Publikation: Moment problem for symmetric algebras of locally convex spaces
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Wird erscheinen in
Zusammenfassung
It is explained how a locally convex (lc) topology τ on a real vector space V extends naturally to a locally multiplicatively convex (lmc) topology τ‾ on the symmetric algebra S(V). This allows application of the results on lmc topological algebras obtained by Ghasemi, Kuhlmann and Marshall in [J. Funct. Analysis, 266 no.2 (2014) 1041-1049] to obtain representations of τ‾-continuous linear functionals L:S(V) → R satisfying L(∑S(V)2d) ⊆ [0,∞) (more generally, of τ‾-continuous linear functionals L:S(V) → R satisfying L(M) ⊆ [0,∞) for some 2d-power module M of S(V)) as integrals with respect to uniquely determined Radon measures μ supported by special sorts of closed balls in the dual space of V. The result is simultaneously more general and less general than the corresponding result of Berezansky, Kondratiev and \v{S}ifrin in [Mathematical Physics and Applied Mathematics, 12, Kluwer Academic Publishers, 1995], [Ukrain. Mat. \v{Z}., 23 (1971) 291-306]. It is more general because V can be any locally convex topological space (not just a separable nuclear space), the result holds for arbitrary 2d-powers (not just squares), and no assumptions of quasi-analyticity are required. It is less general because it is necessary to assume that L:S(V) → R is τ‾-continuous (not just that L is continuous on the homogeneous parts of degree k of S(V), for each k ≥ 0).