Structure of colloid polymer suspensions

Thumbnail Image
Date
2002
Authors
Schweizer, Kenneth S.
Editors
Contact
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
DOI (citable link)
ArXiv-ID
International patent number
EU project number
Project
Open Access publication
Collections
Restricted until
Title in another language
Research Projects
Organizational Units
Journal Issue
Publication type
Journal article
Publication status
Published in
Journal of Physics / Condensed Matter ; 14 (2002), 12. - pp. R239-R269
Abstract
We discuss structural correlations in mixtures of free polymer and colloidal particles on the basis of a microscopic, two-component liquid-state integral equation theory. Whereas in the case of polymers much smaller than the spherical particles the relevant polymer degree of freedom is the center of mass, for polymers larger than the (nano-)particles, conformational rearrangements need to be considered. They have the important consequence that the polymer depletion layer exhibits two widely different length scales, one of the order of the particle radius, the other of the order of the polymer radius or the polymerdensity screening length in dilute or semidilute concentrations, respectively. Because we find a spinodal instability (mostly) belowthe overlap concentration, the latter length is (mostly) set by the radius of gyration. As a consequence of the structure of the depletion layer, the particle particle correlations depend on both length scales for large polymers. Because of the high local compressibility of large polymers, the local depletion layer is a strong function of particle density, but a weak function of polymer concentration. The amplitude of the long-ranged tail of the depletion layer also depends asymptotically only on the colloid concentration, while the range increases upon approaching the (meanfield) spinodal. The colloid correlations may be understood as characteristic for particles with a short-ranged potential when small polymers are added, and as characteristic for particles with a long-ranged, van der Waals-like attraction when the added free polymer coils are much larger. Small polymers fill the voids between the particles rather homogeneously, exhibiting correlations inside the mesh (which gets squeezed by the colloids) and Porod-like correlations for larger distances. The structure factor of large polymers, however, exhibits no ramified mesh and becomes a Lorentzian characterized by the mixture correlation length, which diverges at the spinodal.
Summary in another language
Subject (DDC)
530 Physics
Keywords
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690FUCHS, Matthias, Kenneth S. SCHWEIZER, 2002. Structure of colloid polymer suspensions. In: Journal of Physics / Condensed Matter. 14(12), pp. R239-R269. Available under: doi: 10.1088/0953-8984/14/12/201
BibTex
@article{Fuchs2002Struc-9006,
  year={2002},
  doi={10.1088/0953-8984/14/12/201},
  title={Structure of colloid polymer suspensions},
  number={12},
  volume={14},
  journal={Journal of Physics / Condensed Matter},
  pages={R239--R269},
  author={Fuchs, Matthias and Schweizer, Kenneth S.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/9006">
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/9006/1/Structure_of_colloid_polymer_suspensions.pdf"/>
    <dc:rights>Attribution-NonCommercial-NoDerivs 2.0 Generic</dc:rights>
    <dc:format>application/pdf</dc:format>
    <dc:creator>Fuchs, Matthias</dc:creator>
    <dc:contributor>Schweizer, Kenneth S.</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/9006/1/Structure_of_colloid_polymer_suspensions.pdf"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <dcterms:issued>2002</dcterms:issued>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T17:52:47Z</dcterms:available>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T17:52:47Z</dc:date>
    <dcterms:bibliographicCitation>First publ. in: Journal of Physics / Condensed Matter, 14 (2002), 12, pp. R239-R269</dcterms:bibliographicCitation>
    <dcterms:title>Structure of colloid polymer suspensions</dcterms:title>
    <dc:language>eng</dc:language>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <dc:creator>Schweizer, Kenneth S.</dc:creator>
    <dc:contributor>Fuchs, Matthias</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/9006"/>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/2.0/"/>
    <dcterms:abstract xml:lang="eng">We discuss structural correlations in mixtures of free polymer and colloidal particles on the basis of a microscopic, two-component liquid-state integral equation theory. Whereas in the case of polymers much smaller than the spherical particles the relevant polymer degree of freedom is the center of mass, for polymers larger than the (nano-)particles, conformational rearrangements need to be considered. They have the important consequence that the polymer depletion layer exhibits two widely different length scales, one of the order of the particle radius, the other of the order of the polymer radius or the  polymerdensity screening length in dilute or semidilute concentrations, respectively. Because we find a spinodal instability (mostly) belowthe overlap concentration, the latter length is (mostly) set by the radius of gyration. As a consequence of the structure of the depletion layer, the particle particle correlations depend on both length scales for large polymers. Because of the high local compressibility of large polymers, the local depletion layer is a strong function of particle density, but a weak function of polymer concentration. The amplitude of the long-ranged tail of the depletion layer also depends asymptotically only on the colloid concentration, while the range increases upon approaching the (meanfield) spinodal. The colloid correlations may be understood as characteristic for particles with a short-ranged potential when small polymers are added, and as characteristic for particles with a long-ranged, van der Waals-like attraction when the added free polymer coils are much larger. Small polymers fill the voids between the particles rather homogeneously, exhibiting correlations inside the mesh (which gets squeezed by the colloids) and Porod-like correlations for larger distances. The structure factor of large polymers, however, exhibits no ramified mesh and becomes a Lorentzian characterized by the mixture correlation length, which diverges at the spinodal.</dcterms:abstract>
  </rdf:Description>
</rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Contact
URL of original publication
Test date of URL
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
No
Refereed