linear fits to different compressibility regimes. Top:
as the tension on a patch of bilayer in the ripple phase increases, the areal
compressibility changes from fluidlike to gel-like. Bottom: in the fluid
phase, three different compressibility regimes are observed, F:O—le/of,
I'=1-2¢€/07, and I'=2-3¢/0?. The inset focuses on the tensionless mem-
brane (see text for explanation).

phase. As we have already discussed earlier (Fig. 3), the
membrane undergoes a phase transition to an interdigitated
phase under tension. Figure 5, top, shows that this is associ-
ated with a pronounced change in the compressibility. Up to
values of about 1.0€e/ o'tz, the area per lipid increases steeply,
the resulting value of k, is even lower than that of the fluid
phase. At high tensions, I'=1.9¢/ o'l2 and above, the approxi-
mate areal compressibility is strongly enhanced and compa-
rable to values obtained for systems in the gel phase. Thus
the extensibility of the bilayer changes from fluidlike to gel-
like under tension.

In the fluid phase (Fig. 5, bottom), the tension-induced
structural changes in the membranes are less dramatic, but
they can still be associated with compressibility changes.
The data shown in Fig. 5, bottom, suggest a subdivision into
three different compressibility regimes: Under tension, the
membrane switches from a less compressible low-tension
state to a more compressible high-tension state via a highly
compressible intermediate. Thus the structural changes in the
membrane, which were observed in Fig. 2, seem to be related
to a crossover between different membrane states and possi-
bly even reflect the vicinity of a hidden phase transition.

The inset in Fig. 5, bottom, focuses on the limit of very
small tension/compression. In recent work, k, has been de-
termined for the case I'=0.0€/ o‘t2 with an alternative method,
i.e., the detailed analysis of the fluctuation spectrum of ten-
sionless membranes." Here, we have extracted the areal
compressibility modulus of the fluid membrane close to ten-
sion zero by both compressing and extending the system
slightly within the range of I'=—0.2 to 0.2¢/ of The resulting
value for k, divided by the square of the mean tensionless
monolayer thickness fy=~30; agrees with the value kA/tS
=1.1%£0.2¢/ o'l2 obtained independently from the fluctuation
analysis (see Table II).
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FIG. 6. Average overlap parameter (see text for definition) vs tension. Nega-
tive values indicate spatially well-separated monolayers. For interdigitated
bilayers the overlap parameter is positive.

To characterize the global structure of the membrane in
more detail, we next consider the interdigitation of the two
monolayers. It can be characterized in terms of the “overlap
parameter” O .in=(2(I.—1y)/L.), originally introduced by
Kranenburg et al.*® The results are shown in Fig. 6. They
quantified the behavior which was already apparent from the
snapshots shown earlier (Figs. 2-4). In the gel phase, where
we did not notice any overlap of the monolayers even under
tension O, 1S always negative. In the fluid phase, it be-
comes positive at high tensions.

Interestingly, this leads to a nonmonotonic behavior of
the orientational chain order in the fluid phase, i.e., the nem-
atic order parameter S,=1/2((l,/1)>*~1). Here, L. is again the
z component of the end-to-end vector of a lipid chain, and /
is its full length. As shown in Fig. 7, the nematic order first
decreases in the low-tension regime I'<1.0e/o7. At T
~1.5-2.0€/ o',2 a rather steep increase ensues, followed by a
plateau in the high-tension regime I'>2.0e/ o’l2 Under ten-
sion, the lipids thus first disorder and tilt away from the
bilayer normal, which leads to an unfavorable packing in the
hydrophobic bulk of the membrane. As interdigitation sets
in, the lipids relax and assume once again their preferred
order.

