KOPS - Das Institutionelle Repositorium der Universität Konstanz

Substrate specificity of Glycine Oxidase and protein interaction specificity of the neuronal cell adhesion molecule TAG-1

Substrate specificity of Glycine Oxidase and protein interaction specificity of the neuronal cell adhesion molecule TAG-1

Zitieren

Dateien zu dieser Ressource

Prüfsumme: MD5:6bb7cedf3e70a0c8fcb8aa588a186b7a

MÖRTL, Mario, 2006. Substrate specificity of Glycine Oxidase and protein interaction specificity of the neuronal cell adhesion molecule TAG-1 [Dissertation]. Konstanz: University of Konstanz

@phdthesis{Mortl2006Subst-7389, title={Substrate specificity of Glycine Oxidase and protein interaction specificity of the neuronal cell adhesion molecule TAG-1}, year={2006}, author={Mörtl, Mario}, address={Konstanz}, school={Universität Konstanz} }

Mörtl, Mario Mörtl, Mario eng deposit-license 2011-03-24T17:34:03Z Substrate specificity of Glycine Oxidase and protein interaction specificity of the neuronal cell adhesion molecule TAG-1 Die Entwicklung des Nervensystems erfordert unterschiedliche Wechselwirkungen des wachsenden Axones mit seiner Umgebung, damit die Neuronen ihre oft weit entfernten Ziele erreichen können, um dort mit anderen Zellen Kontaktstellen auszubilden. Dabei finden die Axone den richtigen Weg, indem sie sich an molekularen Markierungen orientieren, die der Wachstumskegel der Axone erkennen kann. Solche Moleküle werden oft von den Axonen auch selbst sekretiert. Die größte Gruppe stellen dabei die in der Membran verankerten neuronalen Zelladhäsionsmoleküle dar, besonders die aus der Immunglobulinfamilie. Die Zelladhäsionsmoleküle dieser Gruppe sind oft Ligand und Rezeptor in einem und nehmen die jeweilige Rolle abhängig vom Entwicklungsgrad des Nervensystems und ihrer aktuellen Umgebung ein. Um die zugrunde liegenden molekularen Interaktionsmechanismen zu verstehen, wurden in dieser Arbeit folgende sechs Vertreter dieser Familie untersucht: menschliches TAG-1, menschliches L1 und seine Huhn- und Goldfisch-Homologen NgCAM (Neuronglia cell adhesion molecule) und E587-antigen, NrCAM vom Huhn (NgCAM related cell adhesion molecule) und F11 (RAR2/CNTN5) vom Huhn. Für alle untersuchten Moleküle wurden Expressionsvektoren der vier aminoterminalen Immunoglobulindomänen konstruiert. Frühere Untersuchungen ließen darauf schließen, dass alle untersuchten Moleküle eine zueinander ähnliche Tertiär-Struktur aufweisen: Ein kompaktes Konglomerat, in der die vier Immunoglobulindomänen U-förmig angeordnet sind. Alle Konstrukte konnten in E. coli als unlösliche Inclusion Bodies exprimiert werden. Der experimentell schwierigste Schritt bestand in der oxidativen in vitro Rückfaltung. Zwei der untersuchten Proteine (TAG-1 und E587‑antigen) konnten erfolgreich rückgefaltet und löslich aufgereinigt werden. Für TAG-1 gelang die Herstellung von Kristallen, und mit Hilfe der Röntgenstrukturanalyse konnte ein dreidimensionales TAG-1 Modell gewonnen werden. Anhand der spezifischen Anordnung der TAG-1-Moleküle im Kristallgitter, wurde ein alternatives Interaktionsmodell zur Erklärung der homophilen trans Interaktion von TAG-1 entwickelt. Das hier vorgestellte Interaktionsmodell beruht auf der Trans-Interaktion der vier aminoterminalen Immunglobulindomänen zweier TAG-1 Moleküle, indem ein stabiles Dimer entsteht. Damit unterscheidet sich das neue Modell vom molekularen Reißverschlusses, welches von der Axonin-1-Struktur abgeleitet wurde (Freigang et al., 2000), denn dort ensteht mit dem Reißverschluss eine Art Superkomplex, dessen Größe von der Anzahl der beteiligten Moleküle (Reißverschlusszähne) abhängt. Interessanterweise stützen jene Experimente, die schon das Reißverschlußmodell im Falle von Axonin-1 stützten, auch das Dimer-Interaktions-Modell, das hier vorgeschlagen wird, da die für die Trans-Interaktion verantwortlichen Reste für beide Modelle übereinstimmen. Das aus der TAG-1 Struktur abgeleitete Modell kann zudem einfach zu einem Modell erweitert werden, das die von Kunz et al., 2002 gezeigte, homophile Cis-Interaktion durch die Fibronectin-III-Domänen mit berücksichtigt.<br />Unabhängig von der Gruppe Ealick (Settembre et al., 2003) wurde die 1,8 Å Komplexstruktur der Glyzinoxidase von B. subtilis mit dem Inhibitor Glykolat gelöst. Die Struktur wurde mit der Methode des multiplen isomorphen Ersatzes mit Hilfe zweier Schweratomderivate gelöst. Die Glycinoxydase ist ein Homotertamer, was bisher einzigartig ist, für ein Mitglied der GR2 Familie der Glutathionreduktasen. Die Glyzinoxidase soll eine entscheidende Rolle in der Thiaminbiosynthese spielen (Settembre et al., 2003). Diese Rolle wird von der Kristallstruktur nicht unterstützt, da das Reaktionzentrum durch einen Subtrattunnel direkt mit dem Lösungsmittel in Verbindung steht. Der zweite Schritt der Thiaminbiosynthese, die Reaktion von Thiocarboxylat mit dem Iminprodukt muss jedoch unter Wasserausschluss erfolgen, da das Iminprodukt sonst hydrolisiert würde. Ein von der Glyzinoxidase bereitgestellter Mechanismus, der den Kontakt des Iminproduktes zum Wasser verhindert, kann aus der Röntgenstruktur nicht abgeleitet werden. Es konnte in dieser Arbeit auch gezeigt werden, dass die enzymatische Aktivität nicht durch die Anordnung als Homotetramer beeinflusst wird, da kein allosterischer Effekt durch Phosphat, Thiamin oder Thiaminpyrophosphat auf den Glyzinumsatz beobachtet wurde. 2011-03-24T17:34:03Z 2006 application/pdf Die Substratspezifität des Enzyms Glycinoxidase und spezifische Proteinwechselwirkung des neuronalen Zelladhäsionsmoleküls TAG-1

Dateiabrufe seit 01.10.2014 (Informationen über die Zugriffsstatistik)

Diss_Moertl.pdf 160

Das Dokument erscheint in:

KOPS Suche


Stöbern

Mein Benutzerkonto