Aging in attraction-driven colloidal glasses

Cite This

Files in this item

Checksum: MD5:2d2064b1745982a4f3f9f616e8218db0

PUERTAS, Antonio Manuel, Matthias FUCHS, Michael E. CATES, 2007. Aging in attraction-driven colloidal glasses. In: Physical Review E. 75, 031401. Available under: doi: 10.1103/PhysRevE.75.031401

@article{Puertas2007Aging-9354, title={Aging in attraction-driven colloidal glasses}, year={2007}, doi={10.1103/PhysRevE.75.031401}, volume={75}, journal={Physical Review E}, author={Puertas, Antonio Manuel and Fuchs, Matthias and Cates, Michael E.}, note={Article Number: 031401} }

<rdf:RDF xmlns:dcterms="" xmlns:dc="" xmlns:rdf="" xmlns:bibo="" xmlns:dspace="" xmlns:foaf="" xmlns:void="" xmlns:xsd="" > <rdf:Description rdf:about=""> <dc:format>application/pdf</dc:format> <dc:contributor>Fuchs, Matthias</dc:contributor> <dc:contributor>Cates, Michael E.</dc:contributor> <dspace:isPartOfCollection rdf:resource=""/> <dcterms:isPartOf rdf:resource=""/> <dc:creator>Fuchs, Matthias</dc:creator> <dspace:hasBitstream rdf:resource=""/> <dcterms:bibliographicCitation>First publ. in: Physical Review E 75 (2007), No. 031401</dcterms:bibliographicCitation> <dcterms:abstract xml:lang="eng">Aging in an attraction-driven colloidal glass is studied by computer simulations. The system is equilibrated without attraction and instantaneously "quenched", at constant colloid volume fraction, to one of two states beyond the glass transition; one is close to the transition, and the other one deep in the glass. The evolution of structural properties shows that bonds form in the system, increasing the local density, creating density deficits (holes) elsewhere. This process slows down with the time elapsed since the quench. As a consequence of bond formation, there is a slowing down of the dynamics, as measured by the mean-squared displacement and the density, bond, and environment correlation functions. The density correlations can be time rescaled to collapse their long time (structural) decay. The time scale for structural relaxation shows for both quenches a superlinear dependence on waiting time; it grows faster than the bond lifetime, showing the collective origin of the transition. At long waiting times and high attraction strength, we observe arrested dynamics for more than three decades in time, although individual bonds are not permanent on this time scale. The localization length decreases as the state moves deeper in the glass; the nonergodicity parameter oscillates in phase with the structure factor. Our main results are obtained for systems with a barrier in the pair potential that inhibits phase separation. However, when this barrier is removed for the case of a deep quench, we find changes in the static structure but almost none in the dynamics. Hence our results for the aging behavior remain relevant to experiments in which the glass transition competes with phase separation.</dcterms:abstract> <dcterms:issued>2007</dcterms:issued> <dcterms:hasPart rdf:resource=""/> <dcterms:title>Aging in attraction-driven colloidal glasses</dcterms:title> <dc:creator>Puertas, Antonio Manuel</dc:creator> <dc:rights>Attribution-NonCommercial-NoDerivs 2.0 Generic</dc:rights> <dc:date rdf:datatype="">2011-03-24T17:55:46Z</dc:date> <dc:language>eng</dc:language> <dc:contributor>Puertas, Antonio Manuel</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dcterms:available rdf:datatype="">2011-03-24T17:55:46Z</dcterms:available> <bibo:uri rdf:resource=""/> <dc:creator>Cates, Michael E.</dc:creator> <dcterms:rights rdf:resource=""/> </rdf:Description> </rdf:RDF>

Downloads since Oct 1, 2014 (Information about access statistics)

2007_Aging.pdf 458

This item appears in the following Collection(s)

Attribution-NonCommercial-NoDerivs 2.0 Generic Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 2.0 Generic

Search KOPS


My Account