B. Pressure profiles

After having discussed these global properties of the
membranes, we now investigate the effect of the applied ex-
ternal stress on the internal stress distribution inside the
membrane. Stress distribution profiles influence, e.g., the
permeability of membranes with respect to small molecules.
To study them, we have recorded the interfacial tension (or
negative stress) profiles

W2) = P.(2) = 5(P(2) + Py (2)) (7)

in small systems of 200 lipids. The pressure tensor P,z is
obtained using the virial theorem,

NkgT 1
Poa=—08,,5+— aph\ 8
="\, Oap V<;r’ z> (8)

Here, r; is the position of particle i, F; is the force acting on
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FIG. 7. Nematic order parameter of chains S, vs tension.

this particle, N is the number of particles, 7T is the tempera-
ture, and V is the volume. The local distribution of the pres-
sure along the bilayer normal was obtained by dividing the
system into 50 vertical slabs and distributing the pressure
contributions onto these slabs according to the convention of
Irving and Kirkwood.?” The pressure profiles can also be
used to cross-check the consistency of our approach in Eq.
(4) since the integral

= J dzy(2) 9)

has to match the externally applied tension. We have checked
that this was the case in all simulations.

Pressure or stress profiles have been reported in various
other studies'”**?’ for both mesoscopic and atomistic simu-
lations. We will briefly summarize the characteristic features
of the total stress profiles and analyze their change under
tension in our model. The behavior of the pressure profiles
can be attributed to different interactions.

The first positive peak (insets in Figs. 8 and 9) arises due
to the purely repulsive interactions of the head and the sol-
vent beads. Here a zone depleted from (solvent) beads is
formed and the head beads are effectively squeezed together
in the lateral direction. The first negative peak in the head
region indicates that the head-head interactions are purely

1(2) le/o?]

-6.0 -4.0 -2.0 0.0 2.0 4.0 6.0

2 [o3]

FIG. 8. Contributions of the LJ, BA, and BL interactions to the total stress
profiles in the gel phase, for the tensionless case (thick lines) and for the
tension F:Z.Oe/of (thin lines). The inset shows the total stress profile, i.e.,
the sum of all contributions, for F=0.0e/of (thick line) and F=2.0é/of
(thin line).

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



115101-6 Neder et al.
—— T —
20 bpa 0
BL 0 A" \ }w&
&2 - Ll 400 4
S . F .
= 00 -
3
=
I'=00¢/o? I =20¢/o?
-4 0 4 -4 0 4
2 [oy] 2 [o4]

FIG. 9. Contributions of the LJ, BA, and BL interactions to the total stress
profiles in the fluid phase, in the tensionless case (left), and for the tension
I'=2.0e/ 0',2 (right). The inset shows the total stress profile for the tensionless
bilayer (thick line) and for F=2.0e/of (thin line).

repulsive, pushing the system laterally apart in this section of
the bilayer. The second positive peak, located in the tail re-
gion, results from the interplay of the attractive LJ interac-
tion between the tail beads and the contribution of bond-
angle (BA) and BL potentials. Interestingly, the contribution
of the (attractive) LJ interactions between tail beads is nega-
tive: The net attraction between tail beads is stronger in the
normal direction than in the lateral direction. This is com-
pensated and outbalanced by the contributions of the bending
of the lipid segments and the stretching of bonds, which lead
to positive tension in total. Thus the stress in the hydropho-
bic portion of the membrane is mostly sustained by intrac-
hain interactions and not, as one might expect, by the attrac-
tive LJ interactions. The negative peak in the midplane of the
bilayer originates from the absence of intrachain interactions
in this region, thus the effect of the LJ interactions takes over
and the monolayers are effectively glued to each other.

Under the influence of an external tension, we observe a
narrowing and shift of the whole profiles, in qualitative
agreement with previous atomistic simulations by Gulling-
srud and Schulten.' In the gel phase, which is already ex-
posed to very high internal stress, the relative effect of the
external tension is small. The inspection of the different con-
tributions to the local pressure shows that the external ten-
sion leads to a decrease both in the LJ and BL contributions.
The reduction in the LJ contribution is higher, leading to the
observed shift. Due to the stiffness of the lipids in the gel
phase, the BA contribution to the pressure profiles remains
practically unaltered. The change in the overall structure of
the pressure profiles is also only small. The slight change in
membrane thickness results in a shift of the outer peaks of
the profiles toward the midplane (z=0).

