Molecules, Fossils, and the Origin of Tetrapods

Thumbnail Image
Date
1992
Authors
Dolven, Sarah Ingrid
Editors
Contact
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
DOI (citable link)
ArXiv-ID
International patent number
EU project number
Project
Open Access publication
Collections
Restricted until
Title in another language
Research Projects
Organizational Units
Journal Issue
Publication type
Journal article
Publication status
Published in
Journal of Molecular Evolution ; 35 (1992), 2. - pp. 102-113. - ISSN 0022-2844. - eISSN 1432-1432
Abstract
Since the discovery of the coelacanth, Latimeria chalumnae, more than 50 years ago, paleontologists and comparative morphologists have debated whether coelacanths or lungfishes, two groups of lobe-finned fishes, are the closest living relatives of land vertebrates (Tetrapoda). Previously, Meyer and Wilson (1990) determined partial DNA sequences from two conservative mitochondrial genes and found support for a close relationship of lungfishes to tetrapods. We present additional DNA sequences from the 12S rRNA mitochondrial gene for three species of the two lineages of lungfishes that were not represented in the first study: Protopterus annectens and Protopterus aethiopicus from Africa and Neoceratodus forsteri (kindly provided by B. Hedges and L. Maxson) from Australia. This extended data set tends to group the two lepidosirenid lungfish lineages (Lepidosiren and Protopterus) with Neoceratodus as their sister group. All lungfishes seem to be more closely related to tetrapods than the coelacanth is. This result appears to rule out the possibility that the coelacanth lineage gave rise to land vertebrates. The common ancestor of lungfishes and tetrapods might have possessed multiple morphological traits that are shared by lungfishes and tetrapods [Meyer and Wilson (1990) listed 14 such traits]. Those traits that seem to link Latimeria and tetrapods are arguably due to convergent evolution or reversals and not to common descent. In this way, the molecular tree facilitates an evolutionary interpretation of the morphological differences among the living forms. We recommended that the extinct groups of lobe-finned fishes be placed onto the molecular tree that has lungfishes and not the coelacanth more closely related to tetrapods. The placement of fossils would help to further interpret the sequence of morphological events and innovations associated with the origin of tetrapods but appears to be problematic because the quality of fossils is not always high enough, and differences among paleontologists in the interpretation of the fossils have stood in the way of a consensus opinion for the branching order among lobefinned fishes. Marshall and Schultze (1992) criticized the morphological analysis presented by Meyer and Wilson (1990) and suggest that 13 of the 14 morphological traits that support the sister group relationship of lungfishes and tetrapods are not shared derived characters. Here we present further alternative viewpoints to the ones of Marshall and Schultze (1992) from the paleontological literature. We argue that all available information (paleontological, neontological, and molecular data) and rigorous cladistic methodology should be used when relating fossils and extant taxa in a phylogenetic framework.
Summary in another language
Subject (DDC)
570 Biosciences, Biology
Keywords
Polymerase chain reaction,12S rRNA,Coelacanth,Latimeria chalumnae,Ray-finned fishes,Lungfishes,Lepidosiren,Protopterus,Neoceratodus
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690MEYER, Axel, Sarah Ingrid DOLVEN, 1992. Molecules, Fossils, and the Origin of Tetrapods. In: Journal of Molecular Evolution. 35(2), pp. 102-113. ISSN 0022-2844. eISSN 1432-1432. Available under: doi: 10.1007/BF00183221
BibTex
@article{Meyer1992Molec-7306,
  year={1992},
  doi={10.1007/BF00183221},
  title={Molecules, Fossils, and the Origin of Tetrapods},
  number={2},
  volume={35},
  issn={0022-2844},
  journal={Journal of Molecular Evolution},
  pages={102--113},
  author={Meyer, Axel and Dolven, Sarah Ingrid}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/7306">
    <dc:contributor>Meyer, Axel</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T17:33:24Z</dc:date>
    <dc:creator>Dolven, Sarah Ingrid</dc:creator>
    <dcterms:title>Molecules, Fossils, and the Origin of Tetrapods</dcterms:title>
    <dcterms:abstract xml:lang="eng">Since the discovery of the coelacanth, Latimeria chalumnae, more than 50 years ago, paleontologists and comparative morphologists have debated whether coelacanths or lungfishes, two groups of lobe-finned fishes, are the closest living relatives of land vertebrates (Tetrapoda). Previously, Meyer and Wilson (1990) determined partial DNA sequences from two conservative mitochondrial genes and found support for a close relationship of lungfishes to tetrapods. We present additional DNA sequences from the 12S rRNA mitochondrial gene for three species of the two lineages of lungfishes that were not represented in the first study: Protopterus annectens and Protopterus aethiopicus from Africa and Neoceratodus forsteri (kindly provided by B. Hedges and L. Maxson) from Australia. This extended data set tends to group the two lepidosirenid lungfish lineages (Lepidosiren and Protopterus) with Neoceratodus as their sister group. All lungfishes seem to be more closely related to tetrapods than the coelacanth is. This result appears to rule out the possibility that the coelacanth lineage gave rise to land vertebrates. The common ancestor of lungfishes and tetrapods might have possessed multiple morphological traits that are shared by lungfishes and tetrapods [Meyer and Wilson (1990) listed 14 such traits]. Those traits that seem to link Latimeria and tetrapods are arguably due to convergent evolution or reversals and not to common descent. In this way, the molecular tree facilitates an evolutionary interpretation of the morphological differences among the living forms. We recommended that the extinct groups of lobe-finned fishes be placed onto the molecular tree that has lungfishes and not the coelacanth more closely related to tetrapods. The placement of fossils would help to further interpret the sequence of morphological events and innovations associated with the origin of tetrapods but appears to be problematic because the quality of fossils is not always high enough, and differences among paleontologists in the interpretation of the fossils have stood in the way of a consensus opinion for the branching order among lobefinned fishes. Marshall and Schultze (1992) criticized the morphological analysis presented by Meyer and Wilson (1990) and suggest that 13 of the 14 morphological traits that support the sister group relationship of lungfishes and tetrapods are not shared derived characters. Here we present further alternative viewpoints to the ones of Marshall and Schultze (1992) from the paleontological literature. We argue that all available information (paleontological, neontological, and molecular data) and rigorous cladistic methodology should be used when relating fossils and extant taxa in a phylogenetic framework.</dcterms:abstract>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/7306/1/Molecules_Fossils_and_the_Origin_of_Tetrapods_1992.pdf"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/7306/1/Molecules_Fossils_and_the_Origin_of_Tetrapods_1992.pdf"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Meyer, Axel</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T17:33:24Z</dcterms:available>
    <dc:language>eng</dc:language>
    <dc:rights>Attribution-NonCommercial-NoDerivs 2.0 Generic</dc:rights>
    <dcterms:bibliographicCitation>First publ. in: Journal of Molecular Evolution 35 (1992), pp. 102-113</dcterms:bibliographicCitation>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:issued>1992</dcterms:issued>
    <dc:contributor>Dolven, Sarah Ingrid</dc:contributor>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/7306"/>
    <dc:format>application/pdf</dc:format>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/2.0/"/>
  </rdf:Description>
</rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Contact
URL of original publication
Test date of URL
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
No
Refereed