Innate Motivation for Robot Swarms by Minimizing Surprise : From Simple Simulations to Real-World Experiments

Lade...
Vorschaubild
Dateien
Kaiser_2-w6q0enei95ew7.pdf
Kaiser_2-w6q0enei95ew7.pdfGröße: 1.21 MBDownloads: 22
Datum
2021
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
IEEE Transactions on Robotics. IEEE. 2021, 38(6), S. 3582-3601. ISSN 1042-296X. eISSN 1941-0468. Verfügbar unter: doi: 10.1109/TRO.2022.3181004
Zusammenfassung

Applications of large-scale mobile multirobot systems can be beneficial over monolithic robots because of higher potential for robustness and scalability. Developing controllers for multirobot systems is challenging because the multitude of interactions is hard to anticipate and difficult to model. Automatic design using machine learning or evolutionary robotics seem to be options to avoid that challenge, but bring the challenge of designing reward or fitness functions. Generic reward and fitness functions seem unlikely to exist and task-specific rewards often have undesired side effects. Approaches of so-called innate motivation try to avoid the specific formulation of rewards and work instead with different drivers, such as curiosity. Our approach to innate motivation is to minimize surprise, which we implement by maximizing the accuracy of the swarm robot's sensor predictions using neuroevolution. A unique advantage of the swarm robot case is that swarm members populate the robot's environment and can trigger more active behaviors in a self-referential loop. In this article, we summarize our previous simulation-based results concerning behavioral diversity, robustness, scalability, and engineered self-organization, and put them into context. In several new studies, we analyze the influence of the optimizer's hyperparameters, the scalability of evolved behaviors, and the impact of realistic robot simulations. Finally, we present results using real robots that show how the reality gap can be bridged.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Evolutionary swarm robotics, innate motivation, object manipulation, self-assembly
Konferenz
Rezension
undefined / . - undefined, undefined
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Datensätze
Zitieren
ISO 690KAISER, Tanja Katharina, Heiko HAMANN, 2021. Innate Motivation for Robot Swarms by Minimizing Surprise : From Simple Simulations to Real-World Experiments. In: IEEE Transactions on Robotics. IEEE. 2021, 38(6), S. 3582-3601. ISSN 1042-296X. eISSN 1941-0468. Verfügbar unter: doi: 10.1109/TRO.2022.3181004
BibTex
@article{Kaiser2021-02Innat-58411,
  year={2021},
  doi={10.1109/TRO.2022.3181004},
  title={Innate Motivation for Robot Swarms by Minimizing Surprise : From Simple Simulations to Real-World Experiments},
  number={6},
  volume={38},
  issn={1042-296X},
  journal={IEEE Transactions on Robotics},
  pages={3582--3601},
  author={Kaiser, Tanja Katharina and Hamann, Heiko}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/58411">
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-08-30T06:54:16Z</dc:date>
    <dcterms:title>Innate Motivation for Robot Swarms by Minimizing Surprise : From Simple Simulations to Real-World Experiments</dcterms:title>
    <dc:creator>Kaiser, Tanja Katharina</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:language>eng</dc:language>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:abstract xml:lang="eng">Applications of large-scale mobile multirobot systems can be beneficial over monolithic robots because of higher potential for robustness and scalability. Developing controllers for multirobot systems is challenging because the multitude of interactions is hard to anticipate and difficult to model. Automatic design using machine learning or evolutionary robotics seem to be options to avoid that challenge, but bring the challenge of designing reward or fitness functions. Generic reward and fitness functions seem unlikely to exist and task-specific rewards often have undesired side effects. Approaches of so-called innate motivation try to avoid the specific formulation of rewards and work instead with different drivers, such as curiosity. Our approach to innate motivation is to minimize surprise, which we implement by maximizing the accuracy of the swarm robot's sensor predictions using neuroevolution. A unique advantage of the swarm robot case is that swarm members populate the robot's environment and can trigger more active behaviors in a self-referential loop. In this article, we summarize our previous simulation-based results concerning behavioral diversity, robustness, scalability, and engineered self-organization, and put them into context. In several new studies, we analyze the influence of the optimizer's hyperparameters, the scalability of evolved behaviors, and the impact of realistic robot simulations. Finally, we present results using real robots that show how the reality gap can be bridged.</dcterms:abstract>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Hamann, Heiko</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/58411"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Kaiser, Tanja Katharina</dc:contributor>
    <dc:creator>Hamann, Heiko</dc:creator>
    <dcterms:issued>2021-02</dcterms:issued>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-08-30T06:54:16Z</dcterms:available>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/58411/1/Kaiser_2-w6q0enei95ew7.pdf"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/58411/1/Kaiser_2-w6q0enei95ew7.pdf"/>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Ja
Diese Publikation teilen

Versionsgeschichte

Gerade angezeigt 1 - 1 von 1
VersionDatumZusammenfassung
1*
2022-08-30 06:54:16
* Ausgewählte Version