The effect of external tension is considerably more dra-
matic in the fluid phase at kz7=1.3€. Although the absolute
peak values of the pressure profiles are reduced by a factor of
about 8—10, the relative shifts are much more pronounced.
First, the shift of the outermost peaks toward the midplane is
much higher due to the fact that the membrane thickness
decreases more strongly under tension in this phase. Second,
the shapes of the individual contributions to the total profile
change qualitatively under stress, reflecting the structural
change from a well-separated bilayer to an interdigitated
structure. At high T", the individual terms have a simple
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FIG. 10. Two-dimensional radial distribution function g,,(r) of the head
groups within one monolayer at kz7=1.1€ (left) and at kz7T=1.3€ (right).

structure with single, positive, or negative peaks at the center
of the membrane. Nevertheless, the total stress profile still
exhibits the oscillatory features described above.

C. Correlation functions and diffusion of lipids

Next we consider the effect of the tension on the lateral
structure of the bilayers and on the dynamic mobility of in-
dividual lipids. Figure 10 shows the two-dimensional radial
distribution function g,,(r) of the (x,y)-coordinates of the
head groups in the gel and the fluid state for different applied
tensions I'. In the gel state, g,,(r) exhibits a series of pro-
nounced peaks, reflecting a high degree of order (Fig. 10,
left). Under tension, the higher order peaks shift to slightly
larger distances, reflecting the enhancement of the area per
lipid. The fluid membrane is much less structured. The head-
head radial correlation functions within one monolayer decay
rapidly already at zero tension, and all higher order peaks
disappear at higher tension (Fig. 10, right). In sum, the in-
fluence of the tension on the lateral structure of the mem-
branes is found to be largely negligible.

The situation is different for the diffusion coefficient of
lipids. Although Monte Carlo simulations do not provide an
intrinsic time scale, one can still obtain valuable information
on the diffusional behavior of the lipids from NVT Monte
Carlo simulations that employ only local bead moves. In our
diffusivity studies, the initial configurations were taken from
systems equilibrated in the NPyI'T-ensemble, but we mea-
sured the diffusivity of lipids in the NVT-ensemble, i.e., no
volume or shear moves were carried out during the simula-
tion. We have monitored the pressure tensor for the duration
of the diffusion measurements to check that it stayed con-
stant during the simulation.

In the following, the basic “time unit” is one MCS (the
Monte-Carlo “time scale”), and the “time” 7 counts the num-
ber of MCS since the start of the simulation. We consider the
lateral diffusion constant within the membrane (or, more spe-
cifically, the projection of the membrane into the xy plane),
defined as®®

S{SLAr™ @)

D.(7) =
o(7) 6NT

(10)
Here sum i runs over all lipid heads, rgxy) denotes the posi-
tion of a lipid head i in the xy plane with respect to the center
of mass of the bilayer, and Arf.xy ) is its difference from one
MCS time step to the next without the offset that has to be
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FIG. 11. Lateral diffusion coefficient D, for different tensions I'.

added if the head crosses the periodic boundaries.

In the gel phase (data not shown), no diffusion was ob-
served over the whole length of the simulation (7y,,=1.2
X 107 MCS). The lipids basically fluctuate around their
average ositions. The width of the fluctuations,
\/(r(”’)2>—(r<xy))2~0.04a',, does not depend on the applied
tension. The data for the fluid phase are shown in Fig. 11.
Here the lipids diffuse freely and the lateral diffusion con-
stant D, increases significantly if one applies moderate ten-
sions up to ['=2.0€/07 (Fig. 11). Interestingly, it does not
increase further in the high-tension regime, beyond
I'=2.0e/ of, even though the area per lipid and the chain
overlap parameter O,,;, are not yet saturated.

It should be noted that the in-plane diffusion constant
discussed here differs from the true diffusion constant in the
membrane due to the presence of membrane undulations (see
also Sec. III D). The thermally induced buckling of the mem-
brane can lead to a substantial out-of-plane component to the
lipids’ diffusional motion, which is not captured in our defi-
nition of D,, in Eq. (10). Various theoretical studies have
addressed this problem.30_32 They commonly conclude that
membrane fluctuations lower the measured in-plane diffusion
coefficient. As the tension increases, the fluctuations of the
membrane are suppressed (see Sec. Il D). Therefore, one
may speculate that the increase in the apparent diffusivity
under tension measured in our simulations is, at least in part,
caused by the reduction in thermal bilayer undulations. How-
ever, this is not sufficient to fully explain the 20% effect
observed in Fig. 11.

