Type of Publication: | Journal article |
URI (citable link): | http://nbn-resolving.de/urn:nbn:de:bsz:352-opus-37829 |
Author: | Fuchs, Matthias; Kroy, Klaus |
Year of publication: | 2002 |
Published in: | Journal of Physics: Condensed Matter ; 14 (2002). - pp. 9223-9235 |
DOI (citable link): | https://dx.doi.org/10.1088/0953-8984/14/40/313 |
Summary: |
Considering the example of interacting Brownian particles we present a linear response derivation of the boundary condition for the corresponding hydrodynamic description (the diffusion equation). This requires us to identify a non-analytic structure in a microscopic relaxation kernel connected to the frequency-dependent penetration length familiar for diffusive processes, and leads to a microscopic definition of the position where the hydrodynamic boundary condition has to be applied. Corrections to the hydrodynamic limit are obtained andwe derive general amplitudes of spatially and temporally longranged fluctuations in the diffusive system considered.
|
Subject (DDC): | 530 Physics |
Link to License: | Attribution-NonCommercial-NoDerivs 2.0 Generic |
FUCHS, Matthias, Klaus KROY, 2002. Statistical mechanics derivation of hydrodynamic boundary conditions : the diffusion equation. In: Journal of Physics: Condensed Matter. 14, pp. 9223-9235. Available under: doi: 10.1088/0953-8984/14/40/313
@article{Fuchs2002Stati-8975, title={Statistical mechanics derivation of hydrodynamic boundary conditions : the diffusion equation}, year={2002}, doi={10.1088/0953-8984/14/40/313}, volume={14}, journal={Journal of Physics: Condensed Matter}, pages={9223--9235}, author={Fuchs, Matthias and Kroy, Klaus} }
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/8975"> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/41"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T17:52:32Z</dc:date> <dc:contributor>Kroy, Klaus</dc:contributor> <dc:format>application/pdf</dc:format> <dcterms:abstract xml:lang="eng">Considering the example of interacting Brownian particles we present a linear response derivation of the boundary condition for the corresponding hydrodynamic description (the diffusion equation). This requires us to identify a non-analytic structure in a microscopic relaxation kernel connected to the frequency-dependent penetration length familiar for diffusive processes, and leads to a microscopic definition of the position where the hydrodynamic boundary condition has to be applied. Corrections to the hydrodynamic limit are obtained andwe derive general amplitudes of spatially and temporally longranged fluctuations in the diffusive system considered.</dcterms:abstract> <dcterms:issued>2002</dcterms:issued> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T17:52:32Z</dcterms:available> <dc:rights>Attribution-NonCommercial-NoDerivs 2.0 Generic</dc:rights> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/8975/1/c24013.pdf"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/8975/1/c24013.pdf"/> <dcterms:title>Statistical mechanics derivation of hydrodynamic boundary conditions : the diffusion equation</dcterms:title> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/8975"/> <dc:creator>Kroy, Klaus</dc:creator> <dc:contributor>Fuchs, Matthias</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dc:creator>Fuchs, Matthias</dc:creator> <dc:language>eng</dc:language> <dcterms:bibliographicCitation>First publ. in: Journal of Physics: Condensed Matter 14 (2002), pp. 9223-9235</dcterms:bibliographicCitation> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/41"/> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/2.0/"/> </rdf:Description> </rdf:RDF>
c24013.pdf | 353 |