Physical optimization of quantum error correction circuits


Dateien zu dieser Ressource

Prüfsumme: MD5:b7b73603ee20771d2bdd75c548760f52

BURKARD, Guido, Daniel LOSS, David P. DIVINCENZO, John A. SMOLIN, 1999. Physical optimization of quantum error correction circuits. In: Physical Review / B. 60(16), pp. 11404-11416. Available under: doi: 10.1103/PhysRevB.60.11404

@article{Burkard1999Physi-9209, title={Physical optimization of quantum error correction circuits}, year={1999}, doi={10.1103/PhysRevB.60.11404}, number={16}, volume={60}, journal={Physical Review / B}, pages={11404--11416}, author={Burkard, Guido and Loss, Daniel and DiVincenzo, David P. and Smolin, John A.} }

<rdf:RDF xmlns:dcterms="" xmlns:dc="" xmlns:rdf="" xmlns:bibo="" xmlns:dspace="" xmlns:foaf="" xmlns:void="" xmlns:xsd="" > <rdf:Description rdf:about=""> <dc:contributor>DiVincenzo, David P.</dc:contributor> <dc:contributor>Loss, Daniel</dc:contributor> <dcterms:abstract xml:lang="eng">Quantum error correcting codes have been developed to protect a quantum computer from decoherence due to a noisy environment. In this paper, we present two methods for optimizing the physical implementation of such error correction schemes. First, we discuss an optimal quantum circuit implementation of the smallest error-correcting code (the three bit code). Quantum circuits are physically implemented by serial pulses, i.e. by switching on and off external parameters in the Hamiltonian one after another. In contrast to this, we introduce a new parallel switching method that allows faster gate operation by switching all external parameters simultaneously. These two methods are applied to electron spins in coupled quantum dots subject to a Heisenberg coupling H = J(t)S1 ·S2 which can generate the universal quantum gate square-root-of-swap . Using parallel pulses, the encoding for three-bit quantum error correction in a Heisenberg system can be accelerated by a factor of about two. We point out that parallel switching has potential applications for arbitrary quantum computer architectures.</dcterms:abstract> <dc:creator>Smolin, John A.</dc:creator> <dspace:hasBitstream rdf:resource=""/> <bibo:uri rdf:resource=""/> <dcterms:bibliographicCitation>First publ. in: arXiv:cond-mat/9905230 [cond-mat.mes-hall], also publ. in: Physical Review / B 60 (1999), 16, pp. 11404-11416</dcterms:bibliographicCitation> <dc:creator>DiVincenzo, David P.</dc:creator> <dc:date rdf:datatype="">2011-03-24T17:54:35Z</dc:date> <dcterms:rights rdf:resource=""/> <dcterms:hasPart rdf:resource=""/> <dc:rights>terms-of-use</dc:rights> <dcterms:issued>1999</dcterms:issued> <dc:creator>Loss, Daniel</dc:creator> <dc:creator>Burkard, Guido</dc:creator> <dc:format>application/pdf</dc:format> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:title>Physical optimization of quantum error correction circuits</dcterms:title> <dc:language>eng</dc:language> <dspace:isPartOfCollection rdf:resource=""/> <dcterms:isPartOf rdf:resource=""/> <dcterms:available rdf:datatype="">2011-03-24T17:54:35Z</dcterms:available> <dc:contributor>Burkard, Guido</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dc:contributor>Smolin, John A.</dc:contributor> </rdf:Description> </rdf:RDF>

Dateiabrufe seit 01.10.2014 (Informationen über die Zugriffsstatistik)

9905230v1.pdf 74

Das Dokument erscheint in:

KOPS Suche


Mein Benutzerkonto