Glass transitions and shear thickening suspension rheology
Glass transitions and shear thickening suspension rheology
Date
2005
Authors
Editors
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
URI (citable link)
DOI (citable link)
International patent number
Link to the license
EU project number
Project
Open Access publication
Collections
Title in another language
Publication type
Journal article
Publication status
Published in
Journal of Rheology ; 49 (2005), 1. - pp. 237-269
Abstract
We introduce a class of simple models for shear thickening and/or "jamming" in colloidal suspensions. These are based on the schematic mode coupling theory (MCT) of the glass transition, having a memory term that depends on a density variable, and on both the shear stress and the shear rate. (Tensorial aspects of the rheology, such as normal stresses, are ignored for simplicity.) We calculate steady-state flow curves and correlation functions. Depending on model parameters, we find a range of rheological behaviors, including "S-shaped" flow curves, indicating discontinuous shear thickening, and stress-induced transitions from a fluid to a nonergodic (jammed) state, showing zero flow rate in an interval of applied stress. The shear thickening and jamming scenarios that we explore appear broadly consistent with experiments on dense colloids close to the glass transition, despite the fact that we ignore hydrodynamic interactions. In particular, the jamming transition we propose is conceptually quite different from various hydrodynamic mechanisms of shear thickening in the literature, although the latter might remain pertinent at lower colloid densities. Our jammed state is a stress-induced glass, but its nonergodicity transitions have an analytical structure distinct from that of the conventional MCT glass transition.
Summary in another language
Subject (DDC)
530 Physics
Keywords
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690
HOLMES, Colin B., Michael E. CATES, Matthias FUCHS, Peter SOLLICH, 2005. Glass transitions and shear thickening suspension rheology. In: Journal of Rheology. 49(1), pp. 237-269. Available under: doi: 10.1122/1.1814114BibTex
@article{Holmes2005Glass-8850, year={2005}, doi={10.1122/1.1814114}, title={Glass transitions and shear thickening suspension rheology}, number={1}, volume={49}, journal={Journal of Rheology}, pages={237--269}, author={Holmes, Colin B. and Cates, Michael E. and Fuchs, Matthias and Sollich, Peter} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/8850"> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/8850"/> <dc:contributor>Cates, Michael E.</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/8850/1/Glass_transitions.pdf"/> <dc:creator>Sollich, Peter</dc:creator> <dcterms:bibliographicCitation>First publ. in: Journal of Rheology 49 (2005), 1, pp. 237 269</dcterms:bibliographicCitation> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Holmes, Colin B.</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T17:51:01Z</dc:date> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T17:51:01Z</dcterms:available> <dc:language>eng</dc:language> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/8850/1/Glass_transitions.pdf"/> <dc:contributor>Fuchs, Matthias</dc:contributor> <dcterms:abstract xml:lang="eng">We introduce a class of simple models for shear thickening and/or "jamming" in colloidal suspensions. These are based on the schematic mode coupling theory (MCT) of the glass transition, having a memory term that depends on a density variable, and on both the shear stress and the shear rate. (Tensorial aspects of the rheology, such as normal stresses, are ignored for simplicity.) We calculate steady-state flow curves and correlation functions. Depending on model parameters, we find a range of rheological behaviors, including "S-shaped" flow curves, indicating discontinuous shear thickening, and stress-induced transitions from a fluid to a nonergodic (jammed) state, showing zero flow rate in an interval of applied stress. The shear thickening and jamming scenarios that we explore appear broadly consistent with experiments on dense colloids close to the glass transition, despite the fact that we ignore hydrodynamic interactions. In particular, the jamming transition we propose is conceptually quite different from various hydrodynamic mechanisms of shear thickening in the literature, although the latter might remain pertinent at lower colloid densities. Our jammed state is a stress-induced glass, but its nonergodicity transitions have an analytical structure distinct from that of the conventional MCT glass transition.</dcterms:abstract> <dc:contributor>Holmes, Colin B.</dc:contributor> <dc:contributor>Sollich, Peter</dc:contributor> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/2.0/"/> <dc:rights>Attribution-NonCommercial-NoDerivs 2.0 Generic</dc:rights> <dcterms:issued>2005</dcterms:issued> <dc:creator>Fuchs, Matthias</dc:creator> <dc:format>application/pdf</dc:format> <dcterms:title>Glass transitions and shear thickening suspension rheology</dcterms:title> <dc:creator>Cates, Michael E.</dc:creator> </rdf:Description> </rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Yes