D. Fluctuation spectra

To conclude the analysis of pure membranes, we study
the thermal membrane fluctuations, which were already men-
tioned in Sec. INIC. Theoretical considerations and
experiments34 have shown that lateral tension on fluid bilay-
ers leads to suppression of thermal fluctuations, which in
turn decreases steric repulsion of vesicles and changes adhe-
sive properties. Moreover, the Fourier spectra of the height
and thickness fluctuations provide information on the elastic
properties of the membranes. Therefore, it is instructive to
look at the development of undulation, peristaltic, and pro-
trusion properties of our model membrane under tension.

To analyze our data, we use an extension of an elastic
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theory by Brannigan and Brown,” which we have already
applied with success to the case of the tensionless
membrane.”> We shall not rederive the theory here but
merely sketch the main assumptions. Brannigan and Brown
described a planar fluctuating membrane as a system of two
coupled monolayers surfaces h;,(x,y), of which each is
characterized by two independent fields, z;,(x,y) and
No(x,y) (h=z+\), one accounting for slow “bending
modes” and one for fast “protrusion modes.”*® They further-
more made a number of approximations, which amounted to
the following assumptions.

(1) The protrusion modes of the two monolayers are in-
dependent degrees of freedom.

(ii)  The bending modes z; ,(x,y) can be rewritten in terms
of their sum and their difference (z.-=(z; *2,)/2),
corresponding to (bending) height and (bending)
thickness modes of the membrane, which in turn de-
couple. The (bending) thickness modes are subject to
the constraint that the volume per lipid is conserved.

With these assumptions, Brannigan and Brown con-
structed a free energy functional which is quadratic in the
fluctuations of the fields z and A (higher order contributions
are neglected) and can be used to calculate the thermally
averaged fluctuations of the total membrane height, h=(h,
+h,)/2, and monolayer thickness, t=(h,—h,)/2. In our simu-
lations, the situation is different from that considered by
Brannigan and Brown in two respects. First, we apply an
external tension. Second, we do not have well-separated
monolayers, especially at high tensions. We argue that the
second point is not critical: If we associate the fields &,
with the positions of the head group layers rather than whole
monolayers, the assumptions enumerated above are still rea-
sonable and we obtain the same theory. The first point is
more subtle since the external tension is not an intrinsic ma-
terial parameter, such as the bending energy (which drives
the bending fluctuations).

To assess the effect of an applied external tension on the
height fluctuations, we first consider a simplified case, where
the membrane is characterized by a single surface manifold
h(x,y) (shifted to (h)=0) with fixed surface area A, and vari-
able projected area A. The surface area is related to the pro-
jected area via

— 1
AS:f d*rv1 +(Vh)2zA+5f d*r(Vh)*. (11)
A

Upon applying an external tension I', the free enthalpy G of
the system is given by

r
G=-TA z—FAS+5f d*r(Vh)?, (12)

where T'A; is a constant. Hence the external tension couples
to the fluctuations of the local membrane height A(x,y) in the
same way as an internal interfacial tension couples to the
fluctuations, e.g., a gas-liquid interface.”’

The same type of argument can be applied to the model
of Brannigan and Brown, where the membrane has finite
thickness and the lipid volume, rather than the lipid area, is
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conserved: Let z,(x,y) and 2z_(x,y) denote the local mem-
brane height and thickness as before, with (z,)=0. Let fur-
thermore D(x,y) denote the true local membrane thickness,
evaluated with respect to the local surface normal, i.e.,
z_(x,y)=D+1+(Vz,)?/2. The thickness is taken to fluctuate
weakly about its mean value D, i.e., D(x,y)=D+&(x,y). The

number of lipids on the projected area element dA is then
given by

v

~ 1<5A+9 f d*r(Vh)* + f dzra),
v 2
(13)

with the lipid volume v, where we have expanded up to
second order in the fluctuating fields # and 6. Upon applying
an external tension I', the free enthalpy acquires an addi-
tional term

2 1 ye——
N= —f d’rz_= —f d*>m1 +(Vz,)’D
A A

I'vN

Gr=-TA=-—
D

r r
+— f d*r(Vz)* + — J d’s, (14)
2J4 D

where T'vN/D=const. Hence the external tension again has
the same effect on the height fluctuations than an internal
tension. The last term in Eq. (14) results in an effective thin-
ning of the membrane and does not contribute to the fluctua-
tion spectra in the quadratic order considered here.

