Lichttransport in zellulären Strukturen

Lade...
Vorschaubild
Datum
2004
Autor:innen
Schmiedeberg, Michael
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
EU-Projektnummer
DFG-Projektnummer
Angaben zur Forschungsförderung (Freitext)
Projekt
Open Access-Veröffentlichung
Sammlungen
Gesperrt bis
Titel in einer weiteren Sprache
Light Transportation in cellular structures
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Masterarbeit/Diplomarbeit
Publikationsstatus
Published
Erschienen in
Zusammenfassung

Based on geometrical ray optics, light propagation through a foam is investigated by using random walk theories and simulations. Experiments by Gittings, Bandyopadhyay and Durian [EPL 65, 414 (2004)] show that light possesses a higher probability to propagate in the liquid films. To model the extrem case of such a photon channelling, in the first part of this work, all photons are completely reflected at each liquid-air interface so that they only move within the films. In the second part, reflection and transmission with probabilities according to Fresnel's formulas are allowed. In both cases, simulations of the photons in a perfect honeycomb structure reveal superdiffusive behavior which we also explain within the theory of Levy walks. In disordered lattices, light transport is, however, diffusive and depends strongly on the amount of disorder.

Zusammenfassung in einer weiteren Sprache

Die Lichtausbreitung in zellulären Strukturen, wie z.B. in Schäumen, wird in dieser Arbeit mit Random Walk Modellen und Simulationen für den Fall der geometrischen Optik untersucht. Dazu werden bei geordneten und ungeordneten zweidimensionalen Voronoi-Gittern die Gitterlinien durch Kanäle ersetzt, die die Flüssigkeitsfilme des Schaumes darstellen. Motiviert wurde diese Arbeit von experimentellen Ergebnissen von Gittings, Bandyopadhyay und Durian [EPL 65, 414 (2004)], die darauf schließen lassen, dass sich Licht mit einer erhöhten Wahrscheinlichkeit in den Flüssigkeitsfilmen des Schaumes ausbreitet. Um herauszufinden, wie dieser Photon Channelling genannte Effekte die Lichtausbreitung beeinflusst, wird in einem ersten Modell davon ausgegangen, dass alle Photonen sich ausschließlich in der Flüssigkeit bewegen und an der Grenzfläche zur Luft immer reflektiert werden. In einem zweiten, erweiterten Modell können die Photonen sich auch durch die Luft bewegen. Die Reflektionen finden mit den durch die Fresnel'schen Formeln gegebenen Wahrscheinlichkeit statt. Die Simulationen ergeben in beiden Fällen superdiffusive Photonenausbreitung in perfekten hexagonalen Strukturen und diffusives Verhalten in ungeordneten Schäumen, wobei die Diffusionskonstante von der Stärke der Unordnung abhängt. Die Superdiffusion wird mit einem Levy Walk Modell erklärt, die Diffusion entspricht einem einfachen Random Walk mit unkorrelierten Streuereignissen. Mit dem erweiterten Modell kann außerdem das Photon Channelling erklärt werden und die erhöhte Aufenthaltswahrscheinlichkeit der Photonen in der Flüssigkeit analytisch berechnet werden.

Fachgebiet (DDC)
530 Physik
Schlagwörter
Superdiffusion, Voronoi Gitter, geometrische Optik, Photon Channelling, Random Walk, Levy Walk, foam, light scattering, anomalous diffusion
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690SCHMIEDEBERG, Michael, 2004. Lichttransport in zellulären Strukturen [Master thesis]
BibTex
@mastersthesis{Schmiedeberg2004Licht-9029,
  year={2004},
  title={Lichttransport in zellulären Strukturen},
  author={Schmiedeberg, Michael}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/9029">
    <dcterms:issued>2004</dcterms:issued>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T17:52:59Z</dcterms:available>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T17:52:59Z</dc:date>
    <dcterms:title>Lichttransport in zellulären Strukturen</dcterms:title>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:format>application/pdf</dc:format>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/9029"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:alternative>Light Transportation in cellular structures</dcterms:alternative>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <dc:contributor>Schmiedeberg, Michael</dc:contributor>
    <dc:language>deu</dc:language>
    <dc:rights>terms-of-use</dc:rights>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Schmiedeberg, Michael</dc:creator>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/9029/1/Schmiedeberg_Lichttransport_in_zellulaeren_Strukturen.pdf"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/9029/1/Schmiedeberg_Lichttransport_in_zellulaeren_Strukturen.pdf"/>
    <dcterms:abstract xml:lang="eng">Based on geometrical ray optics, light propagation through a foam is investigated by using random walk theories and simulations. Experiments by Gittings, Bandyopadhyay and Durian [EPL 65, 414 (2004)] show that light possesses a higher probability to propagate in the liquid films. To model the extrem case of such a photon channelling, in the first part of this work, all photons are completely reflected at each liquid-air interface so that they only move within the films. In the second part, reflection and transmission with probabilities according to Fresnel's formulas are allowed. In both cases, simulations of the photons in a perfect honeycomb structure reveal superdiffusive behavior which we also explain within the theory of Levy walks. In disordered lattices, light transport is, however, diffusive and depends strongly on the amount of disorder.</dcterms:abstract>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Begutachtet
Diese Publikation teilen