R-sectoriality of truly cylindrical boundary value problems

Thumbnail Image
Date
2009
Editors
Contact
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
Konstanzer Schriften in Mathematik; 264
DOI (citable link)
ArXiv-ID
International patent number
Link to the license
EU project number
Project
Open Access publication
Restricted until
Title in another language
Research Projects
Organizational Units
Journal Issue
Publication type
Preprint
Publication status
Published in
Abstract
We prove R-sectoriality or, equivalently, L p-maximal regularity for a class of operators on some cylindrical domains of the form ℝn-k x V, where V ⊂ ℝk is a domain with compact boundary, ℝk, or a half-space. Instead of extensive localization procedures, we present an elegant approach via operator valued multiplier theory, which takes advantage of the cylindrical shape of both, the domain and the operator.
Summary in another language
Subject (DDC)
510 Mathematics
Keywords
Partielle Differentialgleichungen,Partial Differential Equations
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690NAU, Tobias, Jürgen SAAL, 2009. R-sectoriality of truly cylindrical boundary value problems
BibTex
@unpublished{Nau2009Rsect-732,
  year={2009},
  title={R-sectoriality of truly cylindrical boundary value problems},
  author={Nau, Tobias and Saal, Jürgen}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/732">
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/732/1/nau_saal_Nr_264.pdf"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/732/1/nau_saal_Nr_264.pdf"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/732"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:45:39Z</dcterms:available>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:45:39Z</dc:date>
    <dc:rights>terms-of-use</dc:rights>
    <dc:contributor>Saal, Jürgen</dc:contributor>
    <dc:language>eng</dc:language>
    <dc:format>application/pdf</dc:format>
    <dcterms:issued>2009</dcterms:issued>
    <dc:contributor>Nau, Tobias</dc:contributor>
    <dcterms:title>R-sectoriality of truly cylindrical boundary value problems</dcterms:title>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:abstract xml:lang="eng">We prove R-sectoriality or, equivalently, L &lt;sup&gt;p&lt;/sup&gt;-maximal regularity for a class of operators on some cylindrical domains of the form &amp;#8477;&lt;sup&gt;n-k&lt;/sup&gt; x V, where V &amp;#8834; &amp;#8477;&lt;sup&gt;k&lt;/sup&gt; is a domain with compact boundary, &amp;#8477;&lt;sup&gt;k&lt;/sup&gt;, or a half-space. Instead of extensive localization procedures, we present an elegant approach via operator valued multiplier theory, which takes advantage of the cylindrical shape of both, the domain and the operator.</dcterms:abstract>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:creator>Saal, Jürgen</dc:creator>
    <dc:creator>Nau, Tobias</dc:creator>
  </rdf:Description>
</rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Contact
URL of original publication
Test date of URL
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Refereed