Supplementing the free energy of Brannigan and
Brown> with this additional tension term, we obtain the
Hamiltonian (in Fourier space)

|
= =3 (keg* + TqP)zizty + 2(ky + HaDINNY,
2 q

1
+ EE (kalty +koq* - 4k LqPt0)2ge
q

+2(ky + NEINN - (15)

Here z* denotes the bending modes defined above and A~
=(N\; £)\,)/2 the corresponding protrusion modes. The pa-
rameters k. and k, are the bending and compressibility
moduli of the bilayer, { is related to the spontaneous curva-
ture ¢q and given by cy—2dcy/d3 with the area per lipid 2,
to is the mean monolayer thickness, and the parameters 7y,
and k, characterize the protrusion modes. The resulting spec-
tra for height and thickness fluctuations are given by

. . , 16
(Ihgl) k' +Tq*  2(ky+ na) e
kT kgT
(It =— Bz 2t . (17)
kcq —4kcgq /to + kA/tO 2(k)\ + Mg )

We have determined the fluctuation spectra from simu-
lations of systems containing 3200 lipids and 24 615 solvent
beads using a method described elsewhere,'>® and used the
theory above to fit our data. As in our earlier Work,15 the
fitting yields very good results for tensionless membranes. It
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FIG. 12. Fluctuation spectra of membranes for different tensions as indi-
cated. The dashed line is the fit to the thickness spectrum. The solid line
shows the fit of the elastic theory to the height spectrum for fixed tension I"
and the dotted line shows the fit with I'y;, as additional fit parameter. At
higher tensions these fits deviate from each other. The values of Iy, are
listed in Table III.

still works well at the comparatively low tension of T’
:l.Oe/a'tz. In the high-tension regime above 2.06/0}2, how-
ever, the situation changes. When fixing I' to the externally
applied value, the fit consistently underestimates the ampli-
tudes of the long-wavelength fluctuations. This can be rem-
edied by leaving I" as fit parameter. However, the resulting
values for the fitted tension are smaller by a factor of up to
1/2 than the externally applied values (Fig. 12). The fit pa-
rameters for the fits with fixed and free parameter I' are
given in Tables II and III.

The relation between external (I') and internal stress
(T, in membranes was discussed by a number of authors
for the situation where the membrane is kept in a frame with
fixed projected area A. In these studies, the fotal area A was
allowed to fluctuate, either because of fluctuations in the
number of molecules (grand canonical case)”’40 or because

TABLE II. Elastic parameters of the model membrane in the fluid phase,
obtained from a fit of the elastic theory [Egs. (16) and (17)] with fixed T.

T [e/07] 0.0 1.0

k, [€] 49+1.0 6.2+0.5
Uty [07%] 0.12%0.02 0.069 +0.019
ky/ 2% [el o] 1.1+0.2 0.92+0.09
ky [e/ 0] 1.4+0.1 1.4+0.1
 Lelo?] 0.022+0.039 0.035+0.021
T [e/d?] 2.0 3.0

k, [€] 7.0+0.3 77+0.3
Uty [07%] —0.038 +0.008 —0.137 % 0.040
ky/ 22 [el 0] 1.8+0.2 40+0.4
ky [e/0*] 1.8+0.1 2.0+0.1
 Lel0?] —0.048 +0.042 —0.062 +0.048
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TABLE III. Elastic parameters of the model membrane in the fluid phase
from a fit to Egs. (16) and (17) where the parameter I' is allowed to vary.
The fitted value is [y

