Mechanism of bacterial bioluminescence : 4a,5-Dihydroflavin analogs as models for luciferase hydroperoxide intermediates and the effect of substituents at the 8-position of flavin on luciferase kinetics
Mechanism of bacterial bioluminescence : 4a,5-Dihydroflavin analogs as models for luciferase hydroperoxide intermediates and the effect of substituents at the 8-position of flavin on luciferase kinetics
Date
1993
Authors
Editors
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
URI (citable link)
DOI (citable link)
International patent number
Link to the license
EU project number
Project
Biolumineszenz und Blaulichtwahrnehmung
Open Access publication
Collections
Title in another language
Publication type
Journal article
Publication status
Published in
Biochemistry ; 32 (1993), 2. - pp. 404-411. - ISSN 0006-2960. - eISSN 1520-4995
Abstract
Bioluminescence catalyzed by bacterial luciferases was measured using FMN, iso-FMN (6-methyl-8-nor-FMN), and FMN analogs carrying the following substituents at position 8: -H, -Cl, -F, SMe, SOMe, S02Me, or -0Me. The first-order rate constants for the decay of light emission correlate with the one-electron oxidation potentials of the 4a,5-dihydro forms of the FMN analogs. To determine thevalues of these potentials, isoalloxazine (flavin) derivatives having the 4a,5-propano-4a,5-dihydros tructure and -H, -CH3, -C1, -OCH3, and -NH2 as substituents at position 8 have been synthesized as models for the 4a-peroxy-4a,5-dihydroflavin intermediates occurring during catalysis by the flavin-dependent monooxygenase luciferase. The tetrahydropyrrole ring between positions 4a and 5 of these isoalloxazine derivatives stabilizes the 4a,5-dihydroflavin by impeding formation of the thermodynamically more stable 1,5-dihydro form. One-electron oxidation potentials (Eobs) were measured by cyclic voltammetry and used to determine the empirical coefficients in the Swain equation. On the basis of this, the one-electron oxidation potentials of 4a,5-propano-4a,5-dihydraon alogs with other substituents in position 8 were calculated (Ecalc). The bioluminescence reaction rate is fastest with FMN analogs of lowest oxidation potential; Le., the slope of the correlation is negative. This indicates that in the rate-limiting step the 4a,5-dihydroflavin moiety donates negative charge. The results are compatible with an intramolecular, chemically initiated electron exchange luminescence mechanism for the bacterial luciferase reaction. A good correlation was also found between EOba nd the literature values of the 2-electron oxidation/reduction potentials (Eredox) of the couple FIox/1,5-dihydro-FIrf~o r the flavin derivatives having the same substituent at position 8. The effects of the substituent in position 8 on the redox properties of 1,5-dihydro- and 4a,5-dihydroflavins are thus essentially the same. This indicates that the earlier use of readily available redox potentials for FIox/1,5-dihydro-FIred for studying reactions involving the 4aS-dihydro isomer was sound.
Summary in another language
Subject (DDC)
570 Biosciences, Biology
Keywords
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690
ECKSTEIN, Jens W., J. Woodland HASTINGS, Sandro GHISLA, 1993. Mechanism of bacterial bioluminescence : 4a,5-Dihydroflavin analogs as models for luciferase hydroperoxide intermediates and the effect of substituents at the 8-position of flavin on luciferase kinetics. In: Biochemistry. 32(2), pp. 404-411. ISSN 0006-2960. eISSN 1520-4995. Available under: doi: 10.1021/bi00053a004BibTex
@article{Eckstein1993Mecha-8116, year={1993}, doi={10.1021/bi00053a004}, title={Mechanism of bacterial bioluminescence : 4a,5-Dihydroflavin analogs as models for luciferase hydroperoxide intermediates and the effect of substituents at the 8-position of flavin on luciferase kinetics}, number={2}, volume={32}, issn={0006-2960}, journal={Biochemistry}, pages={404--411}, author={Eckstein, Jens W. and Hastings, J. Woodland and Ghisla, Sandro} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/8116"> <dcterms:abstract xml:lang="eng">Bioluminescence catalyzed by bacterial luciferases was measured using FMN, iso-FMN (6-methyl-8-nor-FMN), and FMN analogs carrying the following substituents at position 8: -H, -Cl, -F, SMe, SOMe, S02Me, or -0Me. The first-order rate constants for the decay of light emission correlate with the one-electron oxidation potentials of the 4a,5-dihydro forms of the FMN analogs. To determine thevalues of these potentials, isoalloxazine (flavin) derivatives having the 4a,5-propano-4a,5-dihydros tructure and -H, -CH3, -C1, -OCH3, and -NH2 as substituents at position 8 have been synthesized as models for the 4a-peroxy-4a,5-dihydroflavin intermediates occurring during catalysis by the flavin-dependent monooxygenase luciferase. The tetrahydropyrrole ring between positions 4a and 5 of these isoalloxazine derivatives stabilizes the 4a,5-dihydroflavin by impeding formation of the thermodynamically more stable 1,5-dihydro form. One-electron oxidation potentials (Eobs) were measured by cyclic voltammetry and used to determine the empirical coefficients in the Swain equation. On the basis of this, the one-electron oxidation potentials of 4a,5-propano-4a,5-dihydraon alogs with other substituents in position 8 were calculated (Ecalc). The bioluminescence reaction rate is fastest with FMN analogs of lowest oxidation potential; Le., the slope of the correlation is negative. This indicates that in the rate-limiting step the 4a,5-dihydroflavin moiety donates negative charge. The results are compatible with an intramolecular, chemically initiated electron exchange luminescence mechanism for the bacterial luciferase reaction. A good correlation was also found between EOba nd the literature values of the 2-electron oxidation/reduction potentials (Eredox) of the couple FIox/1,5-dihydro-FIrf~o r the flavin derivatives having the same substituent at position 8. The effects of the substituent in position 8 on the redox properties of 1,5-dihydro- and 4a,5-dihydroflavins are thus essentially the same. This indicates that the earlier use of readily available redox potentials for FIox/1,5-dihydro-FIred for studying reactions involving the 4aS-dihydro isomer was sound.</dcterms:abstract> <dcterms:bibliographicCitation>First publ. in: Biochemistry ; 32 (1993), 2. - S. 404-411</dcterms:bibliographicCitation> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T17:40:44Z</dcterms:available> <dcterms:title>Mechanism of bacterial bioluminescence : 4a,5-Dihydroflavin analogs as models for luciferase hydroperoxide intermediates and the effect of substituents at the 8-position of flavin on luciferase kinetics</dcterms:title> <dc:format>application/pdf</dc:format> <dc:contributor>Hastings, J. Woodland</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dc:creator>Eckstein, Jens W.</dc:creator> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/8116/1/Mechanism_of_bacterial_bioluminescence.pdf"/> <dcterms:issued>1993</dcterms:issued> <dc:contributor>Ghisla, Sandro</dc:contributor> <dc:contributor>Eckstein, Jens W.</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/8116"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/8116/1/Mechanism_of_bacterial_bioluminescence.pdf"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T17:40:44Z</dc:date> <dc:language>eng</dc:language> <dc:creator>Hastings, J. Woodland</dc:creator> <dc:rights>Attribution-NonCommercial-NoDerivs 2.0 Generic</dc:rights> <dc:creator>Ghisla, Sandro</dc:creator> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/2.0/"/> </rdf:Description> </rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
No