Pathfinding and target selection of goldfish retinal axons regenerating under TTX-induced impulse blockade
Pathfinding and target selection of goldfish retinal axons regenerating under TTX-induced impulse blockade
Date
1989
Authors
Hartlieb, Elke
Editors
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
URI (citable link)
DOI (citable link)
International patent number
Link to the license
EU project number
Project
Open Access publication
Collections
Title in another language
Publication type
Journal article
Publication status
Published in
Journal of Comparative Neurology ; 284 (1989), 1. - pp. 148-168. - ISSN 0021-9967. - eISSN 1096-9861
Abstract
To define the extent to which impulse blockade interferes with the morphological changes of regenerating retinal axons during their growth through the tectum, axons were deprived of activity by repeated intraocular injections of TTX. At intervals between 24 and 189 days after optic nerve section (ONS), a defined group of TTX-silenced axons and of axons with normal activity (controls) were labeled by applications of HRP to the ventro- or dorsotemporal retina. The trajectories of these labeled axons were traced in DAB processed tectal wholemounts.
As in controls, TTX-blocked axons went through a phase of exploratory growth at early regeneration stages (24 to 80 days after ONS). Coursing in abnormal routes, the axons initially distributed their growing endings widely over the tectum. Axons with and without activity extended side branches with growth cones and filopodia over all regions of the tectum. These ramifications were of similar dimensions for the TTX-blocked and control axons. Despite abnormal routes and branching over inappropriate territories, axons showed a preference for the rostral tectum. At late regeneration stages (120-189 days after ONS), axons had lost their side branches and their growth cones. Their preterminal segments exhibited striking bends, suggesting that they had undergone course corrections to achieve access to the retinotopic target. Axonal processes had disappeared from the caudal tectum, and the preferential accumulation of axons over the rostral tectum had increased. The majority of the TTX-blocked and control axons ended in terminal arbors at retinotopic regions. The labeled arbors of the TTX-group were no larger than those of the control group. The arbors of each group lay close together in a continuous cluster in the TTX-group as well as in two-thirds of the control group. In the other one-third of the control group, however, terminal arbors were aggregated into separate patches. The clusters of the TTX-blocked axons covered between 2.2 and 3.9% (mean 2.95%) of the tectal surface and the clusters and/or patches of active axons between 1.9 and 3.4% (mean 2.7%). Thus the terminal arbor clusters of the TTX-silenced axons were not significantly larger than those of the active axons.
These data show that retinal ganglion cell impulse activity is required for neither the extension of side branches in the early exploratory phase of regeneration nor for the withdrawal of these branches nor for the establishment of target-directed routes and the deployment of normal-size terminal arbors at retinotopic loci. Our data further suggest that the retinotopic map is refined considerably with time even in the absence of activity, a finding that is consistent with an abstract by Olsson and Meyer ('87).
As in controls, TTX-blocked axons went through a phase of exploratory growth at early regeneration stages (24 to 80 days after ONS). Coursing in abnormal routes, the axons initially distributed their growing endings widely over the tectum. Axons with and without activity extended side branches with growth cones and filopodia over all regions of the tectum. These ramifications were of similar dimensions for the TTX-blocked and control axons. Despite abnormal routes and branching over inappropriate territories, axons showed a preference for the rostral tectum. At late regeneration stages (120-189 days after ONS), axons had lost their side branches and their growth cones. Their preterminal segments exhibited striking bends, suggesting that they had undergone course corrections to achieve access to the retinotopic target. Axonal processes had disappeared from the caudal tectum, and the preferential accumulation of axons over the rostral tectum had increased. The majority of the TTX-blocked and control axons ended in terminal arbors at retinotopic regions. The labeled arbors of the TTX-group were no larger than those of the control group. The arbors of each group lay close together in a continuous cluster in the TTX-group as well as in two-thirds of the control group. In the other one-third of the control group, however, terminal arbors were aggregated into separate patches. The clusters of the TTX-blocked axons covered between 2.2 and 3.9% (mean 2.95%) of the tectal surface and the clusters and/or patches of active axons between 1.9 and 3.4% (mean 2.7%). Thus the terminal arbor clusters of the TTX-silenced axons were not significantly larger than those of the active axons.
These data show that retinal ganglion cell impulse activity is required for neither the extension of side branches in the early exploratory phase of regeneration nor for the withdrawal of these branches nor for the establishment of target-directed routes and the deployment of normal-size terminal arbors at retinotopic loci. Our data further suggest that the retinotopic map is refined considerably with time even in the absence of activity, a finding that is consistent with an abstract by Olsson and Meyer ('87).