T [e/o7] 0.0 1.0

k. [€] 44+0.7 6.6+0.9
Lty [07] 0.11+0.02 0.074+0.019
k!l [el 0] 1.0+0.2 0.95=0.11
ky [e/o? 1.5+0.1 1.4+0.1
" [e/07] 0.018+0.043 0.041+0.026
Ty [e/07] 0.11+0.19 0.83+0.14
I [e/07] 2.0 3.0

k. [€] 10.9+0.8 126+ 1.1
Uty [07] -0.011+0.012 -0.11%0.08
k!l [el 0] 2.0+03 4305
ky [e/ 0] 1.6+0.03 1.7+0.1
" [e/07] 0.057+0.030 0.048 +0.032
Ty [e/d?] 0.90+0.31 1704

of fluctuations of the lipid area (canonical, compressible
case).40’41 The frame tension is then found to differ from the
internal stress in the membranes due to the contribution of
the membrane fluctuations to the surface free enelrgy.”*43
The correction is additive and should always be present,
even at (external or internal) tension zero. For the canonical,
compressible case, which is obviously more relevant in our
context, Farago and Pincus® and Imparato41 predicted that
the fluctuations reduce the frame tension by roughly kzTn/A,
compared to the intrinsic stress, where n is the number of
fluctuation degrees of freedom, i.e., the number of indepen-
dently fluctuating membrane patches. Thus the intrinsic ten-
sion should be higher than the frame tension, which is oppo-
site from what we observe in our simulations.

However, we believe that the two situations—fixed
frame and varying surface area versus variable frame and
(roughly) fixed surface area—are not comparable. According
to the arguments leading to Egs. (12) and (14), the frame
tension is not renormalized by fluctuations at the level of a
Gaussian theory (i.e., a theory based on a free energy func-
tional which is quadratic in the fluctuations). It might be
renormalized if one includes higher order terms. For ex-
ample, the last term in Eq. (14), «fd*ré, introduces a
thickness-mediated interaction between the height fluctuation
modes via the relation

=2z /\N1+(Vz,)* =D =~2z -z (Vz,)*-D, (18)

which might effectively renormalize I';,.. Another possibility
is of course that the theory of Brannigan and Brown,”® which
we have used to analyze the data, is no longer applicable at
high tensions due to the structural rearrangements in the
membrane.

E. Lipid-mediated interactions between inclusions

Finally in this section, we discuss the effect of tension on
the membrane-mediated interactions between two simple cy-
lindrical inclusions in the bilayer. We focus on the effective
interactions between these model proteins and the influence
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of an external tension on the potential of mean force (PMF).
The radial distribution function g(r) as a function of the
protein-protein distance » was obtained from simulation runs
using the technique of successive umbrella sampling44 com-
bined with a reweighting procedure. As starting configura-
tions we used equilibrated systems with 750-760 lipids and
two simple transmembrane proteins of diameter 37,. A first
estimate of g(r) was obtained during 2 X 10° MCS. Then,
biased runs of 3 X 10° MCS were performed to improve the
statistics of configurationally less frequent protein-protein
distances. After removing the bias from these results and
combining the overlapping distributions the effective poten-
tial w(r)=—kzT In g(r) was extracted. In order not to compli-
cate the interpretation of our results, the model proteins were
not allowed to tilt. This can be justified by assuming that real
transmembrane proteins might be bound to, e.g., cytoskel-
etal, structures outside the membrane, which allow for trans-
verse motion but not for tilt.

The type of model for the inclusions is identical to the
one introduced in Ref. 15 and a brief overview is given in the
following: The interaction of this simple model protein and
the lipid or solvent beads has a repulsive contributions,
which is described by a radially shifted and truncated LJ
potential

Iy = O .
VLJ( 2 0) —VLJ(l) lf rx.‘,—a'0<0
Vrep(rxy) = o

0 otherwise,

(19)
where r,,=Vx?>+y* denotes the distance of the interaction
partners in the xy plane, o is given by o=(o,+0;)/2 for
interactions with beads of type i (i=h, ¢, and s for head, tail,
and solvent beads, respectively), oy=0,, and Vi; has been
defined above [Eq. (3)]. The direct protein-protein interac-
tions have the same potential [Eq. (19)] with o=0, and o
=20,

In addition, protein cylinders attract tail beads on a hy-
drophobic section of length L. This is described by an addi-
tional attractive potential that depends on the z distance be-
tween the tail bead and the protein center. The total potential
reads

th(rxy’z) = Ept(Vrep(rxy) + Vallr(rxy) X WP(Z)), (20)
with the attractive LJ contribution

V(1) = Vi(2)

