The Newton polygon and elliptic problems with parameter

Cite This

Files in this item

Checksum: MD5:9cd35c43261310eacc1442307aeedc08

DENK, Robert, Reinhard MENNICKEN, Leonid R. VOLEVIČ, 1998. The Newton polygon and elliptic problems with parameter. In: Mathematische Nachrichten. 192, pp. 125-157. Available under: doi: 10.1002/mana.19981920108

@article{Denk1998Newto-719, title={The Newton polygon and elliptic problems with parameter}, year={1998}, doi={10.1002/mana.19981920108}, volume={192}, journal={Mathematische Nachrichten}, pages={125--157}, author={Denk, Robert and Mennicken, Reinhard and Volevič, Leonid R.} }

<rdf:RDF xmlns:dcterms="" xmlns:dc="" xmlns:rdf="" xmlns:bibo="" xmlns:dspace="" xmlns:foaf="" xmlns:void="" xmlns:xsd="" > <rdf:Description rdf:about=""> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dspace:isPartOfCollection rdf:resource=""/> <dcterms:issued>1998</dcterms:issued> <dcterms:abstract xml:lang="eng">In the study of the resolvent of a scalar elliptic operator, say, on a manifold without boundary there is a well-known Agmon-Agranovich-Vishik condition of ellipticity with parameter which guarantees the existence of a ray of minimal growth of the resolvent. The paper is devoted to the investigation of the same problem in the case of systems which are elliptic in the sense of Douglis-Nirenberg. We look for algebraic conditions on the symbol providing the existence of the resolvent set containing a ray on the complex plane. We approach the problem using the Newton polyhedron method. The idea of the method is to study simultaneously all the quasihomogeneous parts of the system obtained by assigning to the spectral parameter various weights, defined by the corresponding Newton polygon. On this way several equivalent necessary and sufficient conditions on the symbol of the system guaranteeing the existence and sharp estimates for the resolvent are found. One of the equivalent conditions can be formulated in the following form: all the upper left minors of the symbol satisfy ellipticity conditions. This subclass of systems elliptic in the sense of Douglis-Nirenberg was introduced by A. Kozhevnikov.</dcterms:abstract> <dcterms:rights rdf:resource=""/> <dc:contributor>Volevič, Leonid R.</dc:contributor> <dc:language>eng</dc:language> <dc:contributor>Denk, Robert</dc:contributor> <dc:creator>Mennicken, Reinhard</dc:creator> <dc:contributor>Mennicken, Reinhard</dc:contributor> <dcterms:available rdf:datatype="">2011-03-22T17:45:37Z</dcterms:available> <dc:format>application/pdf</dc:format> <dspace:hasBitstream rdf:resource=""/> <dcterms:title>The Newton polygon and elliptic problems with parameter</dcterms:title> <dcterms:isPartOf rdf:resource=""/> <dc:creator>Volevič, Leonid R.</dc:creator> <dc:date rdf:datatype="">2011-03-22T17:45:37Z</dc:date> <dcterms:hasPart rdf:resource=""/> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <bibo:uri rdf:resource=""/> <dc:rights>Attribution-NonCommercial-NoDerivs 2.0 Generic</dc:rights> <dcterms:bibliographicCitation>First publ. in: Mathematische Nachrichten 192 (1998), pp. 125-157</dcterms:bibliographicCitation> <dc:creator>Denk, Robert</dc:creator> </rdf:Description> </rdf:RDF>

Downloads since Oct 1, 2014 (Information about access statistics)

The_Newton_polygon_and_elliptic_problems_with_parameter.pdf 470

This item appears in the following Collection(s)

Attribution-NonCommercial-NoDerivs 2.0 Generic Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 2.0 Generic

Search KOPS


My Account