Summary in another language
Subject (DDC)
570 Biosciences, Biology
Keywords
Regenerating retinal axons,extension and loss of exploratory branches,terminal arbor at retinotopic regions
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690
HARTLIEB, Elke, Claudia STÜRMER, 1989. Pathfinding and target selection of goldfish retinal axons regenerating under TTX-induced impulse blockade. In: Journal of Comparative Neurology. 284(1), pp. 148-168. ISSN 0021-9967. eISSN 1096-9861. Available under: doi: 10.1002/cne.902840111BibTex
@article{Hartlieb1989Pathf-8112, year={1989}, doi={10.1002/cne.902840111}, title={Pathfinding and target selection of goldfish retinal axons regenerating under TTX-induced impulse blockade}, number={1}, volume={284}, issn={0021-9967}, journal={Journal of Comparative Neurology}, pages={148--168}, author={Hartlieb, Elke and Stürmer, Claudia} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/8112"> <dc:language>eng</dc:language> <dc:contributor>Stürmer, Claudia</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T17:40:42Z</dcterms:available> <dc:creator>Hartlieb, Elke</dc:creator> <dc:rights>Attribution-NonCommercial-NoDerivs 2.0 Generic</dc:rights> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/2.0/"/> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/8112"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/8112/1/Pathfinding_and_target_selection_of_goldfish_retinal_axons_regenerating_under_.pdf"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Stürmer, Claudia</dc:creator> <dcterms:bibliographicCitation>First publ. in: Journal of Comparative Neurology 284 (1989), pp. 148-168</dcterms:bibliographicCitation> <dcterms:issued>1989</dcterms:issued> <dcterms:abstract xml:lang="deu">To define the extent to which impulse blockade interferes with the morphological changes of regenerating retinal axons during their growth through the tectum, axons were deprived of activity by repeated intraocular injections of TTX. At intervals between 24 and 189 days after optic nerve section (ONS), a defined group of TTX-silenced axons and of axons with normal activity (controls) were labeled by applications of HRP to the ventro- or dorsotemporal retina. The trajectories of these labeled axons were traced in DAB processed tectal wholemounts.<br />As in controls, TTX-blocked axons went through a phase of exploratory growth at early regeneration stages (24 to 80 days after ONS). Coursing in abnormal routes, the axons initially distributed their growing endings widely over the tectum. Axons with and without activity extended side branches with growth cones and filopodia over all regions of the tectum. These ramifications were of similar dimensions for the TTX-blocked and control axons. Despite abnormal routes and branching over inappropriate territories, axons showed a preference for the rostral tectum. At late regeneration stages (120-189 days after ONS), axons had lost their side branches and their growth cones. Their preterminal segments exhibited striking bends, suggesting that they had undergone course corrections to achieve access to the retinotopic target. Axonal processes had disappeared from the caudal tectum, and the preferential accumulation of axons over the rostral tectum had increased. The majority of the TTX-blocked and control axons ended in terminal arbors at retinotopic regions. The labeled arbors of the TTX-group were no larger than those of the control group. The arbors of each group lay close together in a continuous cluster in the TTX-group as well as in two-thirds of the control group. In the other one-third of the control group, however, terminal arbors were aggregated into separate patches. The clusters of the TTX-blocked axons covered between 2.2 and 3.9% (mean 2.95%) of the tectal surface and the clusters and/or patches of active axons between 1.9 and 3.4% (mean 2.7%). Thus the terminal arbor clusters of the TTX-silenced axons were not significantly larger than those of the active axons.<br />These data show that retinal ganglion cell impulse activity is required for neither the extension of side branches in the early exploratory phase of regeneration nor for the withdrawal of these branches nor for the establishment of target-directed routes and the deployment of normal-size terminal arbors at retinotopic loci. Our data further suggest that the retinotopic map is refined considerably with time even in the absence of activity, a finding that is consistent with an abstract by Olsson and Meyer ('87).</dcterms:abstract> <dcterms:title>Pathfinding and target selection of goldfish retinal axons regenerating under TTX-induced impulse blockade</dcterms:title> <dc:format>application/pdf</dc:format> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T17:40:42Z</dc:date> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/8112/1/Pathfinding_and_target_selection_of_goldfish_retinal_axons_regenerating_under_.pdf"/> <dc:contributor>Hartlieb, Elke</dc:contributor> </rdf:Description> </rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
No