Vi — O
Ve = VLJ(J—X - °)—Vu(2) if o<r,-0y<20

if ry,—op<o

0 otherwise,
(21)

and a weight function W,,(z), which is unity on a stretch of
length 2/=L—-20, and crosses smoothly over to zero over a
distance of approximately o, at both sides. Specifically, we
use
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FIG. 13. Vertical slices through systems with two inclusions. The dark gray
rings above the black hydrophobic part of the protein indicate the sections
where the attractive interaction between protein and tail beads (dark gray)
decays to zero. The light gray section and the light gray beads mark the
hydrophilic part of the protein and the lipid heads, respectively. The solvent
beads above and below the bilayer are marked by small dots. The left snap-
shot shows a stress-free bilayer with proteins of hydrophobically matching
length L=60,. On the right the same proteins are shown in a bilayer under a
tension of I'=2.0€/ 0.

1 if 7] =1
W, =1 cos’ i|z|—l if 1<z <i+2 (22)
P 2 3
0 otherwise.

The hydrophobicity of the protein is tuned by the parameter
€, The choice of a sufficiently high interaction strength be-
tween the hydrophobic core of the membrane and the hydro-
phobic part of the inclusion is crucial to induce local pertur-
bation of the bilayer. We note that the repulsive sections of
our model proteins span the whole simulation box in the z
direction. Therefore, the simulations were carried out at con-
stant box height L , volume moves were only allowed in the
lateral directions x and y, and the number of solvent beads of
the was allowed to fluctuate (see Sec. II).

We found that the effect of tension on the PMF was only
significant for rather hydrophobic model proteins, i.e., pro-
teins with high interaction parameter €,,. In the following,
we will present the results obtained with €,,=6.0€. Figure 13
shows snapshots of the model proteins in membranes at zero
tension and at tension I'=2.0€/ o

The potentials of mean force between two inclusions as
a function of their in-plane distance are plotted in Fig. 14 for
two different hydrophobic lengths L. In the first case (Fig.
14, top), the inclusion is characterized by a negative hydro-
phobic mismatch in tensionless free membranes. Under ten-
sion, the membrane thins and the mismatch is reduced (inset
Fig. 14, top). In the second case (Fig. 14, bottom), the hy-
drophobic part of the inclusion roughly matches the thick-
ness in the tensionless case. Under tension, the membrane
thins and a positive hydrophobic mismatch develops (see
inset Fig. 14, bottom).

Due to lipid packing in the vicinity of the inclusions the
curves show an oscillatory shape with a wavelength of ap-
proximately 1o,. Since at small inclusion-inclusion distances
direct interactions of the proteins and depletion induced at-
traction due to the solvent particles come into play, these
parts of the curves have been cut off. Thus, we can focus on
the lipid-mediated medium and long ranged interactions. The
main effect of tension on the lipid-mediated interactions be-
tween the two model proteins can be summarized as follows:
In the absence of tension, the interactions between hydropho-
bically mismatched inclusions have an additional attractive
contribution, compared to hydrophobically matched inclu-
sions. In the case where the tension reduces the hydrophobic
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FIG. 14. PMF of two isolated proteins as a function of the protein distance
at tension zero (solid lines) and F=2.0e/of (dotted lines), for proteins with
hydrophobic length L=40, (top) and L=60, (bottom). The insets show the
corresponding radial thickness profiles around a single protein (d, denotes
the in-plane distance to the center of the inclusion).

mismatch due to membrane thinning, this attraction dimin-
ishes. If, on the other hand, the tension leads to a stronger
hydrophobic mismatch, the attractivity of the interaction po-
tential also increases. Therefore, we conclude that the domi-
nant effect of an external tension on the lipid-mediated inter-
actions is indirect and related to the change in the
hydrophobic mismatch due to the membrane thinning. For
decreasing (negative) mismatch, the average attraction de-
creases, and for increasing (positive) mismatch, it increases.
This is consistent with the behavior observed in tensionless
membranes, where also both positive and negative hydro-
phobic mismatches resulted in an attractive contribution to
the PMFE."> Other recent studies™*® have also highlighted
the importance of hydrophobic mismatch as a driving factor
for protein agglomeration. From our simulations, an addi-
tional effect of tension is not evident.

