Aufgrund von Vorbereitungen auf eine neue Version von KOPS, können kommenden Montag und Dienstag keine Publikationen eingereicht werden. (Due to preparations for a new version of KOPS, no publications can be submitted next Monday and Tuesday.)
Type of Publication: | Journal article |
URI (citable link): | http://nbn-resolving.de/urn:nbn:de:bsz:352-opus-130444 |
Author: | Gutiérrez, Iris R.; Watanabe, Naoko; Harter, Thomas; Glaser, Bruno; Radke, Michael |
Year of publication: | 2010 |
Published in: | Journal of Soils and Sediments ; 10 (2010), 3. - pp. 537-544. - ISSN 1439-0108. - eISSN 1614-7480 |
DOI (citable link): | https://dx.doi.org/10.1007/s11368-009-0168-8 |
Summary: |
Purpose
Up to 90% of antibiotics that are fed to livestock are excreted unaltered or as metabolites and thus are present in manure. By application of manure as fertilizer, veterinary antibiotics can reach soil and groundwater. The aim of this study is to determine the effect of three commonly used (and simultaneously applied) sulfonamide antibiotics on both function and structural diversity of soil microorganisms. To this end, the activity of the enzymes urease and dehydrogenase was determined, and the composition of phospholipid fatty acids (PLFA) was analyzed. Materials and methods Soil and manure were sampled at a dairy farm located in the Northern San Joaquin Valley, California, USA. Soil (700 g) was amended with either mineral water only (W-treatments), liquid manure (M-treatments), or with glucose solution (G-treatments). Each of these soil treatments was mixed with a cocktail of three sulfonamides: sulfadimethoxine (SDT), sulfamethoxazole (SMX), and sulfamethazine (SMZ) at five total concentration levels ranging from 0 (control) to 900 µg gdm−1. After 24, 48, 96, 168, 264, 384, and 504 h, UA and DHA were determined; PLFA composition in selected samples was analyzed at t = 168 h and 504 h of incubation. Results and discussion In the G-treatments, urease activity decreased with higher sulfonamide concentrations; no effect was observed when no glucose was added (W-treatments). While a dose response relationship was observed for urease activity after 168 h, a similar inhibition was measured after 380 h at all sulfonamide concentrations. Sulfonamides also reduced dehydrogenase activity in the G-treatments, but results are less conclusive than for urease. With increasing sulfonamide concentration, microbial and bacterial biomass decreased in the G-treatments compared to the control at 168 h. Sulfonamides caused a relative community shift towards gram-negative bacteria and towards an increased proportion of fungal biomass. Strong inhibition of urease by manure (M-treatments) was observed even without the addition of sulfonamides. Conclusions Sulfonamides clearly affected both the function and structural diversity of the soil microbial community over at least 16 days. The soil microbial community was affected by sulfonamides even at a relatively low concentration, although this soil receives regular input of manure that contains several antibiotics. Further research is needed addressing both long-term effects and lower sulfonamide concentrations under dynamic boundary conditions. |
Subject (DDC): | 570 Biosciences, Biology |
Keywords: | Antibiotics, Dehydrogenase, Enzyme activity, Phospholipid fatty acids, Soil microorganisms, Urease |
Link to License: | In Copyright |
GUTIÉRREZ, Iris R., Naoko WATANABE, Thomas HARTER, Bruno GLASER, Michael RADKE, 2010. Effect of sulfonamide antibiotics on microbial diversity and activity in a Californian Mollic Haploxeralf. In: Journal of Soils and Sediments. 10(3), pp. 537-544. ISSN 1439-0108. eISSN 1614-7480. Available under: doi: 10.1007/s11368-009-0168-8
@article{Gutierrez2010Effec-8216, title={Effect of sulfonamide antibiotics on microbial diversity and activity in a Californian Mollic Haploxeralf}, year={2010}, doi={10.1007/s11368-009-0168-8}, number={3}, volume={10}, issn={1439-0108}, journal={Journal of Soils and Sediments}, pages={537--544}, author={Gutiérrez, Iris R. and Watanabe, Naoko and Harter, Thomas and Glaser, Bruno and Radke, Michael} }
Gutierrez_2010.pdf | 837 |