Aging in attraction-driven colloidal glasses
Aging in attraction-driven colloidal glasses
Date
2007
Authors
Editors
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
URI (citable link)
DOI (citable link)
International patent number
Link to the license
EU project number
Project
Open Access publication
Collections
Title in another language
Publication type
Journal article
Publication status
Published in
Physical Review E ; 75 (2007). - 031401
Abstract
Aging in an attraction-driven colloidal glass is studied by computer simulations. The system is equilibrated without attraction and instantaneously "quenched", at constant colloid volume fraction, to one of two states beyond the glass transition; one is close to the transition, and the other one deep in the glass. The evolution of structural properties shows that bonds form in the system, increasing the local density, creating density deficits (holes) elsewhere. This process slows down with the time elapsed since the quench. As a consequence of bond formation, there is a slowing down of the dynamics, as measured by the mean-squared displacement and the density, bond, and environment correlation functions. The density correlations can be time rescaled to collapse their long time (structural) decay. The time scale for structural relaxation shows for both quenches a superlinear dependence on waiting time; it grows faster than the bond lifetime, showing the collective origin of the transition. At long waiting times and high attraction strength, we observe arrested dynamics for more than three decades in time, although individual bonds are not permanent on this time scale. The localization length decreases as the state moves deeper in the glass; the nonergodicity parameter oscillates in phase with the structure factor. Our main results are obtained for systems with a barrier in the pair potential that inhibits phase separation. However, when this barrier is removed for the case of a deep quench, we find changes in the static structure but almost none in the dynamics. Hence our results for the aging behavior remain relevant to experiments in which the glass transition competes with phase separation.
Summary in another language
Subject (DDC)
530 Physics
Keywords
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690
PUERTAS, Antonio Manuel, Matthias FUCHS, Michael E. CATES, 2007. Aging in attraction-driven colloidal glasses. In: Physical Review E. 75, 031401. Available under: doi: 10.1103/PhysRevE.75.031401BibTex
@article{Puertas2007Aging-9354, year={2007}, doi={10.1103/PhysRevE.75.031401}, title={Aging in attraction-driven colloidal glasses}, volume={75}, journal={Physical Review E}, author={Puertas, Antonio Manuel and Fuchs, Matthias and Cates, Michael E.}, note={Article Number: 031401} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/9354"> <dc:creator>Puertas, Antonio Manuel</dc:creator> <dc:creator>Fuchs, Matthias</dc:creator> <dc:language>eng</dc:language> <dcterms:title>Aging in attraction-driven colloidal glasses</dcterms:title> <dc:contributor>Cates, Michael E.</dc:contributor> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/9354"/> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/2.0/"/> <dc:format>application/pdf</dc:format> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/9354/1/2007_Aging.pdf"/> <dcterms:issued>2007</dcterms:issued> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T17:55:46Z</dcterms:available> <dc:creator>Cates, Michael E.</dc:creator> <dc:contributor>Fuchs, Matthias</dc:contributor> <dc:contributor>Puertas, Antonio Manuel</dc:contributor> <dcterms:bibliographicCitation>First publ. in: Physical Review E 75 (2007), No. 031401</dcterms:bibliographicCitation> <dc:rights>Attribution-NonCommercial-NoDerivs 2.0 Generic</dc:rights> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T17:55:46Z</dc:date> <dcterms:abstract xml:lang="eng">Aging in an attraction-driven colloidal glass is studied by computer simulations. The system is equilibrated without attraction and instantaneously "quenched", at constant colloid volume fraction, to one of two states beyond the glass transition; one is close to the transition, and the other one deep in the glass. The evolution of structural properties shows that bonds form in the system, increasing the local density, creating density deficits (holes) elsewhere. This process slows down with the time elapsed since the quench. As a consequence of bond formation, there is a slowing down of the dynamics, as measured by the mean-squared displacement and the density, bond, and environment correlation functions. The density correlations can be time rescaled to collapse their long time (structural) decay. The time scale for structural relaxation shows for both quenches a superlinear dependence on waiting time; it grows faster than the bond lifetime, showing the collective origin of the transition. At long waiting times and high attraction strength, we observe arrested dynamics for more than three decades in time, although individual bonds are not permanent on this time scale. The localization length decreases as the state moves deeper in the glass; the nonergodicity parameter oscillates in phase with the structure factor. Our main results are obtained for systems with a barrier in the pair potential that inhibits phase separation. However, when this barrier is removed for the case of a deep quench, we find changes in the static structure but almost none in the dynamics. Hence our results for the aging behavior remain relevant to experiments in which the glass transition competes with phase separation.</dcterms:abstract> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/9354/1/2007_Aging.pdf"/> </rdf:Description> </rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Yes