IV. DISCUSSION AND SUMMARY

In this paper we have studied the influence of an external
tension on the properties of bilayers using a generic coarse-
grained model. To set these results into perspective, we will
now briefly discuss the experimental situation.

Experimentally, one of the most widely used techniques
to determine mechanical stretch properties of bilayers is the
micropipette approach, where giant bilayer vesicles are pres-
surized by micropipette suction.*” This method produces a
uniform membrane tension, is very accurate, and can be used
to verify elastic reversibility.50 Micropipette aspiration ex-
periments, e.g., carried out by Needham and Nunn,”' found
for different lipids and lipid/cholesterol mixtures that mem-
brane lysis is usually reached at an relative areal expansion
of less than 5%, and the rupture strength at low cholesterol
concentration was typically around 2—10 mN/m.

This does not compare well with our findings and those
of other atomistic or mesoscopic simulations (see the intro-
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duction to Sec. III), where fluid membranes could sustain
tensions of 30 mN/m or more and remained stable up to
relative extensions of 40% or more. It should however be
noted that tension-induced lysis is a stochastic process, and
the duration of the exposure to the stress plays a decisive role
for the stability. Experimentally, abrupt failure of the bilayer
is observed when the tension reaches a critical value,
whereas below this tension long-term persistence of the
stressed membrane can be plresumed.52 Evans et al.” showed
that the rupture strength of membranes is a property which
crucially depends on the loading rate. In their study on five
types of fluid giant phosphatidylcholine lipid vesicles, they
varied the loading rate from 0.01 to 100 mN/m/s. At high
loading rates the systems were found to be stable up to val-
ues of 20-30 mN/m.

To get a rough estimate of the meaning of the time scales
in our simulations, compared to experimental systems, we
can map the diffusion constants D,, in Sec. Il C to the cor-
responding values measured for DPPC bilayers in recent ex-
periments. At 45 °C Scomparin et al.’ reported a diffusion
coefficient of approximately 10 um?/s. Taking our result of
D,,=0.83X 10‘50'3/ MCS for the tensionless {nembrane and
setting our intrinsic length scale 1o, to 6 A as described
earlier, we find that 10° MCS in our simulation correspond to
approximately 0.3 us in real time. The typical lengths of our
simulations lie between 2 X 10° and 4 X 10° MCSs, which
correspond to roughly 1 us in real systems. Thus our simu-
lations correspond to systems exposed to very high loading
rates and short time scales. Taking this into consideration,
their stability does not contradict experimental findings. Our
simulations provide a way to study membranes under ex-
treme conditions, and to analyze their structural properties,
which cannot be accessed easily by experiments.

Due to these difficulties, experimental results with which
we could compare our simulations are scarce. One positive
example is the behavior of the ripple phase under stress. To
our knowledge, we have performed the first simulation study
which tries to shed light on the structural rearrangements and
elastic properties of a bilayer in the ripple phase under lateral
stress. We have shown that lateral tension leads to suppres-
sion of the ripple structure in the Pg phase, and we see a
transition of the areal extensibility from soft, fluidlike to gel-
like behavior. Qualitatively, this behavior agrees well with
the findings of Evans et al.,52’55 who also reported an initial
soft-elastic response at low tensions and stiff elastic proper-
ties after elimination of the ripple.

In the gel phase, the tension does not change the state of
the bilayer significantly in the range of tensions considered
in this work. The basic structure of the two monolayers stays
intact. The situation is very different in the biologically most
relevant fluid phase. At temperatures where the tensionless
membranes are fluid, they respond to high tensions by a
structural change from a state where both monolayers are
well separated to a state where they are partly interdigitated.
These changes are associated with substantial variations of
the compressibility (up to a factor of 3), and the lipid diffu-
sion constant (up to 20%).

We have also studied the influence of membrane tension
on the effective interaction between two model proteins. Un-

J. Chem. Phys. 132, 115101 (2010)

der tension, the membrane becomes thinner, which affects
the hydrophobic mismatch interaction. This is found to be
the dominant effect. The interaction between negatively mis-
matched proteins decreases and that between positively mis-
matched proteins increases. Thus applying tension can be
used to tune the strength of membrane-mediated protein-
protein interactions.
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